1
|
Fukaya M, Ibuchi K, Sugawara T, Itakura M, Ito A, Shiroshima T, Hara Y, Okamoto H, Luton F, Sakagami H. EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells. Traffic 2024; 25:e12936. [PMID: 38725127 DOI: 10.1111/tra.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/03/2024]
Abstract
Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Frédéric Luton
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Université Côte d'Azur, Valbonne, France
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
2
|
Yang B, Yao JL, Huo JY, Feng YL, Coetzee WA, Xu GY, Yang HQ. Rab35 GTPase positively regulates endocytic recycling of cardiac K ATP channels. Channels (Austin) 2022; 16:137-147. [PMID: 35754325 DOI: 10.1080/19336950.2022.2090667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
ATP-sensitive K+ (KATP) channel couples membrane excitability to intracellular energy metabolism. Maintaining KATP channel surface expression is key to normal insulin secretion, blood pressure and cardioprotection. However, the molecular mechanisms regulating KATP channel internalization and endocytic recycling, which directly affect the surface expression of KATP channels, are poorly understood. Here we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and characterized Rab35 GTPase as a key regulator of KATP channel endocytic recycling. Electrophysiological recordings and surface biotinylation assays showed decreased KATP channel surface density with co-expression of a dominant negative Rab35 mutant (Rab35-DN), but not other recycling-related Rab GTPases, including Rab4, Rab11a and Rab11b. Immunofluorescence images revealed strong colocalization of Rab35-DN with recycling Kir6.2. Rab35-DN minimized the recycling rate of KATP channels. Rab35 also regulated KATP channel current amplitude in isolated adult cardiomyocytes by affecting its surface expression but not channel properties, which validated its physiologic relevance and the potential of pharmacologic target for treating the diseases with KATP channel trafficking defects.
Collapse
Affiliation(s)
- Bo Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jia-Lu Yao
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.,Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Jian-Yi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yu-Long Feng
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| | - William A Coetzee
- Departments of Pathology, Neuroscience & Physiology, Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.,Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021; 478:3977-3998. [PMID: 34813650 DOI: 10.1042/bcj20210077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.
Collapse
|
4
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
5
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
6
|
Wei Z, Xu X, Fang Y, Khater M, Naughton SX, Hu G, Terry AV, Wu G. Rab43 GTPase directs postsynaptic trafficking and neuron-specific sorting of G protein-coupled receptors. J Biol Chem 2021; 296:100517. [PMID: 33676895 PMCID: PMC8050390 DOI: 10.1016/j.jbc.2021.100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are important modulators of synaptic functions. A fundamental but poorly addressed question in neurobiology is how targeted GPCR trafficking is achieved. Rab GTPases are the master regulators of vesicle-mediated membrane trafficking, but their functions in the synaptic presentation of newly synthesized GPCRs are virtually unknown. Here, we investigate the role of Rab43, via dominant-negative inhibition and CRISPR–Cas9–mediated KO, in the export trafficking of α2-adrenergic receptor (α2-AR) and muscarinic acetylcholine receptor (mAChR) in primary neurons and cells. We demonstrate that Rab43 differentially regulates the overall surface expression of endogenous α2-AR and mAChR, as well as their signaling, in primary neurons. In parallel, Rab43 exerts distinct effects on the dendritic and postsynaptic transport of specific α2B-AR and M3 mAChR subtypes. More interestingly, the selective actions of Rab43 toward α2B-AR and M3 mAChR are neuronal cell specific and dictated by direct interaction. These data reveal novel, neuron-specific functions for Rab43 in the dendritic and postsynaptic targeting and sorting of GPCRs and imply multiple forward delivery routes for different GPCRs in neurons. Overall, this study provides important insights into regulatory mechanisms of GPCR anterograde traffic to the functional destination in neurons.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yinquan Fang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
7
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
8
|
Bhat S, Ljubojevic N, Zhu S, Fukuda M, Echard A, Zurzolo C. Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci Rep 2020; 10:16803. [PMID: 33033331 PMCID: PMC7544914 DOI: 10.1038/s41598-020-74013-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin rich structures that connect distant cells, allowing the transport of many cellular components, including vesicles, organelles and molecules. Rab GTPases are the major regulators of vesicle trafficking and also participate in actin cytoskeleton remodelling, therefore, we examined their role in TNTs. Rab35 functions with several proteins that are involved in vesicle trafficking such as ACAP2, MICAL-L1, ARF6 and EHD1, which are known to be involved in neurite outgrowth. Here we show that Rab35 promotes TNT formation and TNT-mediated vesicle transfer in a neuronal cell line. Furthermore, our data indicates that Rab35-GTP, ACAP2, ARF6-GDP and EHD1 act in a cascade mechanism to promote TNT formation. Interestingly, MICAL-L1 overexpression, shown to be necessary for the action of Rab35 on neurite outgrowth, showed no effect on TNTs, indicating that TNT formation and neurite outgrowth may be processed through similar but not identical pathways, further supporting the unique identity of these cellular protrusions.
Collapse
Affiliation(s)
- Shaarvari Bhat
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Nina Ljubojevic
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, ED394-Physiologie, Physiopathologie et Thérapeutique, 75005, Paris, France
| | - Seng Zhu
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, UMR3691 CNRS, Institut Pasteur, 75015, Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
9
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
10
|
Murata T, Unno Y, Fukuda M, Utsunomiya-Tate N. The dynamic structure of Rab35 is stabilized in the presence of GTP under physiological conditions. Biochem Biophys Rep 2020; 23:100776. [PMID: 32613087 PMCID: PMC7322127 DOI: 10.1016/j.bbrep.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Rab proteins, a family of small guanosine triphosphatases, play key roles in intracellular membrane trafficking and the regulation of various cellular processes. As a Rab isoform, Rab35 is crucial for recycling endosome trafficking, cytokinesis and neurite outgrowth. In this report, we analyzed dynamic structural changes and physicochemical features of Rab35 in response to different external conditions, including temperature, pH, salt concentration and guanosine triphosphate (GTP), by circular dichroism (CD) spectroscopy. CD spectra revealed that the α-helix content of Rab35 varies under different conditions considerably. The addition of GTP increases the α-helix content of Rab35 when the temperature, pH and salt concentration match physiological conditions. The results suggest that the external environment affects the secondary structure of Rab35. In particular, the presence of GTP stabilized the α-helices of Rab35 under physiological conditions. These structural changes may translate to changes in Rab35 function and relate to its role in membrane trafficking.
Collapse
Affiliation(s)
- Takuya Murata
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yuka Unno
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Naoko Utsunomiya-Tate
- Faculty of Pharma-Science, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
11
|
Maemoto Y, Maruyama T, Nemoto K, Baba T, Motohashi M, Ito A, Tagaya M, Tani K. DDHD1, but Not DDHD2, Suppresses Neurite Outgrowth in SH-SY5Y and PC12 Cells by Regulating Protein Transport From Recycling Endosomes. Front Cell Dev Biol 2020; 8:670. [PMID: 32850804 PMCID: PMC7396612 DOI: 10.3389/fcell.2020.00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
DDHD1 and DDHD2 are both intracellular phospholipases A1 and hydrolyze phosphatidic acid in vitro. Given that phosphatidic acid participates in neurite outgrowth, we examined whether DDHD1 and DDHD2 regulate neurite outgrowth. Depletion of DDHD1 from SH-SY5Y and PC12 cells caused elongation of neurites, whereas DDHD2 depletion prevented neurite elongation. Rescue experiments demonstrated that the enzymatic activity of DDHD1 is necessary for the prevention of neurite elongation. Depletion of DDHD1 caused enlargement of early endosomes and stimulated tubulation of recycling endosomes positive for phosphatidic acid-binding proteins syndapin2 and MICAL-L1. Knockout of DDHD1 enhanced transferrin recycling from recycling endosomes to the cell surface. Our results suggest that DDHD1 negatively controls the formation of a local phosphatidic acid-rich domain in recycling endosomes that serves as a membrane source for neurite outgrowth.
Collapse
Affiliation(s)
- Yuki Maemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tomohiro Maruyama
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kazuaki Nemoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.,Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine and Faculty of Medicine, Akita University, Akita, Japan
| | - Manae Motohashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
12
|
Lin L, Shi Y, Wang M, Wang C, Zhu J, Zhang R. Rab35/ACAP2 and Rab35/RUSC2 Complex Structures Reveal Molecular Basis for Effector Recognition by Rab35 GTPase. Structure 2019; 27:729-740.e3. [PMID: 30905672 DOI: 10.1016/j.str.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Abstract
Rab35, a master regulator of membrane trafficking, regulates diverse cellular processes and is associated with various human diseases. Although a number of effectors have been identified, the molecular basis of Rab35-effector interactions remains unclear. Here, we provide the high-resolution crystal structures of Rab35 in complex with its two specific effectors ACAP2 and RUSC2, respectively. In the Rab35/ACAP2 complex structure, Rab35 binds to the terminal ankyrin repeat and a C-terminal extended α helix of ACAP2, revealing a previously uncharacterized binding mode both for Rabs and ankyrin repeats. In the Rab35/RUSC2 complex structure, Arg1015 of RUSC2 functions as a "pseudo-arginine finger" that stabilizes the GTP-bound Rab35, thus facilitating the assembly of Rab35/RUSC2 complex. The structural analysis allows us to design specific Rab35 mutants capable of eliminating Rab35/ACAP2 and Rab35/RUSC2 interactions, but not interfering with other effector bindings. The atomic structures also offer possible explanations to disease-associated mutants identified at the Rab35-effector interfaces.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China
| | - Yingdong Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mengli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinwei Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| | - Rongguang Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai Science Research Center, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
13
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
14
|
Wu C, Bao G, Xu G, Sun Y, Wang L, Chen J, Zhang J, Chen C, Zhu Q, Cui Z. Triad1 regulates the expression and distribution of EHD1 contributing to the neurite outgrowth of neurons after spinal cord injury. J Cell Biochem 2018; 120:5355-5366. [PMID: 30320922 DOI: 10.1002/jcb.27814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
Traumatic spinal cord injury is a common and severe complication after an accident. As we all know that neurite outgrowth of neurons is difficult after a spinal cord injury. Endosome system is associated with cargoes transportation and contributes in promoting the neuronal capability for neurite outgrowth. EH domain-containing protein 1 (EHD1) transports proteins through the endosome system, especially in the recycling endosomes and regulating the neurite outgrowth. In mammalian cells, the involvement of the ubiquitin-proteasome system in endosomal sorting has been well established. Two RING fingers and a DRIL (double RING finger-linked) 1 (Triad1) plays an important role in membrane trafficking and its mutant results in the wrong accumulation of receptors in endosomes and plasma membrane. In this current study, we reasonably integrated the results of the above research and investigated the regulating function of Triad1 to EHD1 following the spinal cord injury. We characterized the upregulated expression and distribution of Triad1 and EHD1 in the neurons after SCI and declared the interaction between Triad1 with EHD1 both in vitro and in vivo. Triad1 regulated the interaction between itself and the full-length or EH domain of EHD1, which influenced the neurite outgrowth of PC12 cells. Our data delineate a novel interaction between Triad1 and EHD1 that may contribute to the regulation of neurite outgrowth for neurons after the spinal cord injury.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Lingling Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Qiancheng Zhu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
15
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
16
|
Villagomez FR, Medina-Contreras O, Cerna-Cortes JF, Patino-Lopez G. The role of the oncogenic Rab35 in cancer invasion, metastasis, and immune evasion, especially in leukemia. Small GTPases 2018; 11:334-345. [PMID: 29781368 PMCID: PMC7549652 DOI: 10.1080/21541248.2018.1463895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The study of cancer has allowed researchers to describe some biological characteristics that tumor cells acquire during their development, known as the “hallmarks of cancer” but more research is needed to expand our knowledge about cancer biology and to generate new strategies of treatment. The role that RabGTPases might play in some hallmarks of cancer represents interesting areas of study since these proteins are frequently altered in cancer. However, their participation is not well known. Recently, Rab35was recognized as an oncogenic RabGTPase and and because of its association with different cellular functions, distinctly important in immune cells, a possible role of Rab35 in leukemia can be suggested. Nevertheless, the involvement of Rab35 in cancer remains poorly understood and its possible specific role in leukemia remains unknown. In this review, we analyze general aspects of the participation of RabGTPases in cancer, and especially, the plausible role of Rab35 in leukemia.
Collapse
Affiliation(s)
- Fabian R Villagomez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México.,Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Oscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas , Ciudad de México, México
| | - Genaro Patino-Lopez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez , Ciudad de México, México
| |
Collapse
|
17
|
Jeong GR, Jang EH, Bae JR, Jun S, Kang HC, Park CH, Shin JH, Yamamoto Y, Tanaka-Yamamoto K, Dawson VL, Dawson TM, Hur EM, Lee BD. Dysregulated phosphorylation of Rab GTPases by LRRK2 induces neurodegeneration. Mol Neurodegener 2018; 13:8. [PMID: 29439717 PMCID: PMC5811984 DOI: 10.1186/s13024-018-0240-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022] Open
Abstract
Background Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson’s disease (PD). Elevated kinase activity is associated with LRRK2 toxicity, but the substrates that mediate neurodegeneration remain poorly defined. Given the increasing evidence suggesting a role of LRRK2 in membrane and vesicle trafficking, here we systemically screened Rab GTPases, core regulators of vesicular dynamics, as potential substrates of LRRK2 and investigated the functional consequence of such phosphorylation in cells and in vivo. Methods In vitro LRRK2 kinase assay with forty-five purified human Rab GTPases was performed to identify Rab family proteins as substrates of LRRK2. We identified the phosphorylation site by tandem mass-spectrometry and confirmed it by assessing phosphorylation in the in vitro LRRK2 kinase assay and in cells. Effects of Rab phosphorylation on neurodegeneration were examined in primary cultures and in vivo by intracranial injection of adeno-associated viral vectors (AAV) expressing wild-type or phosphomutants of Rab35. Results Our screening revealed that LRRK2 phosphorylated several Rab GTPases at a conserved threonine residue in the switch II region, and by using the kinase-inactive LRRK2-D1994A and the pathogenic LRRK2-G2019S along with Rab proteins in which the LRRK2 site was mutated, we verified that a subset of Rab proteins, including Rab35, were authentic substrates of LRRK2 both in vitro and in cells. We also showed that phosphorylation of Rab regulated GDP/GTP-binding property in cells. Moreover, in primary cortical neurons, mutation of the LRRK2 site in several Rabs caused neurotoxicity, which was most severely induced by phosphomutants of Rab35. Furthermore, intracranial injection of the AAV-Rab35 -T72A or AAV-Rab35-T72D into the substantia nigra substantially induced degeneration of dopaminergic neurons in vivo. Conclusions Here we show that a subset of Rab GTPases are authentic substrates of LRRK2 both in vitro and in cells. We also provide evidence that dysregulation of Rab phosphorylation in the LRRK2 site induces neurotoxicity in primary neurons and degeneration of dopaminergic neurons in vivo. Our study suggests that Rab GTPases might mediate LRRK2 toxicity in the progression of PD. Electronic supplementary material The online version of this article (10.1186/s13024-018-0240-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ga Ram Jeong
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Eun-Hae Jang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Jae Ryul Bae
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Soyoung Jun
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Single Cell Network Research Center, SungKyunKwan University School of Medicine, Suwon, South Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, KIST, Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Center for Functional Connectomics, KIST, Seoul, South Korea
| | - Valina L Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ted M Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Eun-Mi Hur
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea. .,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea. .,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.
| | - Byoung Dae Lee
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea. .,Department of Physiology, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| |
Collapse
|
18
|
Shaughnessy R, Echard A. Rab35 GTPase and cancer: Linking membrane trafficking to tumorigenesis. Traffic 2018; 19:247-252. [PMID: 29314576 DOI: 10.1111/tra.12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Rab35 is a small GTPase that is involved in many cellular processes, including membrane trafficking, cell polarity, lipid homeostasis, immunity, phagocytosis and cytokinesis. Recent studies showed that activating mutations confer Rab35 with oncogenic properties. Conversely, downregulation of Rab35 inverts apico-basal cell polarity and promotes cell migration. Here we review Rab35's known functions in membrane trafficking and signaling, cell division and cell migration in cancer cells and discuss the importance of Rab35-dependent membrane trafficking in cancer progression.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
19
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
20
|
Abstract
Synaptic connections in the brain are continuously weakened or strengthened in response to changes in neuronal activity. This process, known as synaptic plasticity, is the cellular basis for learning and memory, and is thought to be altered in several neuronal disorders. An important aspect of synaptic plasticity is the tightly controlled trafficking and synaptic targeting of the AMPA-type glutamate receptors, which are the major mediators of fast excitatory transmission in the brain. This review addresses the role of Rab GTPases in AMPA receptor trafficking in neurons under basal conditions and during activity-induced synaptic plasticity, especially during long-term potentiation (LTP) and long-term depression (LTD). We highlight the importance of the tight spatio-temporal control of Rab activity and suggest that this is critical for proper neuronal functions. We also discuss how abnormal AMPA receptor trafficking and malfunctioning of Rabs can lead to neurologic disorders or memory problems.
Collapse
Affiliation(s)
- Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University , Budapest , Hungary.,MTA-ELTE NAP B Neuronal Cell Biology Research Group, Eötvös Loránd University , Budapest , Hungary
| |
Collapse
|
21
|
Biesemann A, Gorontzi A, Barr F, Gerke V. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies. J Biol Chem 2017; 292:11631-11640. [PMID: 28566286 PMCID: PMC5512060 DOI: 10.1074/jbc.m116.773333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
Weibel–Palade bodies (WPB) are secretory organelles of endothelial cells that undergo evoked exocytosis following intracellular Ca2+ or cAMP elevation, thereby supplying the vasculature with factors controlling hemostasis. Several cytosolic and membrane-associated proteins, including the Rab family members Rab3, Rab15, and Rab27a, have been implicated in regulating the acute exocytosis of WPB. Here, we carried out a genome-wide screen to identify Rab pathways affecting WPB exocytosis. Overexpression of a specific subset of Rab GTPase–activating proteins (RabGAPs) inhibited histamine-evoked, Ca2+-dependent WPB exocytosis, presumably by inactivating the target Rab GTPases. Among these RabGAPs, we concentrated on TBC1D10A and showed that the inhibitory effect depends on its GAP activity. We confirmed that Rab35 was a target Rab of TBC1D10A in human endothelial cells; Rab35 interacted with TBC1D10A, and expression of the GAP-insensitive Rab35(Q67A) mutant rescued the inhibitory effect of TBC1D10A overexpression on WPB exocytosis. Furthermore, knockdown of Rab35 and expression of a dominant-negative Rab35 mutant both inhibited histamine-evoked secretion of the WPB cargos von Willebrand factor and P-selectin. Pulldown and co-immunoprecipitation experiments identified the ArfGAP with coiled-coil, Ank repeat, and pleckstrin homology domain–containing protein ACAP2 as an Rab35 effector in endothelial cells, and depletion as well as overexpression approaches revealed that ACAP2 acts as a negative regulator of WPB exocytosis. Interestingly, a known ACAP2 target, the small GTPase Arf6, supported histamine-evoked WPB exocytosis, as shown by knockdown and overexpression of a dominant-negative Arf6 mutant. Our data identify Rab35 as a novel regulator of WPB exocytosis, most likely acting through the downstream effectors ACAP2 and Arf6.
Collapse
Affiliation(s)
- Anja Biesemann
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Alexandra Gorontzi
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany
| | - Francis Barr
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
22
|
Frémont S, Romet-Lemonne G, Houdusse A, Echard A. Emerging roles of MICAL family proteins - from actin oxidation to membrane trafficking during cytokinesis. J Cell Sci 2017; 130:1509-1517. [PMID: 28373242 DOI: 10.1242/jcs.202028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokinetic abscission is the terminal step of cell division, leading to the physical separation of the two daughter cells. The exact mechanism mediating the final scission of the intercellular bridge connecting the dividing cells is not fully understood, but requires the local constriction of endosomal sorting complex required for transport (ESCRT)-III-dependent helices, as well as remodelling of lipids and the cytoskeleton at the site of abscission. In particular, microtubules and actin filaments must be locally disassembled for successful abscission. However, the mechanism that actively removes actin during abscission is poorly understood. In this Commentary, we will focus on the latest findings regarding the emerging role of the MICAL family of oxidoreductases in F-actin disassembly and describe how Rab GTPases regulate their enzymatic activity. We will also discuss the recently reported role of MICAL1 in controlling F-actin clearance in the ESCRT-III-mediated step of cytokinetic abscission. In addition, we will highlight how two other members of the MICAL family (MICAL3 and MICAL-L1) contribute to cytokinesis by regulating membrane trafficking. Taken together, these findings establish the MICAL family as a key regulator of actin cytoskeleton dynamics and membrane trafficking during cell division.
Collapse
Affiliation(s)
- Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| | - Guillaume Romet-Lemonne
- Institut Jacques Monod, CNRS, Université Paris Diderot, Université Sorbonne Paris Cité, Paris 75013, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection department, Institut Pasteur, 25-28 rue du Dr Roux, Paris CEDEX 15 75724, France .,Centre National de la Recherche Scientifique UMR3691, Paris 75015, France
| |
Collapse
|
23
|
Sheehan P, Waites CL. Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling network. Small GTPases 2017; 10:54-63. [PMID: 28129039 PMCID: PMC6343537 DOI: 10.1080/21541248.2016.1270392] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab35 and the Rab35 network of GAPs, GEFs, and effectors are important regulators of membrane trafficking for a variety of cellular processes, from cytokinesis and phagocytosis to neurite outgrowth. In the past five years, components of this signaling network have also been implicated as critical mediators of synaptic vesicle (SV) recycling and protein homeostasis. Recent studies by several groups, including our own, have demonstrated that Rab35-mediated endosomal sorting is required for the degradation of SV proteins via the ESCRT pathway, thereby eliminating old or damaged proteins from the SV pool. This sorting process is regulated by Rab35 activation in response to neuronal activity, and potentially by an antagonistic signaling relationship between Rab35 and the small GTPase Arf6 that directs SVs into distinct recycling pathways depending on neuronal activity levels. Furthermore, mutations in genes encoding Rab35 regulatory proteins are emerging as causative factors in human neurologic and neurodegenerative diseases, consistent with their important roles in synaptic and neuronal health. Here, we review these recent findings and offer our perspective on how the Rab35 signaling network functions to maintain neurotransmission and synaptic fitness.
Collapse
Affiliation(s)
- Patricia Sheehan
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA
| | - Clarissa L Waites
- a Department of Pathology and Cell Biology , Columbia University Medical Center , New York , NY , USA.,b Department of Neuroscience , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
24
|
Koubek EJ, Santy LC. ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation. Small GTPases 2016; 9:242-259. [PMID: 27562622 DOI: 10.1080/21541248.2016.1219186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.
Collapse
Affiliation(s)
- Emily J Koubek
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , PA , USA
| | - Lorraine C Santy
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
25
|
Klinkert K, Echard A. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond. Traffic 2016; 17:1063-77. [PMID: 27329675 DOI: 10.1111/tra.12422] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1-like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35-dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F-actin, both on endosomes and at the plasma membrane.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France. .,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.
| |
Collapse
|
26
|
ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons. Biochem J 2016; 473:2591-602. [PMID: 27330119 DOI: 10.1042/bcj20160183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 01/30/2023]
Abstract
ACAP3 (ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 3) belongs to the ACAP family of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). However, its specificity to Arf isoforms and physiological functions remain unclear. In the present study, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild-type ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK (human embryonic kidney)-293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild-type, GTP- or GDP-locked mutant Arf6. Thus cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine-nucleotide-exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons.
Collapse
|
27
|
Enterohaemorrhagic E. coli modulates an ARF6:Rab35 signaling axis to prevent recycling endosome maturation during infection. J Mol Biol 2016; 428:3399-407. [PMID: 27261256 PMCID: PMC5013874 DOI: 10.1016/j.jmb.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial effector proteins into host cells using a Type III secretion system. We have previously reported that the conserved EHEC and EPEC effector EspG disrupts recycling endosome function, reducing cell surface levels of host receptors through accumulation of recycling cargo within the host cell. Here we report that EspG interacts specifically with the small GTPases ARF6 and Rab35 during infection. These interactions target EspG to endosomes and prevent Rab35-mediated recycling of cargo to the host cell surface. Furthermore, we show that EspG has no effect on Rab35-mediated uncoating of newly formed endosomes, and instead leads to the formation of enlarged EspG/TfR/Rab11 positive, EEA1/Clathrin negative stalled recycling structures. Thus, this paper provides a molecular framework to explain how EspG disrupts recycling whilst also reporting the first known simultaneous targeting of ARF6 and Rab35 by a bacterial pathogen. EHEC delivers effector proteins into host cells to establish infection in the gut The effector EspG interacts with GTP-ARF6 confining EspG to recycling endosomes During infection EspG interacts preferentially with Rab35, not Rab1 Spatial restriction of bacterial effectors during infection determines their function
Collapse
|
28
|
Villarroel-Campos D, Bronfman FC, Gonzalez-Billault C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton (Hoboken) 2016; 73:498-507. [PMID: 27124121 DOI: 10.1002/cm.21303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022]
Abstract
Neurons are highly polarized cells that contain specialized subcellular domains involved in information transmission in the nervous system. Specifically, the somatodendritic compartment receives neuronal inputs while the axons convey information through the synapse. The establishment of asymmetric domains requires a specific delivery of components, including organelles, proteins, and membrane. The Rab family of small GTPases plays an essential role in membrane trafficking. Signaling cascades triggered by extrinsic and intrinsic factors tightly regulate Rab functions in cells, with Rab protein activation depending on GDP/GTP binding to establish a binary mode of action. This review summarizes the contributions of several Rab family members involved in trans-Golgi, early/late endosomes, and recycling endosomes during neurite development and axonal outgrowth. The regulation of some Rabs by guanine exchanging factors and GTPase activating proteins will also be addressed. Finally, discussion will be provided on how specific effector-mediated Rab activation modifies several molecules essential to neuronal differentiation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad De Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB And Center for Ageing and Regeneration (CARE), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad De Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
29
|
Duan B, Cui J, Sun S, Zheng J, Zhang Y, Ye B, Chen Y, Deng W, Du J, Zhu Y, Chen Y, Gu L. EGF-stimulated activation of Rab35 regulates RUSC2-GIT2 complex formation to stabilize GIT2 during directional lung cancer cell migration. Cancer Lett 2016; 379:70-83. [PMID: 27238570 DOI: 10.1016/j.canlet.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive. Here we demonstrated GIT2 control cell polarization and direction dependent on the regulation of Golgi through RUSC2. RUSC2 interacts with SHD of GIT2 in various lung cancer cells, and stabilizes GIT2 (Mazaki et al., 2006; Yu et al., 2009) by decreasing degradation and increasing its phosphorylation. Silencing of RUSC2 showed reduced stability of GIT2, defective Golgi reorientation toward the wound edge and decreased directional migration. Moreover, short-term EGF stimulation can increase the interaction between RUSC2 and GIT2, prolonged stimulation leads to a decrease of their interaction through activating Rab35. Silencing of Rab35 also reduced stability and phosphorylation of GIT2 and decreased cell migration. Taken together, our study indicated that RUSC2 participates in EGFR signaling and regulates lung cancer progression, and may be a new therapeutic target against lung cancer metastasis.
Collapse
Affiliation(s)
- Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yujie Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
30
|
Wu C, Cui Z, Liu Y, Zhang J, Ding W, Wang S, Bao G, Xu G, Sun Y, Chen J. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury. Int J Dev Neurosci 2016; 52:24-32. [PMID: 27211346 DOI: 10.1016/j.ijdevneu.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chunshuai Wu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Yonghua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wensen Ding
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Song Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Mrozowska PS, Fukuda M. Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures. J Cell Biol 2016; 213:355-69. [PMID: 27138252 PMCID: PMC4862332 DOI: 10.1083/jcb.201512024] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/18/2016] [Indexed: 11/22/2022] Open
Abstract
MDCK II cells, a widely used model of polarized epithelia, develop into different structures depending on culture conditions: two-dimensional (2D) monolayers when grown on synthetic supports or three-dimensional (3D) cysts when surrounded by an extracellular matrix. The establishment of epithelial polarity is accompanied by transcytosis of the apical marker podocalyxin from the outer plasma membrane to the newly formed apical domain, but its exact route and regulation remain poorly understood. Here, through comprehensive colocalization and knockdown screenings, we identified the Rab GTPases mediating podocalyxin transcytosis and showed that different sets of Rabs coordinate its transport during cell polarization in 2D and 3D structures. Moreover, we demonstrated that different Rab35 effectors regulate podocalyxin trafficking in 2D and 3D environments; trafficking is mediated by OCRL in 2D monolayers and ACAP2 in 3D cysts. Our results give substantial insight into regulation of the transcytosis of this apical marker and highlight differences between trafficking mechanisms in 2D and 3D cell cultures.
Collapse
Affiliation(s)
- Paulina S Mrozowska
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
32
|
Basso M, Bonetto V. Extracellular Vesicles and a Novel Form of Communication in the Brain. Front Neurosci 2016; 10:127. [PMID: 27065789 PMCID: PMC4814526 DOI: 10.3389/fnins.2016.00127] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.
Collapse
Affiliation(s)
- Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| |
Collapse
|
33
|
Abstract
Small GTPase Rab35 functions as a molecular switch for membrane trafficking, specifically for endocytic recycling, by cycling between a GTP-bound active form and a GDP-bound inactive form. Although Rab35 has been shown to regulate various cellular processes, including cytokinesis, cell migration, and neurite outgrowth, its precise roles in these processes are not fully understood. Since a molecular tool that could be used to measure Rab35 activity would be useful for identifying the mechanisms by which Rab35 mediates membrane trafficking, we recently used a RUN domain-containing region of RUSC2 to develop an active Rab35 trapper, and we named it RBD35 (Rab-binding domain specific for Rab35). Because RBD35 specifically interacts with the GTP-bound active form of Rab35 and does not interact with any of the other 59 Rab proteins identified in humans and mice, RBD35 is a useful tool for measuring the level of active Rab35 by pull-down assays and for inhibiting the function of Rab35 by overexpression. In this chapter, we describe the assay procedures for analyzing Rab35 with RBD35.
Collapse
|
34
|
Wu Q, Sun X, Yue W, Lu T, Ruan Y, Chen T, Zhang D. RAB18, a protein associated with Warburg Micro syndrome, controls neuronal migration in the developing cerebral cortex. Mol Brain 2016; 9:19. [PMID: 26879639 PMCID: PMC4754921 DOI: 10.1186/s13041-016-0198-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/08/2016] [Indexed: 01/23/2023] Open
Abstract
Background Loss of function mutations in RAB18, has been identified in patients with the human neurological and developmental disorder Warburg Micro syndrome. However, the function of RAB18 in brain remains unknown. Results In this study, we report that RAB18 is a critical regulator of neuronal migration and morphogenesis. Using in utero electroporation suppression of RAB18 in the mouse brain impairs radial migration. Overexpression of dominant negative RAB18 or disruption of RAB3GAP (RAB18GEF) also results in delayed neuronal migration in the developing mouse cortex and inhibition of neurite growth in vitro. Moreover, loss of RAB18 induces an acceleration of N-cadherin degradation by lysosomal pathway resulting in the decrease of surface level of N-cadherin on neurons. Conclusions RAB18 regulates neuronal migration and morphogenesis during development. Our findings highlight the critical role of RAB3GAP-RAB18 pathway in the developing cerebral cortex and might explain some of clinical features observed in patients with Warburg Micro syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0198-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinwei Wu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. .,Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
| | - Xiaqin Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders/Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, 100191, China.
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders/Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, 100191, China.
| | - Tianlan Lu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders/Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, 100191, China.
| | - Yanyan Ruan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders/Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, 100191, China.
| | - Tianda Chen
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders/Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, 100191, China.
| | - Dai Zhang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders/Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Tang Y, Lin Y, Li C, Hu X, Liu Y, He M, Luo J, Sun G, Wang T, Li W, Guo M. MicroRNA-720 promotes in vitro cell migration by targeting Rab35 expression in cervical cancer cells. Cell Biosci 2015; 5:56. [PMID: 26413265 PMCID: PMC4583841 DOI: 10.1186/s13578-015-0047-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNA-720 (miR-720), a nonclassical miRNA, is involved in the initiation and progression of several tumors. In our previous studies, miR-720 was shown to be significantly upregulated in cervical cancer tissues compared with normal cervical tissues. However, the precise biological functions of miR-720, and its molecular mechanisms of action, are still unknown. Results Microarray expression profiles, luciferase reporter assays, and western blot assays were used to validate Rab35 as a target gene of miR-720 in HEK293T and HeLa cells. The regulation of Rab35 expression by miR-720 was assessed using qRT-PCR and western blot assays, and the effects of exogenous miR-720 and Rab35 on cell migration were evaluated in vitro using Transwell® assay, wound healing assay, and real-time analyses in HeLa cells. The influences of exogenous miR-720 on cell proliferation were evaluated in vitro by the MTT assay in HeLa cells. In addition, expression of E-cadherin and vimentin associated with epithelial-mesenchymal transition were also assessed using western blot analyses after transfection of miR-720 mimics and Rab35 expression vectors. The results showed that the small GTPase, Rab35, is a direct functional target of miR-720 in cervical cancer HeLa cells. By targeting Rab35, overexpression of miR-720 resulted in a decrease in E-cadherin expression and an increase in vimentin expression and finally led to promotion of HeLa cell migration. Furthermore, reintroduction of Rab35 3′-UTR(−) markedly reversed the induction of cell migration in miR-720-expressing HeLa cells. Conclusions The miR-720 promotes cell migration of HeLa cells by downregulating Rab35. The results show that miR-720 is a novel cell migration-associated gene in cervical cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0047-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunlan Tang
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Yi Lin
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Chuang Li
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Xunwu Hu
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Yi Liu
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Mingyang He
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital, Wuhan University, 430071 Wuhan, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wenxin Li
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Mingxiong Guo
- College of Life Sciences and State Key Laboratory of Virology, Wuhan University, 430072 Wuhan, People's Republic of China
| |
Collapse
|
36
|
Activation-Inactivation Cycling of Rab35 and ARF6 Is Required for Phagocytosis of Zymosan in RAW264 Macrophages. J Immunol Res 2015; 2015:429439. [PMID: 26229970 PMCID: PMC4502309 DOI: 10.1155/2015/429439] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022] Open
Abstract
Phagocytosis of zymosan by phagocytes is a widely used model of microbial recognition by the innate immune system. Live-cell imaging showed that fluorescent protein-fused Rab35 accumulated in the membranes of phagocytic cups and then dissociated from the membranes of newly formed phagosomes. By our novel pull-down assay for Rab35 activity, we found that Rab35 is deactivated immediately after zymosan internalization into the cells. Phagosome formation was inhibited in cells expressing the GDP- or GTP-locked Rab35 mutant. Moreover, the simultaneous expression of ACAP2-a Rab35 effector protein-with GTP-locked Rab35 or the expression of plasma membrane-targeted ACAP2 showed a marked inhibitory effect on phagocytosis through ARF6 inactivation by the GAP activity of ACAP2. ARF6, a substrate for ACAP2, was also localized on the phagocytic cups and dissociated from the membranes of internalized phagosomes. In support of the microscopic observations, ARF6-GTP pull-down experiments showed that ARF6 is transiently activated during phagosome formation. Furthermore, the expression of GDP- or GTP-locked ARF6 mutants also suppresses the uptake of zymosan. These data suggest that the activation-inactivation cycles of Rab35 and ARF6 are required for the uptake of zymosan and that ACAP2 is an important component that links Rab35/ARF6 signaling during phagocytosis of zymosan.
Collapse
|
37
|
Dutta D, Donaldson JG. Sorting of Clathrin-Independent Cargo Proteins Depends on Rab35 Delivered by Clathrin-Mediated Endocytosis. Traffic 2015; 16:994-1009. [PMID: 25988331 DOI: 10.1111/tra.12302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 01/13/2023]
Abstract
Clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) co-exist in most cells but little is known about their communication and coordination. Here we show that when CME was inhibited, endocytosis by CIE continued but endosomal trafficking of CIE cargo proteins was altered. CIE cargo proteins that normally traffic directly into Arf6-associated tubules after internalization and avoid degradation (CD44, CD98 and CD147) now trafficked to lysosomes and were degraded. The endosomal tubules were also absent and Arf6-GTP levels were elevated. The altered trafficking, loss of the tubular endosomal network and elevated Arf6-GTP levels caused by inhibition of CME were rescued by expression of Rab35, a Rab associated with clathrin-coated vesicles, or its effector ACAPs, Arf6 GTPase activating proteins (GAP) that inactivate Arf6. Furthermore, siRNA knockdown of Rab35 recreated the phenotype of CME ablation on CIE cargo trafficking without altering endocytosis of transferrin. These observations suggest that Rab35 serves as a CME detector and that loss of CME, or Rab35 input, leads to elevated Arf6-GTP and shifts the sorting of CIE cargo proteins to lysosomes and degradation.
Collapse
Affiliation(s)
- Dipannita Dutta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
38
|
Curran J, Musa H, Kline CF, Makara MA, Little SC, Higgins JD, Hund TJ, Band H, Mohler PJ. Eps15 Homology Domain-containing Protein 3 Regulates Cardiac T-type Ca2+ Channel Targeting and Function in the Atria. J Biol Chem 2015; 290:12210-21. [PMID: 25825486 DOI: 10.1074/jbc.m115.646893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca(2+) channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca(2+) current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca(2+) channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.
Collapse
Affiliation(s)
- Jerry Curran
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology,
| | - Hassan Musa
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Crystal F Kline
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Michael A Makara
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Sean C Little
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - John D Higgins
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology
| | - Thomas J Hund
- From the Dorothy M. Davis Heart and Lung Research Institute, Biomedical Engineering,The Ohio State University Wexner Medical Center, Columbus, Ohio 43210 and
| | - Hamid Band
- The Eppley Institute and UNMC-Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Peter J Mohler
- From the Dorothy M. Davis Heart and Lung Research Institute, the Departments of Physiology and Cell Biology, Medicine, and
| |
Collapse
|
39
|
Etoh K, Fukuda M. Structure-function analyses of the small GTPase Rab35 and its effector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells. J Biol Chem 2015; 290:9064-74. [PMID: 25694427 DOI: 10.1074/jbc.m114.611301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells.
Collapse
Affiliation(s)
- Kan Etoh
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
40
|
Reinecke JB, Katafiasz D, Naslavsky N, Caplan S. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis. Traffic 2014; 16:48-67. [PMID: 25287187 DOI: 10.1111/tra.12234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/01/2023]
Abstract
During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle.
Collapse
Affiliation(s)
- James B Reinecke
- Department of Biochemistry and Molecular Biology and Fred and Pamela Buffet Cancer Research Center, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
41
|
Baïlo N, Cosson P, Charette SJ, Paquet VE, Doublet P, Letourneur F. Defective lysosome maturation and Legionella pneumophila replication in Dictyostelium cells mutant for the Arf GAP ACAP-A. J Cell Sci 2014; 127:4702-13. [PMID: 25189617 DOI: 10.1242/jcs.154559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A-GFP in acapA(-) cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.
Collapse
Affiliation(s)
- Nathalie Baïlo
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - Pierre Cosson
- Département de Physiologie Cellulaire et Métabolisme, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Patricia Doublet
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
42
|
Kobayashi H, Etoh K, Ohbayashi N, Fukuda M. Rab35 promotes the recruitment of Rab8, Rab13 and Rab36 to recycling endosomes through MICAL-L1 during neurite outgrowth. Biol Open 2014; 3:803-14. [PMID: 25086062 PMCID: PMC4163657 DOI: 10.1242/bio.20148771] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small GTPase Rab35 is an important molecular switch for endocytic recycling that regulates various cellular processes, including cytokinesis, cell migration, and neurite outgrowth. We previously showed that active Rab35 promotes nerve growth factor (NGF)-induced neurite outgrowth of PC12 cells by recruiting MICAL-L1, a multiple Rab-binding protein, to Arf6-positive recycling endosomes. However, the physiological significance of the multiple Rab-binding ability of MICAL-L1 during neurite outgrowth remained completely unknown. Here we report that Rab35 and MICAL-L1 promote the recruitment of Rab8, Rab13, and Rab36 to Arf6-positive recycling endosomes during neurite outgrowth. We found that Rab35 functions as a master Rab that determines the intracellular localization of MICAL-L1, which in turn functions as a scaffold for Rab8, Rab13, and Rab36. We further showed by functional ablation experiments that each of these downstream Rabs regulates neurite outgrowth in a non-redundant manner downstream of Rab35 and MICAL-L1, e.g. by showing that knockdown of Rab36 inhibited recruitment of Rab36-specific effector JIP4 to Arf6-positive recycling endosomes, and caused inhibition of neurite outgrowth without affecting accumulation of Rab8 and Rab13 in the same Arf6-positive area. Our findings suggest the existence of a novel mechanism that recruits multiple Rab proteins at the Arf6-positive compartment by MICAL-L1.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kan Etoh
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
43
|
Kobayashi H, Etoh K, Fukuda M. Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth. Small GTPases 2014; 5:e29290. [PMID: 24852758 DOI: 10.4161/sgtp.29290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small GTPase Rab35 is a key regulator of neurite outgrowth, and its activation dramatically enhances nerve growth factor (NGF)-induced neurite outgrowth. We recently reported finding that Rab35 and its effector molecules recruit EHD1, a facilitator of vesicle formation, to Arf6-positive perinuclear recycling endosomes (hereafter simply referred to as recycling endosomes) in response to NGF stimulation. Although Rab35 is likely to promote the formation of transport vesicles from recycling endosomes that contributes to neurite outgrowth, the destination of the vesicles during neurite outgrowth remains unknown. Here we report finding that Rab35 is translocated from recycling endosomes to neurite tips in a late phase of NGF stimulation. We found that Rab35 immunofluorescence signals accumulated at recycling endosomes during the first 6 h, i.e., the early phase of NGF stimulation and then translocated to neurite tips during the late phase of NGF stimulation (i.e., >6 h to <36 h after NGF stimulation). These findings suggest that Rab35 regulates membrane trafficking from recycling endosomes to neurite tips during neurite outgrowth.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Laboratory of Membrane Trafficking Mechanisms; Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai, Miyagi, Japan
| | - Kan Etoh
- Laboratory of Membrane Trafficking Mechanisms; Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms; Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai, Miyagi, Japan
| |
Collapse
|
44
|
Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C. Rab-mediated trafficking role in neurite formation. J Neurochem 2014; 129:240-8. [PMID: 24517494 DOI: 10.1111/jnc.12676] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 01/04/2023]
Abstract
Neuronal cells are characterized by the presence of two confined domains, which are different in their cellular properties, biochemical functions and molecular identity. The generation of asymmetric domains in neurons should logically require specialized membrane trafficking to both promote neurite outgrowth and differential distribution of components. Members of the Rab family of small GTPases are key regulators of membrane trafficking involved in transport, tethering and docking of vesicles through their effectors. RabGTPases activity is coupled to the activity of guanine nucleotide exchange factors or GEFs, and GTPase-activating proteins known as GAPs. Since the overall spatiotemporal distribution of GEFs, GAPs and Rabs governs trafficking through the secretory and endocytic pathways, affecting exocytosis, endocytosis and endosome recycling, it is likely that RabGTPases could have a major role in neurite outgrowth, elongation and polarization. In this review we summarize the evidence linking the functions of several RabGTPases to axonal and dendritic development in primary neurons, as well as neurite formation in neuronal cell lines. We focused on the role of RabGTPases from the trans-Golgi network, early/late and recycling endosomes, as well as the function of some Rab effectors in neuritogenesis. Finally, we also discuss the participation of the ADP-ribosylation factor 6, a member of the ArfGTPase family, in neurite formation since it seems to have an important cross-talk with RabGTPases.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
45
|
Chaineau M, Ioannou MS, McPherson PS. Rab35: GEFs, GAPs and effectors. Traffic 2013; 14:1109-17. [PMID: 23905989 DOI: 10.1111/tra.12096] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine-nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase-activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase-activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness.
Collapse
Affiliation(s)
- Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
46
|
Kobayashi H, Fukuda M. Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes. Commun Integr Biol 2013; 6:e25036. [PMID: 24255739 PMCID: PMC3829897 DOI: 10.4161/cib.25036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 02/04/2023] Open
Abstract
Recycling endosomes are key platforms for endocytic recycling that return internalized molecules back to the plasma membrane. To determine how recycling endosomes perform their functions, searching for proteins and lipids that specifically localized at recycling endosomes has often been performed by colocalization analyses between candidate molecules and conventional recycling endosome markers. However, it remains unclear whether all the conventional markers have identical localizations. Here we report finding that three well-known recycling endosome markers, i.e., Arf6, Rab11 and transferrin receptor (TfR), have different intracellular localizations in PC12 cells. The results of immunofluorescence analyses showed that the signals of endogenous Arf6, Rab11 and TfR in nerve growth factor-stimulated PC12 cells generally differed, although there was some overlapping. Our findings provide new information about recycling endosome markers, and they highlight the heterogeneity of recycling endosomes.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Laboratory of Membrane Trafficking Mechanisms; Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Miyagi, Japan
| | | |
Collapse
|
47
|
Yasuda T, Fukuda M. Slp2-a controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27. J Cell Sci 2013; 127:557-70. [DOI: 10.1242/jcs.134056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Slp2-a is a Rab27 effector protein that regulates transport of Rab27-bearing vesicles/organelles via its N-terminal Rab27-binding domain and a phospholipid-binding C2A domain. Here we demonstrate a Rab27-independent function of Slp2-a in the control of renal cell size via a previously uncharacterized C2B domain. We found that by recruiting Rap1GAPs to the plasma membrane of MDCK II cells via the C2B domain Slp2-a inactivates Rap signaling and modulates the size of the cells. Functional ablation of Slp2-a resulted in an increase in the size of MDCK II cells. Drosophila Slp bitesize was found to compensate for the function of Slp2-a in MDCK II cells, thereby indicating that the mechanism of the cell size control by Slps has been evolutionarily conserved. Interestingly, blockade of the activity of ezrin, a downstream target of Rap, with the glucosylceramide synthase inhibitor miglustat effectively inhibited cell spreading of Slp2-a-knockdown cells. We also discovered aberrant expression of Slp2-a and increased activity of ezrin in pcy mice, a model of polycystic kidney disease that is characterized by renal cell spreading. Our findings indicate that Slp2-a controls renal cell size through regulation of Rap–ezrin signaling independently of Rab27.
Collapse
|