1
|
Parker KS, El N, Buldo EC, MacCormack TJ. Mechanisms of PVP-functionalized silver nanoparticle toxicity in fish: Intravascular exposure disrupts cardiac pacemaker function and inhibits Na +/K +-ATPase activity in heart, but not gill. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109837. [PMID: 38218567 DOI: 10.1016/j.cbpc.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Polyvinylpyrrolidone-functionalized silver nanoparticles (nAgPVP) are popular in consumer products for their colloidal stability and antimicrobial activity. Whole lake additions of nAgPVP cause long term, ecosystem-scale changes in fish populations but the mechanisms underlying this effect are unclear. We have previously shown that in fish, nAgPVP impairs cardiac contractility and Na+/K+-ATPase (NKA) activity in vitro, raising the possibility that heart dysfunction could underlie population-level exposure effects. The goal of this study was to determine if nAgPVP influences the control of heart rate (fh), blood pressure, or cardiac NKA activity in vivo. First, a dose-response curve for the effects of 5 nm nAgPVP on contractility was completed on isometrically contracting ventricular muscle preparations from Arctic char (Salvelinus alpinus) and showed that force production was lowest at 500 μg L-1 and maximum pacing frequency increased with nAgPVP concentration. Stroke volume, cardiac output, and power output were maintained in isolated working heart preparations from brook char (Salvelinus fontinalis) exposed to 700 μg L-1 nAgPVP. Both fh and blood pressure were elevated after 24 h in brook char injected with 700 μg kg body mass-1 nAgPVP and fh was insensitive to modulation with blockers of β-adrenergic and muscarinic cholinergic receptors. Na+/K+-ATPase activity was significantly lower in heart, but not gill of nAgPVP injected fish. The results indicate that nAgPVP influences cardiac function in vivo by disrupting regulation of the pacemaker and cardiomyocyte ionoregulation. Impaired fh regulation may prevent fish from appropriately responding to environmental or social stressors and affect their ability to survive.
Collapse
Affiliation(s)
- K S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - E C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
2
|
Ni X, Yin X, Qi C, Liu C, Chen H, Zhou Y, Ao W, Bao S, Xue J, Yang J, Dong W. Cardiotoxicity of (-)-borneol, (+)-borneol, and isoborneol in zebrafish embryos is associated with Na + /K + -ATPase and Ca 2+ -ATPase inhibition. J Appl Toxicol 2023; 43:373-386. [PMID: 36062847 DOI: 10.1002/jat.4388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Abstract
Borneol is an example of traditional Chinese medicine widely used in Asia. There are different isomers of chiral borneol in the market, but its toxicity and effects need further study. In this study, we used zebrafish embryos to examine the effects of exposure to three isomers of borneol [(-)-borneol, (+)-borneol, and isoborneol] on heart development and the association with Na+ /K+ -ATPase from 4 h post-fertilization (4 hpf). The results showed that the three isomers of borneol increased mortality and decreased hatching rate when the zebrafish embryo developed to 72 hpf. All three isomers of borneol (0.01-1.0 mM) significantly reduced heart rate from 48 to 120 hpf and reduced the expression of genes related to Ca2+ -ATPase (cacna1ab and cacna1da) and Na+ /K+ -ATPase (atp1b2b, atp1a3b, and atp1a2). At the same time, the three isomers of borneol significantly reduced the activities of Ca2+ -ATPase and Na+ /K+ -ATPase at 0.1 to 1.0 mM. (+)-Borneol caused the most significant reduction (p < 0.05), followed by isoborneol and (-)-borneol. Na+ /K+ -ATPase was mainly expressed in otic vesicles and protonephridium. All three isomers of borneol reduced Na+ /K+ -ATPase mRNA expression, but isoborneol was the most significant (p < 0.01). Our results indicated that (+)-borneol was the least toxic of the three isomers while the isoborneol showed the most substantial toxic effect, closely related to effects on Na+ /K+ -ATPase.
Collapse
Affiliation(s)
- Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.,School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chunyu Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yini Zhou
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Wuliji Ao
- Inner Mongolia Research Institute of Traditional Mongolian Medicine Engineering technology/College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Shuyin Bao
- The Medical College of Inner Mongolia Minzu University, Tongliao, China
| | - Jiangdong Xue
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
3
|
Rendakov NL, Kaivarainen EI, Pekkoeva SN, Murzina SA, Nikerova KM. Cortisol Level and Na +/K +-ATPase Activity during Growth and Development of Juvenile Daubed Shanny Leptoclinus maculatus (Fries, 1838) in the Arctic. DOKL BIOCHEM BIOPHYS 2022; 507:367-369. [PMID: 36787004 DOI: 10.1134/s1607672922340117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/15/2023]
Abstract
The dynamics of cortisol level and Na+/K+-ATPase activity that are associated with the maintenance of cell ion homeostasis was studied in skeletal muscles of juvenile circumpolar fish daubed shanny Leptoclinus maculatus (Fries, 1838), an ecologically significant representative of the ichthyofauna of the Arctic Svalbard Archipelago. It was established that the level of cortisol and Na+/K+-ATPase activity decrease during the development of daubed shanny juveniles from stage L2 pelagic juveniles to stage L5 juveniles, which are mainly demersal. The results obtained suggest that cortisol may be involved in the regulation of the activity of one of the main osmoregulatory factors, Na+/K+-ATPase. This may be important for the growth and adaptation of pelagic juveniles of daubed shanny to the demersal habitat during postembryonic development in the Arctic.
Collapse
Affiliation(s)
- N L Rendakov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - E I Kaivarainen
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - S N Pekkoeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - S A Murzina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - K M Nikerova
- Forest Research Institute, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
4
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Effects of β-eudesmol and atractylodin on target genes and hormone related to cardiotoxicity, hepatotoxicity, and endocrine disruption in developing zebrafish embryos. Sci Prog 2022; 105:368504221137458. [PMID: 36474426 PMCID: PMC10306152 DOI: 10.1177/00368504221137458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atractylodes lancea, commonly known as Kod-Kamao in Thai, a traditional medicinal herb, is being developed for clinical use in cholangiocarcinoma. β-eudesmol and atractylodin are the main active components of this herb which possess most of the pharmacological properties. However, the lack of adequate toxicity data would be a significant hindrance to their further development. The present study investigated the toxic effects of selected concentrations of β-eudesmol and atractylodin in the heart, liver, and endocrine systems of zebrafish embryos. Study endpoints included changes in the expression of genes related to Na/K-ATPase activity in the heart, fatty acid-binding protein 10a and cytochrome P450 family 1 subfamily A member 1 in the liver, and cortisol levels in the endocrine system. Both compounds produced inhibitory effects on the Na/K-ATPase gene expressions in the heart. Both also triggered the biomarkers of liver toxicity. While β-eudesmol did not alter the expression of the cytochrome P450 family 1 subfamily A member 1 gene, atractylodin at high concentrations upregulated the gene, suggesting its potential enzyme-inducing activity in this gene. β-eudesmol, but not atractylodin, showed some stress-reducing properties with suppression of cortisol production.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety
Research Team, National Nanotechnology Center, National Science and Technology
Development Agency, Klong Luang, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn
International College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Center of Excellence in Pharmacology
and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International
College of Medicine, Thammasat University, Klong Luang, Pathumthani, Thailand
- Drug Discovery and Development Center, Thammasat University, Klong Luang, Pathumthani, Thailand
| |
Collapse
|
5
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
6
|
Gene silencing reveals multiple functions of Na +/K +-ATPase in the salmon louse (Lepeophtheirus salmonis). Exp Parasitol 2018; 185:79-91. [PMID: 29339143 DOI: 10.1016/j.exppara.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Na+/K+-ATPase has a key function in a variety of physiological processes including membrane excitability, osmoregulation, regulation of cell volume, and transport of nutrients. While knowledge about Na+/K+-ATPase function in osmoregulation in crustaceans is extensive, the role of this enzyme in other physiological and developmental processes is scarce. Here, we report characterization, transcriptional distribution and likely functions of the newly identified L. salmonis Na+/K+-ATPase (LsalNa+/K+-ATPase) α subunit in various developmental stages. The complete mRNA sequence was identified, with 3003 bp open reading frame encoding a putative protein of 1001 amino acids. Putative protein sequence of LsalNa+/K+-ATPase revealed all typical features of Na+/K+-ATPase and demonstrated high sequence identity to other invertebrate and vertebrate species. Quantitative RT-PCR analysis revealed higher LsalNa+/K+-ATPase transcript level in free-living stages in comparison to parasitic stages. In situ hybridization analysis of copepodids and adult lice revealed LsalNa+/K+-ATPase transcript localization in a wide variety of tissues such as nervous system, intestine, reproductive system, and subcuticular and glandular tissue. RNAi mediated knock-down of LsalNa+/K+-ATPase caused locomotion impairment, and affected reproduction and feeding. Morphological analysis of dsRNA treated animals revealed muscle degeneration in larval stages, severe changes in the oocyte formation and maturation in females and abnormalities in tegmental glands. Thus, the study represents an important foundation for further functional investigation and identification of physiological pathways in which Na+/K+-ATPase is directly or indirectly involved.
Collapse
|
7
|
Abstract
Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA)-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo.
Collapse
|
8
|
Doganli C, Bukata L, Lykke-Hartmann K. Whole-Mount Immunohistochemistry for Anti-F59 in Zebrafish Embryos (1-5 Days Post Fertilization (dpf)). Methods Mol Biol 2016; 1377:365-9. [PMID: 26695047 DOI: 10.1007/978-1-4939-3179-8_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Immunohistochemistry (IHC) is a powerful method to determine localization of tissue components by the interaction of target antigens with labeled antibodies. Here we describe an IHC protocol for localizing the myosin heavy chain of zebrafish embryos at 1-2 and 3-5 days post fertilization (dpf).
Collapse
Affiliation(s)
- Canan Doganli
- Smith Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Lucas Bukata
- Sanford-Burnham Medical Research Institute, La Jolla, USA
| | - Karin Lykke-Hartmann
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark. .,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark. .,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
9
|
Doganli C, Nyengaard JR, Lykke-Hartmann K. Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning. Methods Mol Biol 2016; 1377:353-363. [PMID: 26695046 DOI: 10.1007/978-1-4939-3179-8_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization protocol for whole-mount zebrafish embryos.
Collapse
Affiliation(s)
- Canan Doganli
- Smith Cardiovascular Research Institute, University of California, San Francisco, CA, 94158-9001, USA
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus University, Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine and Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus C, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
10
|
Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics 2015; 16:668. [PMID: 26335922 PMCID: PMC4558960 DOI: 10.1186/s12864-015-1858-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. RESULTS Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. CONCLUSIONS The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.
Collapse
|
11
|
Developmental expression analysis of Na, K-ATPase α subunits in Xenopus. Dev Genes Evol 2015; 225:105-11. [PMID: 25772274 DOI: 10.1007/s00427-015-0497-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
Abstract
Na, K-ATPase is an integral membrane protein complex responsible for maintaining the ionic gradients of Na(+) and K(+) across the plasma membrane and has a variety of cellular functions including neuronal activity. Studies in several organisms have shown that this protein complex regulates multiple aspects of embryonic development and is responsible for the pathogenesis of several human diseases. Here, we report the cloning and expression of Na, K-ATPase α2 (atp1a2) and α3 (atp1a3) subunits during Xenopus development and compare the expression patterns of each subunit. Using in situ hybridization in whole embryos and on sections, we show that all three α subunits are co-expressed in the pronephric kidney, with varying expression in neurogenic derivatives. The atp1a2 has a unique expression in the ependymal cell layer of the developing brain that is not shared with other α subunits. The Na, K-ATPase α1 (atp1a1), and atp1a3 share many expression domains in placode derivatives, including the otic vesicle, lens, ganglion of the anterodorsal lateral line nerve, and ganglia of the facial and anteroventral lateral line nerve and olfactory cells. All the subunits share a common expression domain, the myocardium.
Collapse
|
12
|
Molecular characterization and transcriptional regulation of the Na +/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:23-38. [PMID: 24947209 DOI: 10.1016/j.cbpb.2014.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/12/2023]
Abstract
In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills.
Collapse
|
13
|
Sausville E, Lorusso P, Carducci M, Carter J, Quinn MF, Malburg L, Azad N, Cosgrove D, Knight R, Barker P, Zabludoff S, Agbo F, Oakes P, Senderowicz A. Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73:539-49. [PMID: 24448638 DOI: 10.1007/s00280-014-2380-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE AZD7762 is a Chk1 kinase inhibitor which increases sensitivity to DNA-damaging agents, including gemcitabine. We evaluated the safety of AZD7762 monotherapy and with gemcitabine in advanced solid tumor patients. EXPERIMENTAL DESIGN In this Phase I study, patients received intravenous AZD7762 on days 1 and 8 of a 14-day run-in cycle (cycle 0; AZD7762 monotherapy), followed by AZD7762 plus gemcitabine 750-1,000 mg/m(2) on days 1 and 8, every 21 days, in ascending AZD7762 doses (cycle 1; combination therapy). RESULTS Forty-two patients received AZD7762 6 mg (n = 9), 9 mg (n = 3), 14 mg (n = 6), 21 mg (n = 3), 30 mg (n = 7), 32 mg (n = 6), and 40 mg (n = 8), in combination with gemcitabine. Common adverse events (AEs) were fatigue [41 % (17/42) patients], neutropenia/leukopenia [36 % (15/42) patients], anemia/Hb decrease [29 % (12/42) patients] and nausea, pyrexia and alanine aminotransferase/aspartate aminotransferase increase [26 % (11/42) patients each]. Grade ≥3 AEs occurred in 19 and 52 % of patients in cycles 0 and 1, respectively. Cardiac dose-limiting toxicities occurred in two patients (both AZD7762 monotherapy): grade 3 troponin I increase (32 mg) and grade 3 myocardial ischemia with chest pain, electrocardiogram changes, decreased left ventricular ejection fraction, and increased troponin I (40 mg). AZD7762 exposure increased linearly. Gemcitabine did not affect AZD7762 pharmacokinetics. Two non-small-cell lung cancer patients achieved partial tumor responses (AZD7762 6 mg/gemcitabine 750 mg/m(2) and AZD7762 9 mg cohort). CONCLUSIONS The maximum-tolerated dose of AZD7762 in combination with gemcitabine 1,000 mg/m(2) was 30 mg. Although development of AZD7762 is not going forward owing to unpredictable cardiac toxicity, Chk1 remains an important therapeutic target.
Collapse
Affiliation(s)
- Edward Sausville
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, 22 S. Greene Street, Baltimore, MD, 21201, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Henriksen C, Kjaer-Sorensen K, Einholm AP, Madsen LB, Momeni J, Bendixen C, Oxvig C, Vilsen B, Larsen K. Molecular cloning and characterization of porcine Na⁺/K⁺-ATPase isoforms α1, α2, α3 and the ATP1A3 promoter. PLoS One 2013; 8:e79127. [PMID: 24236096 PMCID: PMC3827302 DOI: 10.1371/journal.pone.0079127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
Na⁺/K⁺-ATPase maintains electrochemical gradients of Na⁺ and K⁺ essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na⁺/K⁺-ATPase exists in four different isoforms (α1-α4) encoded by different genes. With a view to future use of pig as an animal model in studies of human diseases caused by Na⁺/K⁺-ATPase mutations, we have determined the porcine coding sequences of the α1-α3 genes, ATP1A1, ATP1A2, and ATP1A3, their chromosomal localization, and expression patterns. Our ATP1A1 sequence accords with the sequences from several species at five positions where the amino acid residue of the previously published porcine ATP1A1 sequence differs. These corrections include replacement of glutamine 841 with arginine. Analysis of the functional consequences of substitution of the arginine revealed its importance for Na⁺ binding, which can be explained by interaction of the arginine with the C-terminus, stabilizing one of the Na⁺ sites. Quantitative real-time PCR expression analyses of porcine ATP1A1, ATP1A2, and ATP1A3 mRNA showed that all three transcripts are expressed in the embryonic brain as early as 60 days of gestation. Expression of α3 is confined to neuronal tissue. Generally, the expression patterns of ATP1A1, ATP1A2, and ATP1A3 transcripts were found similar to their human counterparts, except for lack of α3 expression in porcine heart. These expression patterns were confirmed at the protein level. We also report the sequence of the porcine ATP1A3 promoter, which was found to be closely homologous to its human counterpart. The function and specificity of the porcine ATP1A3 promoter was analyzed in transgenic zebrafish, demonstrating that it is active and drives expression in embryonic brain and spinal cord. The results of the present study provide a sound basis for employing the ATP1A3 promoter in attempts to generate transgenic porcine models of neurological diseases caused by ATP1A3 mutations.
Collapse
Affiliation(s)
- Carina Henriksen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Lone Bruhn Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- * E-mail:
| |
Collapse
|
15
|
Doğanli C, Oxvig C, Lykke-Hartmann K. Zebrafish as a novel model to assess Na+/K(+)-ATPase-related neurological disorders. Neurosci Biobehav Rev 2013; 37:2774-87. [PMID: 24091024 DOI: 10.1016/j.neubiorev.2013.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/08/2013] [Accepted: 09/23/2013] [Indexed: 11/26/2022]
Abstract
Modeling neurological disorders using zebrafish increases rapidly as this model system allows easy access to all developmental stages and imaging of pathological processes. A surprising degree of functional conservation has been demonstrated between human genes implicated in neurodegenerative diseases and their zebrafish orthologues. Zebrafish offers rapid high throughput screening of therapeutic compounds and live imaging of pathogenic mechanisms in vivo. Several recent zebrafish studies functionally assessed the role of the sodium-potassium pump (Na(+)/K(+)-ATPase). The Na(+)/K(+)-ATPase maintains the electrochemical gradients across the plasma membrane, essential for e.g. signaling, secondary active transport, glutamate re-uptake and neuron excitability in animal cells. Na(+)/K(+)-ATPase mutations are associated with neurological disorders, where mutations in the Na(+)/K(+)-ATPase α2 and α3 isoforms cause Familial hemiplegic migraine type 2 (FHM2) and Rapid-onset dystonia-parkinsonism (RDP)/Alternating hemiplegic childhood (AHC), respectively. In zebrafish, knock-down of Na(+)/K(+)-ATPase isoforms included skeletal and heart muscle defects, impaired embryonic motility, depolarized Rohon-beard neurons and abrupt brain ventricle development. In this review, we discuss zebrafish as a model to assess Na(+)/K(+)-ATPase isoform functions. Furthermore, studies investigating proteomic changes in both α2- and α3-isoform deficient embryos and their potential connections to the Na(+)/K(+)-ATPase functions will be discussed.
Collapse
Affiliation(s)
- Canan Doğanli
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Copenhagen, Denmark; Aarhus University, Department of Biomedicine, Ole Worms Allé 3, Building 1171, DK-8000 Aarhus, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10, Building 3135, DK-8000 Aarhus, Denmark
| | | | | |
Collapse
|
16
|
de Juan-Sanz J, Núñez E, Villarejo-López L, Pérez-Hernández D, Rodriguez-Fraticelli AE, López-Corcuera B, Vázquez J, Aragón C. Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo. J Neurosci 2013; 33:14269-81. [PMID: 23986260 PMCID: PMC6618510 DOI: 10.1523/jneurosci.1532-13.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 01/16/2023] Open
Abstract
The neuronal glycine transporter GlyT2 plays a fundamental role in the glycinergic neurotransmission by recycling the neurotransmitter to the presynaptic terminal. GlyT2 is the main supplier of glycine for vesicle refilling, a process that is absolutely necessary to preserve quantal glycine content in synaptic vesicles. Alterations in GlyT2 activity modify glycinergic neurotransmission and may underlie several neuromuscular disorders, such as hyperekplexia, myoclonus, dystonia, and epilepsy. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans and produce congenital muscular dystonia type 2 (CMD2) in Belgian Blue cattle. GlyT2 function is strictly coupled to the sodium electrochemical gradient actively generated by the Na+/K+-ATPase (NKA). GlyT2 cotransports 3Na+/Cl-/glycine generating large rises of Na+ inside the presynaptic terminal that must be efficiently reduced by the NKA to preserve Na+ homeostasis. In this work, we have used high-throughput mass spectrometry to identify proteins interacting with GlyT2 in the CNS. NKA was detected as a putative candidate and through reciprocal coimmunoprecipitations and immunocytochemistry analyses the association between GlyT2 and NKA was confirmed. NKA mainly interacts with the raft-associated active pool of GlyT2, and low and high levels of the specific NKA ligand ouabain modulate the endocytosis and total expression of GlyT2 in neurons. The ouabain-mediated downregulation of GlyT2 also occurs in vivo in two different systems: zebrafish embryos and adult rats, indicating that this NKA-mediated regulatory mechanism is evolutionarily conserved and may play a relevant role in the physiological control of inhibitory glycinergic neurotransmission.
Collapse
Affiliation(s)
- Jaime de Juan-Sanz
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46010 Valencia, Spain
- IdiPAZ-Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Enrique Núñez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46010 Valencia, Spain
- IdiPAZ-Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Lucía Villarejo-López
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | - Alejo E. Rodriguez-Fraticelli
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz López-Corcuera
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46010 Valencia, Spain
- IdiPAZ-Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain, and
| | - Carmen Aragón
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 46010 Valencia, Spain
- IdiPAZ-Hospital Universitario La Paz, 28046 Madrid, Spain
| |
Collapse
|
17
|
Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol 2013; 72:619-27. [PMID: 23892959 DOI: 10.1007/s00280-013-2234-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE AZD7762, a potent Chk1/Chk2 inhibitor, has shown chemosensitizing activity with gemcitabine in xenograft models. METHODS This open-label, Phase I, dose-escalation study evaluated the safety, pharmacokinetics (PK) and preliminary efficacy (RECIST) of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours (NCT00937664). Patients received intravenous AZD7762 alone on days 1 and 8 of a 14-day cycle (cycle 0), followed by AZD7762 plus gemcitabine 1,000 mg/m(2) on days 1 and 8 of 22-day cycles, in ascending AZD7762 dose cohorts. RESULTS Twenty patients received AZD7762 at doses of 6 mg (n = 3), 9 mg (n = 3), 21 mg (n = 6) and 30 mg (n = 8). Dose-limiting toxicities occurred in 2/6 evaluable patients in the 30-mg cohort: one, CTCAE grade 3 elevated troponin T (cycle 0: AZD7762 monotherapy); one, neutropenia, thrombocytopenia, and elevated aspartate aminotransferase and alanine aminotransferase (cycle 1: combination therapy). The 30 mg dose was therefore regarded as non-tolerable. The most common adverse events (AEs) in cycle 0 (AZD7762 monotherapy) were bradycardia (50 %), hypertension (25 %) and fatigue (15 %). Overall, the most common AEs were bradycardia (55 %), neutropenia (45 %) and hypertension, fatigue and rash (30 % each). Grade ≥3 AEs were reported in 11 patients, the most common being neutropenia (45 %) and leukopenia (25 %). AZD7762 exposure increased approximately linearly. Gemcitabine did not appear to affect AZD7762 PK. There were no objective responses; five patients (all lung cancer) had stable disease. CONCLUSIONS The maximum tolerated dose of AZD7762 in combination with gemcitabine, 1,000 mg/m(2) was determined as 21 mg in Japanese patients.
Collapse
|
18
|
Doğanli C, Beck HC, Ribera AB, Oxvig C, Lykke-Hartmann K. α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. J Biol Chem 2013; 288:8862-74. [PMID: 23400780 DOI: 10.1074/jbc.m112.421529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/K(+)-ATPases are transmembrane ion pumps that maintain ion gradients across the basolateral plasma membrane in all animal cells to facilitate essential biological functions. Mutations in the Na(+)/K(+)-ATPase α3 subunit gene (ATP1A3) cause rapid-onset dystonia-parkinsonism, a rare movement disorder characterized by sudden onset of dystonic spasms and slow movements. In the brain, ATP1A3 is principally expressed in neurons. In zebrafish, the transcripts of the two ATP1A3 orthologs, Atp1a3a and Atp1a3b, show distinct expression in the brain. Surprisingly, targeted knockdown of either Atp1a3a or Atp1a3b leads to brain ventricle dilation, a likely consequence of ion imbalances across the plasma membrane that cause accumulation of cerebrospinal fluid in the ventricle. The brain ventricle dilation is accompanied by a depolarization of spinal Rohon-Beard neurons in Atp1a3a knockdown embryos, suggesting impaired neuronal excitability. This is further supported by Atp1a3a or Atp1a3b knockdown results where altered responses to tactile stimuli as well as abnormal motility were observed. Finally, proteomic analysis identified several protein candidates highlighting proteome changes associated with the knockdown of Atp1a3a or Atp1a3b. Our data thus strongly support the role of α3Na(+)/K(+)-ATPase in zebrafish motility and brain development, associating for the first time the α3Na(+)/K(+)-ATPase deficiency with brain ventricle dilation.
Collapse
Affiliation(s)
- Canan Doğanli
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, DK-1057 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|