1
|
Tang H, Zi H, Zhou D, Li Y, Li X, Chen Z, Zhu Q, Ouyang Q, He P, Chen S, Li Y, Long J, Huang J. Role of the nucleotide excision repair function of CETN2 in the inhibition of the sensitivity of hepatocellular carcinoma cells to oxaliplatin. Carcinogenesis 2025; 46:bgaf003. [PMID: 39945187 DOI: 10.1093/carcin/bgaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 01/18/2025] [Indexed: 04/22/2025] Open
Abstract
Resistance to platinum-based chemotherapy agents like oxaliplatin (OXA) poses significant challenges in the treatment of cancers such as hepatocellular carcinoma (HCC). Centrin 2 (CETN2), which functions in nucleotide excision repair (NER) of DNA damage, is overexpressed in HCC. We investigated the potential role of CETN2 in modulating the sensitivity of HCC cells to OXA. CETN2 expression correlated with decreased OXA sensitivity in Huh7 and Hep3B HCC cell lines. CETN2 forms a complex with XPC, which is crucial for the initial DNA damage recognition in NER, thereby enhancing NER and reducing the efficacy of OXA. siRNA-mediated knockdown of CETN2 increased OXA-induced cytotoxicity and apoptosis, confirming its role in chemoresistance. Moreover, overexpression of CETN2 inhibited OXA-induced DNA damage, an effect partially reversed by XPC knockdown. Our findings highlight CETN2 as a potential biomarker and therapeutic target in overcoming OXA resistance in HCC and suggest the possibility for CETN2 inhibitors in enhancing chemotherapeutic efficacy in the treatment of HCC.
Collapse
Affiliation(s)
- Hengcheng Tang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Huaduan Zi
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Donghu Zhou
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanmeng Li
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaojin Li
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhibin Chen
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qianyu Zhu
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qin Ouyang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pingping He
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Sisi Chen
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yanling Li
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jiang Long
- Beijing Minimally Invasive Oncology Medical Center of Traditional Chinese and Western Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 101121, China
| | - Jian Huang
- Laboratory of Molecular Biology, Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
2
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024; 57:84-100. [PMID: 39243141 PMCID: PMC11802349 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Qingyi Jiang
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Fan
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of RNA InnovationScience and EngineeringShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
3
|
Crespo R, Ne E, Reinders J, Meier JI, Li C, Jansen S, Górska A, Koçer S, Kan TW, Doff W, Dekkers D, Demmers J, Palstra RJ, Rao S, Mahmoudi T. PCID2 dysregulates transcription and viral RNA processing to promote HIV-1 latency. iScience 2024; 27:109152. [PMID: 38384833 PMCID: PMC10879814 DOI: 10.1016/j.isci.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
HIV-1 latency results from tightly regulated molecular processes that act at distinct steps of HIV-1 gene expression. Here, we characterize PCI domain-containing 2 (PCID2) protein, a subunit of the transcription and export complex 2 (TREX2) complex, to enforce transcriptional repression and post-transcriptional blocks to HIV-1 gene expression during latency. PCID2 bound the latent HIV-1 LTR (long terminal repeat) and repressed transcription initiation during latency. Depletion of PCID2 remodeled the chromatin landscape at the HIV-1 promoter and resulted in transcriptional activation and latency reversal. Immunoprecipitation coupled to mass spectrometry identified PCID2-interacting proteins to include negative viral RNA (vRNA) splicing regulators, and PCID2 depletion resulted in over-splicing of intron-containing vRNA in cell lines and primary cells obtained from PWH. MCM3AP and DSS1, two other RNA-binding TREX2 complex subunits, also inhibit transcription initiation and vRNA alternative splicing during latency. Thus, PCID2 is a novel HIV-1 latency-promoting factor, which in context of the TREX2 sub-complex PCID2-DSS1-MCM3AP blocks transcription and dysregulates vRNA processing.
Collapse
Affiliation(s)
- Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Julian Reinders
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jenny I.J. Meier
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Chengcheng Li
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sanne Jansen
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wouter Doff
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000 CA Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Sakai Y, Kuwahara K. Carcinogenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. Pathol Int 2024; 74:103-118. [PMID: 38411330 DOI: 10.1111/pin.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| |
Collapse
|
5
|
Malik SC, Lin JD, Ziegler-Waldkirch S, Tholen S, Deshpande SS, Schwabenland M, Schilling O, Vlachos A, Meyer-Luehmann M, Schachtrup C. Tpr Misregulation in Hippocampal Neural Stem Cells in Mouse Models of Alzheimer's Disease. Cells 2023; 12:2757. [PMID: 38067185 PMCID: PMC10706632 DOI: 10.3390/cells12232757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-β plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.
Collapse
Affiliation(s)
- Subash C. Malik
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jia-Di Lin
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stephanie Ziegler-Waldkirch
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Sachin S. Deshpande
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (S.T.); (O.S.)
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.Z.-W.); (M.M.-L.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany; (S.C.M.); (J.-D.L.); (S.S.D.)
- Center for Basics in Neuromodulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
6
|
Gunkel P, Iino H, Krull S, Cordes VC. An evolutionarily conserved bimodular domain anchors ZC3HC1 and its yeast homologue Pml39p to the nuclear basket. Mol Biol Cell 2023; 34:ar40. [PMID: 36857168 PMCID: PMC10162418 DOI: 10.1091/mbc.e22-09-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The proteins ZC3HC1 and TPR are structural components of the nuclear basket (NB), a fibrillar structure attached to the nucleoplasmic side of the nuclear pore complex (NPC). ZC3HC1 initially binds to the NB in a TPR-dependent manner and can subsequently recruit additional TPR polypeptides to this structure. Here, we examined the molecular properties of ZC3HC1 that enable its initial binding to the NB and TPR. We report the identification and definition of a nuclear basket-interaction domain (NuBaID) of HsZC3HC1 that comprises two similarly built modules, both essential for binding the NB-resident TPR. We show that such a bimodular construction is evolutionarily conserved, which we further investigated in Dictyostelium discoideum and Saccharomyces cerevisiae. Presenting ScPml39p as the ZC3HC1 homologue in budding yeast, we show that the bimodular NuBaID of Pml39p is essential for binding to the yeast NB and its TPR homologues ScMlp1p and ScMlp2p, and we further demonstrate that Pml39p enables linkage between subpopulations of Mlp1p. We eventually delineate the common NuBaID of the human, amoebic, and yeast homologue as the defining structural entity of a unique protein not found in all but likely present in most taxa of the eukaryotic realm.
Collapse
Affiliation(s)
- Philip Gunkel
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Haruki Iino
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sandra Krull
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Volker C. Cordes
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
An integrative analysis of enhancer of yellow 2 homolog (ENY2) as a molecular biomarker in pan-cancer. Funct Integr Genomics 2023; 23:72. [PMID: 36862319 DOI: 10.1007/s10142-023-01000-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
ENY2 (Enhancer of yellow 2 transcription factor) is a transcription nuclear protein and primarily participates in the course of mRNA export and histone deubiquitination to influence gene expression. Current studies have shown that the expression of ENY2 is significantly upregulated in multiple cancers. However, the exact association between ENY2 and pan-cancers has not been fully established. Here, we comprehensively analyzed ENY2 from the online public database and The Cancer Genome Atlas (TCGA) database, including gene expression level in pan-cancer, comparison of ENY2 expression in different molecular and immune subtypes of pan-cancer, targeted protein, biological functions, molecular signatures, diagnostic and prognostic value in pan-cancer. Moreover, we focused on head and neck squamous cell carcinoma (HNSC) and explored ENY2 from the perspective of the correlations with clinical characteristics, prognosis, co-expression genes, differentially expressed genes (DEGs) and immune Infiltration. Our findings showed that the expression of ENY2 differed enormously not only in most cancer types but also in different molecular and immune subtypes of cancers. High accuracy in predicting cancers and notable correlations with prognosis of certain cancers suggested that ENY2 might be a potential diagnostic and prognostic biomarker of cancers. In addition, ENY2 was identified to be significantly correlated with clinical stage, gender, histologic grade and lymphovascular invasion in HNSC. Overexpression of ENY2 could lead to a worse overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in HNSC, especially in different clinical subgroups of HNSC. Taken together, ENY2 showed strong correlation with the diagnosis and prognosis of pan-cancer, and was an independent prognostic risk factor of HNSC, which may serve as a potential target for cancer management.
Collapse
|
9
|
Gomar‐Alba M, Pozharskaia V, Cichocki B, Schaal C, Kumar A, Jacquel B, Charvin G, Igual JC, Mendoza M. Nuclear pore complex acetylation regulates mRNA export and cell cycle commitment in budding yeast. EMBO J 2022; 41:e110271. [PMID: 35735140 PMCID: PMC9340480 DOI: 10.15252/embj.2021110271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm, and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyltransferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits the mRNA export factor Sac3, the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex, to the nuclear basket. The Esa1-mediated nuclear export of mRNAs in turn promotes entry into S phase, which is inhibited by the Hos3 deacetylase in G1 daughter cells to restrain their premature commitment to a new cell division cycle. This mechanism is not only limited to G1/S-expressed genes but also inhibits the expression of the nutrient-regulated GAL1 gene specifically in daughter cells. Overall, these results reveal how acetylation can contribute to the functional plasticity of NPCs in mother and daughter yeast cells. In addition, our work demonstrates dual gene expression regulation by the evolutionarily conserved NuA4 complex, at the level of transcription and at the stage of mRNA export by modifying the nucleoplasmic entrance to nuclear pores.
Collapse
Affiliation(s)
- Mercè Gomar‐Alba
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaBurjassotSpain
| | | | - Bogdan Cichocki
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Celia Schaal
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Arun Kumar
- Department of Cell BiologyUniversitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Basile Jacquel
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
- Université de StrasbourgStrasbourgFrance
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaBurjassotSpain
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
- Université de StrasbourgStrasbourgFrance
| |
Collapse
|
10
|
Gunkel P, Cordes VC. ZC3HC1 is a structural element of the nuclear basket effecting interlinkage of TPR polypeptides. Mol Biol Cell 2022; 33:ar82. [PMID: 35609216 DOI: 10.1091/mbc.e22-02-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear basket (NB), anchored to the nuclear pore complex (NPC), is commonly looked upon as a structure built solely of protein TPR polypeptides, the latter thus regarded as the NB's only scaffold-forming components. In the current study, we report ZC3HC1 as a second structural element of the NB. Recently described as an NB-appended protein omnipresent in vertebrates, we now show that ZC3HC1, both in vivo and in vitro, enables in a stepwise manner the recruitment of TPR subpopulations to the NB and their linkage to already NPC-anchored TPR polypeptides. We further demonstrate that the degron-mediated rapid elimination of ZC3HC1 results in the prompt detachment of the ZC3HC1-appended TPR polypeptides from the NB and their release into the nucleoplasm, underscoring the role of ZC3HC1 as a natural structural element of the NB. Finally, we show that ZC3HC1 can keep TPR polypeptides positioned and linked to each other even at sites remote from the NB, in line with ZC3HC1 functioning as a protein connecting TPR polypeptides.
Collapse
Affiliation(s)
- Philip Gunkel
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Volker C Cordes
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
11
|
De Magistris P. The Great Escape: mRNA Export through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:ijms222111767. [PMID: 34769195 PMCID: PMC8583845 DOI: 10.3390/ijms222111767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC. To be granted passage, the mRNP cargo needs to bind transport receptors, which facilitate the nuclear export. During NPC transport, mRNPs undergo compositional and conformational changes. The interactions between mRNP and the central channel of NPC are described; together with the multiple quality control steps that mRNPs undergo at the different rings of the NPC to ensure only proper export of mature transcripts to the cytoplasm. I conclude by mentioning new opportunities that arise from bottom up approaches for a mechanistic understanding of nuclear export.
Collapse
|
12
|
Zheleva A, Camino LP, Fernández-Fernández N, García-Rubio M, Askjaer P, García-Muse T, Aguilera A. THSC/TREX-2 deficiency causes replication stress and genome instability in Caenorhabditis elegans. J Cell Sci 2021; 134:jcs258435. [PMID: 34553761 PMCID: PMC10658913 DOI: 10.1242/jcs.258435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022] Open
Abstract
Transcription is an essential process of DNA metabolism, yet it makes DNA more susceptible to DNA damage. THSC/TREX-2 is a conserved eukaryotic protein complex with a key role in mRNP biogenesis and maturation that prevents genome instability. One source of such instability is linked to transcription, as shown in yeast and human cells, but the underlying mechanism and whether this link is universal is still unclear. To obtain further insight into the putative role of the THSC/TREX-2 complex in genome integrity, we have used Caenorhabditis elegans mutants of the thp-1 and dss-1 components of THSC/TREX-2. These mutants show similar defective meiosis, DNA damage accumulation and activation of the DNA damage checkpoint. However, they differ from each other regarding replication defects, as determined by measuring dUTP incorporation in the germline. Interestingly, this specific thp-1 mutant phenotype can be partially rescued by overexpression of RNase H. Furthermore, both mutants show a mild increase in phosphorylation of histone H3 at Ser10 (H3S10P), a mark previously shown to be linked to DNA-RNA hybrid-mediated genome instability. These data support the view that both THSC/TREX-2 factors prevent transcription-associated DNA damage derived from DNA-RNA hybrid accumulation by separate means.
Collapse
Affiliation(s)
- Angelina Zheleva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Lola P. Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Nuria Fernández-Fernández
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Peter Askjaer
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Tatiana García-Muse
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
13
|
Distinct roles of nuclear basket proteins in directing the passage of mRNA through the nuclear pore. Proc Natl Acad Sci U S A 2021; 118:2015621118. [PMID: 34504007 DOI: 10.1073/pnas.2015621118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
The in vivo characterization of the exact copy number and the specific function of each composite protein within the nuclear pore complex (NPC) remains both desirable and challenging. Through the implementation of live-cell high-speed super-resolution single-molecule microscopy, we first quantified the native copies of nuclear basket (BSK) proteins (Nup153, Nup50, and Tpr) prior to knocking them down in a highly specific manner via an auxin-inducible degron strategy. Second, we determined the specific roles that BSK proteins play in the nuclear export kinetics of model messenger RNA (mRNA) substrates. Finally, the three-dimensional (3D) nuclear export routes of these mRNA substrates through native NPCs in the absence of specific BSK proteins were obtained and further validated via postlocalization computational simulations. We found that these BSK proteins possess the stoichiometric ratio of 1:1:1 and play distinct roles in the nuclear export of mRNAs within live cells. The absence of Tpr from the NPC predominantly reduces the probability of nuclear mRNAs entering the NPC for export. Complete depletion of Nup153 and Nup50 results in an mRNA nuclear export efficiency decrease of approximately four folds. mRNAs can gain their maximum successful export efficiency as the copy number of Nup153 increased from zero to only half the full complement natively within the NPC. Lastly, the absence of Tpr or Nup153 seems to alter the 3D export routes of mRNAs as they pass through the NPC. However, the removal of Nup50 alone has almost no impact upon mRNA export route and kinetics.
Collapse
|
14
|
Gunkel P, Iino H, Krull S, Cordes VC. ZC3HC1 Is a Novel Inherent Component of the Nuclear Basket, Resident in a State of Reciprocal Dependence with TPR. Cells 2021; 10:1937. [PMID: 34440706 PMCID: PMC8393659 DOI: 10.3390/cells10081937] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The nuclear basket (NB) scaffold, a fibrillar structure anchored to the nuclear pore complex (NPC), is regarded as constructed of polypeptides of the coiled-coil dominated protein TPR to which other proteins can bind without contributing to the NB's structural integrity. Here we report vertebrate protein ZC3HC1 as a novel inherent constituent of the NB, common at the nuclear envelopes (NE) of proliferating and non-dividing, terminally differentiated cells of different morphogenetic origin. Formerly described as a protein of other functions, we instead present the NB component ZC3HC1 as a protein required for enabling distinct amounts of TPR to occur NB-appended, with such ZC3HC1-dependency applying to about half the total amount of TPR at the NEs of different somatic cell types. Furthermore, pointing to an NB structure more complex than previously anticipated, we discuss how ZC3HC1 and the ZC3HC1-dependent TPR polypeptides could enlarge the NB's functional repertoire.
Collapse
Affiliation(s)
| | | | | | - Volker C. Cordes
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany; (P.G.); (H.I.); (S.K.)
| |
Collapse
|
15
|
Evolution and diversification of the nuclear pore complex. Biochem Soc Trans 2021; 49:1601-1619. [PMID: 34282823 PMCID: PMC8421043 DOI: 10.1042/bst20200570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
Collapse
|
16
|
Bensidoun P, Zenklusen D, Oeffinger M. Choosing the right exit: How functional plasticity of the nuclear pore drives selective and efficient mRNA export. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1660. [PMID: 33938148 DOI: 10.1002/wrna.1660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
The nuclear pore complex (NPC) serves as a central gate for mRNAs to transit from the nucleus to the cytoplasm. The ability for mRNAs to get exported is linked to various upstream nuclear processes including co-transcriptional RNP assembly and processing, and only export competent mRNPs are thought to get access to the NPC. While the nuclear pore is generally viewed as a monolithic structure that serves as a mediator of transport driven by transport receptors, more recent evidence suggests that the NPC might be more heterogenous than previously believed, both in its composition or in the selective treatment of cargo that seek access to the pore, providing functional plasticity to mRNA export. In this review, we consider the interconnected processes of nuclear mRNA metabolism that contribute and mediate export competence. Furthermore, we examine different aspects of NPC heterogeneity, including the role of the nuclear basket and its associated complexes in regulating selective and/or efficient binding to and transport through the pore. This article is categorized under: RNA Export and Localization > Nuclear Export/Import RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Systems Biology, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Daniel Zenklusen
- Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Marlene Oeffinger
- Systems Biology, Institut de Recherches Cliniques de Montréal, Montréal, Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de médecine, Université de Montréal, Montréal, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
17
|
Glukhova AA, Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. PCID2, a subunit of the Drosophila TREX-2 nuclear export complex, is essential for both mRNA nuclear export and its subsequent cytoplasmic trafficking. RNA Biol 2021; 18:1969-1980. [PMID: 33602059 DOI: 10.1080/15476286.2021.1885198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The TREX-2 complex is essential for the general nuclear mRNA export in eukaryotes. TREX-2 interacts with the nuclear pore and transcriptional apparatus and links transcription to the mRNA export. However, it remains poorly understood how the TREX-2-dependent nuclear export is connected to the subsequent stages of mRNA trafficking. Here, we show that the PCID2 subunit of Drosophila TREX-2 is present in the cytoplasm of the cell. The cytoplasmic PCID2 directly interacts with the NudC protein and this interaction maintains its stability in the cytoplasm. Moreover, PCID2 is associated with the cytoplasmic mRNA and microtubules. The PCID2 knockdown blocks nuclear export of mRNA and also affects the general mRNA transport into the cytoplasm. These data suggest that PCID2 could be the link between the nuclear TREX-2-dependent export and the subsequent cytoplasmic trafficking of mRNA.
Collapse
Affiliation(s)
- A A Glukhova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - M M Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - E N Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Kopytova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Lee ES, Wolf EJ, Ihn SSJ, Smith HW, Emili A, Palazzo AF. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res 2021; 48:11645-11663. [PMID: 33091126 PMCID: PMC7672458 DOI: 10.1093/nar/gkaa919] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
While splicing has been shown to enhance nuclear export, it has remained unclear whether mRNAs generated from intronless genes use specific machinery to promote their export. Here, we investigate the role of the major nuclear pore basket protein, TPR, in regulating mRNA and lncRNA nuclear export in human cells. By sequencing mRNA from the nucleus and cytosol of control and TPR-depleted cells, we provide evidence that TPR is required for the efficient nuclear export of mRNAs and lncRNAs that are generated from short transcripts that tend to have few introns, and we validate this with reporter constructs. Moreover, in TPR-depleted cells reporter mRNAs generated from short transcripts accumulate in nuclear speckles and are bound to Nxf1. These observations suggest that TPR acts downstream of Nxf1 recruitment and may allow mRNAs to leave nuclear speckles and properly dock with the nuclear pore. In summary, our study provides one of the first examples of a factor that is specifically required for the nuclear export of intronless and intron-poor mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Eliza S Lee
- University of Toronto, Department of Biochemistry, Canada
| | - Eric J Wolf
- University of Toronto, Department of Molecular Genetics, Canada
| | - Sean S J Ihn
- University of Toronto, Department of Biochemistry, Canada
| | | | - Andrew Emili
- University of Toronto, Department of Molecular Genetics, Canada.,Boston University School of Medicine, Department of Biochemistry, Boston, MA, USA
| | | |
Collapse
|
19
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
20
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
21
|
Palazzo AF, Kang YM. GC-content biases in protein-coding genes act as an "mRNA identity" feature for nuclear export. Bioessays 2020; 43:e2000197. [PMID: 33165929 DOI: 10.1002/bies.202000197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023]
Abstract
It has long been observed that human protein-coding genes have a particular distribution of GC-content: the 5' end of these genes has high GC-content while the 3' end has low GC-content. In 2012, it was proposed that this pattern of GC-content could act as an mRNA identity feature that would lead to it being better recognized by the cellular machinery to promote its nuclear export. In contrast, junk RNA, which largely lacks this feature, would be retained in the nucleus and targeted for decay. Now two recent papers have provided evidence that GC-content does promote the nuclear export of many mRNAs in human cells.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
22
|
Arede L, Pina C. Buffering noise: KAT2A modular contributions to stabilization of transcription and cell identity in cancer and development. Exp Hematol 2020; 93:25-37. [PMID: 33223444 DOI: 10.1016/j.exphem.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
KAT2A is a histone acetyltransferase recently identified as a vulnerability in at least some forms of Acute Myeloid Leukemia (AML). Its loss or inhibition prompts leukemia stem cells out of self-renewal and into differentiation with ultimate exhaustion of the leukemia pool. We have recently linked the Kat2a requirement in AML to control of transcriptional noise, reflecting an evolutionary-conserved role of Kat2a in promoting burst-like promoter activity and stabilizing gene expression. We suggest that through this role, Kat2a contributes to preservation of cell identity. KAT2A exerts its acetyltransferase activity in the context of two macromolecular complexes, Spt-Ada-Gcn5-Acetyltransferase (SAGA) and Ada-Two-A-Containing (ATAC), but the specific contribution of each complex to stabilization of gene expression is currently unknown. By reviewing specific gene targets and requirements of the two complexes in cancer and development, we suggest that SAGA regulates lineage-specific programs, and ATAC maintains biosynthetic activity through control of ribosomal protein and translation-associated genes, on which cells may be differentially dependent. While our data suggest that KAT2A-mediated regulation of transcriptional noise in AML may be exerted through ATAC, we discuss potential caveats and probe general vs. complex-specific contributions of KAT2A to transcriptional stability, with implications for control and perturbation of cell identity.
Collapse
Affiliation(s)
- Liliana Arede
- Departments of Haematology; Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Pina
- College of Health, Medicine and Life Sciences - Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
23
|
Sakai Y, Phimsen S, Okada S, Kuwahara K. The critical role of germinal center-associated nuclear protein in cell biology, immunohematology, and hematolymphoid oncogenesis. Exp Hematol 2020; 90:30-38. [PMID: 32827560 DOI: 10.1016/j.exphem.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 11/16/2022]
Abstract
Germinal center-associated nuclear protein (GANP) is a unique and multifunctional protein that plays a critical role in cell biology, neurodegenerative disorders, immunohematology, and oncogenesis. GANP is an orthologue of Saccharomyces Sac3, one of the components of the transcription export 2 (TREX-2) complex and a messenger RNA (mRNA) nuclear export factor. GANP is widely conserved in all mammals, including humans. Although GANP was originally discovered as a molecule upregulated in the germinal centers of secondary lymphoid follicles in peripheral lymphoid organs, it is expressed ubiquitously in many tissues. It serves numerous functions, including making up part of the mammalian TREX-2 complex; mRNA nuclear export via nuclear pores; prevention of R-loop formation, genomic instability, and hyper-recombination; and B-cell affinity maturation. In this review, we first overview the extensive analyses that have revealed the basic functions of GANP and its ancestor molecule Sac3, including mRNA nuclear export and regulation of R-loop formation. We then describe how aberrant expression of GANP is significantly associated with cancer development. Moreover, we discuss a crucial role for GANP in B-cell development, especially affinity maturation in germinal centers. Finally, we illustrate that overexpression of GANP in B cells leads to lymphomagenesis resembling Hodgkin lymphoma derived from germinal center B cells, and that GANP may be involved in transdifferentiation of B cells to macrophages, which strongly affects Hodgkin lymphomagenesis.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
24
|
Aksenova V, Smith A, Lee H, Bhat P, Esnault C, Chen S, Iben J, Kaufhold R, Yau KC, Echeverria C, Fontoura B, Arnaoutov A, Dasso M. Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat Commun 2020; 11:4577. [PMID: 32917881 PMCID: PMC7486939 DOI: 10.1038/s41467-020-18266-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/14/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear pore complexes (NPCs) are important for cellular functions beyond nucleocytoplasmic trafficking, including genome organization and gene expression. This multi-faceted nature and the slow turnover of NPC components complicates investigations of how individual nucleoporins act in these diverse processes. To address this question, we apply an Auxin-Induced Degron (AID) system to distinguish roles of basket nucleoporins NUP153, NUP50 and TPR. Acute depletion of TPR causes rapid and pronounced changes in transcriptomic profiles. These changes are dissimilar to shifts observed after loss of NUP153 or NUP50, but closely related to changes caused by depletion of mRNA export receptor NXF1 or the GANP subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex. Moreover, TPR depletion disrupts association of TREX-2 subunits (GANP, PCID2, ENY2) to NPCs and results in abnormal RNA transcription and export. Our findings demonstrate a unique and pivotal role of TPR in gene expression through TREX-2- and/or NXF1-dependent mRNA turnover.
Collapse
Affiliation(s)
- Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra Smith
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hangnoh Lee
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20879, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20879, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ka Chun Yau
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carlos Echeverria
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Beatriz Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Global transcriptional downregulation of TREX and nuclear trafficking machinery as pan-senescence phenomena: evidence from human cells and tissues. Exp Mol Med 2020; 52:1351-1359. [PMID: 32859952 PMCID: PMC8080647 DOI: 10.1038/s12276-020-00490-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Nucleocytoplasmic trafficking (NCT) of macromolecules is a fundamental process in eukaryotes that requires tight controls to maintain proper cell functions. Downregulation of the classical NCT pathway in senescent cells has been reported. However, whether this is a hallmark that exists across all types of cellular senescence remains unknown, and whether the mRNA export machinery is altered during senescence has not been demonstrated. Here, we show that the global transcriptomic downregulation of both the TREX (transcription-export) machinery and classical NLS-dependent protein transport machinery is a hallmark of varying types of senescence. A gene set-based approach using 25 different studies showed that the TREX-NCT gene set displays distinct common downregulated patterns in senescent cells versus its expression in their nonsenescent counterparts regardless of the senescence type, such as replicative senescence (RS), tumor cell senescence (TCS), oncogene-induced senescence (OIS), stem cell senescence (SCS), progeria and endothelial cell senescence (ECS). Similar patterns of TREX-NCT gene downregulation were also shown in two large human tissue genomic databases, the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. We also found that early-stage cancer tissues show consistent age-related patterns of TREX-NCT enrichment, suggesting the potential significance of TREX-NCT genes in determining cell fate in the early stage of tumorigenesis. Moreover, human cancer tissues exhibit an opposite TREX-NCT enrichment pattern with aging, indicating that deviation from age-related changes in TREX-NCT genes may provide a novel but critical clue for the age-dependent pathogenesis of cancer and increase in cancer incidence with aging. Proteins that move genetic information out of the nucleus and into the rest of the cell may be important in aging, and serve as markers of early-stage cancer. DNA is stored in the cell’s nucleus, and the messages which it encodes must be exported from the nucleus for gene expression. Aging is thought to be linked to a decrease in this export, but the exact mechanism remains unclear. Sung Young Kim, Konkuk University School of Medicine, Seoul, South Korea, and co-workers investigated key nuclear export proteins in healthy, cancerous, and aging cells. They found that nuclear export is strongly decreased in aging cells and shows distinctive patterns in very-early-stage cancer cells. These results shed further light on the cellular basis of aging, and may provide novel biomarkers for early cancer detection.
Collapse
|
26
|
Li H, Wu Y, Liu W, Zhang XM, Gong JS, Shi JS, Xu ZH. iTRAQ-based quantitative proteomic analysis of Colletotrichum lini reveals ethanol induced mechanism for enhancing dihydroxylation efficiency of DHEA. J Proteomics 2020; 224:103851. [PMID: 32485395 DOI: 10.1016/j.jprot.2020.103851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/09/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Colletotrichum lini is used as an industrial stain for the dihydroxylation of steroid compound dehydroepiandrosterone (DHEA) to biosynthesize 3β,7α,15α-trihydroxy-5-androstene-17-one (7α,15α-diOH-DHEA), a key intermediate of the most popular oral contraceptive "Yasmin". This work aimed to enhance 7α,15α-diOH-DHEA production in C. lini CGMCC 6051 through ethanol induction. With 0.6% (v/v) ethanol induction and 10 g/L DHEA concentration, the 7α,15α-diOH-DHEA molar yield reached 58.8%, which was increased by 67.5% than that of the control. iTRAQ-based quantitative proteomic analysis was applied to explore the probable molecular mechanism of C. lini response to ethanol induction. A total of 50 differential expressed proteins was affected by ethanol induction, and could be related to multiple metabolic pathways. Most of differently expressed proteins were functionally mapped into pathways of transport, steroids metabolism, or redox reaction. Other proteins for energy, transcription and translation, and carbohydrate metabolism might have important roles in the cellular response to ethanol induction. In addition, the levels of cytochrome P450 and NAD(P)H-cytochrome P450 reductase were remarkably higher under ethanol induction, and their functions on DHEA dihydroxylation were first proposed in C. lini. Our results provide critical clues in revealing the dihydroxylation mechanism and are important for efficient microbiological hydroxylation of steroidal compounds in the future. BIOLOGICAL SIGNIFICANCE: iTRAQ strategy was first used to compare the proteomes of ethanol induction during the dihydroxylation reaction by Colletotrichum lini CGMCC 6051. The changes in protein provided a comprehensive overview of DHEA dihydroxylation in C. lini, including the proteins for steroids metabolism, redox reaction, transport, transcription and translation, energy and carbohydrate metabolism. Cytochrome P450, NADPH-cytochrome P450 reductase, and NADH-cytochrome b5 reductase were highlighted due to their outstanding contribution to DHEA dihydroxylation. The results help us understand the molecular mechanism underlying ethanol induction in C. lini and would guide strain engineering to further improve dihydroxylation efficiency.
Collapse
Affiliation(s)
- Hui Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Xiao-Mei Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
27
|
Hasenson SE, Shav‐Tal Y. Speculating on the Roles of Nuclear Speckles: How RNA‐Protein Nuclear Assemblies Affect Gene Expression. Bioessays 2020; 42:e2000104. [DOI: 10.1002/bies.202000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah E. Hasenson
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| | - Yaron Shav‐Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 4481400 Israel
| |
Collapse
|
28
|
Tian Y, Wen H, Qi X, Zhang X, Sun Y, Li J, He F, Zhang M, Zhang K, Yang W, Huang Z, Ren Y, Li Y. Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass. Int J Biol Macromol 2020; 155:50-60. [DOI: 10.1016/j.ijbiomac.2020.03.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
|
29
|
Woldegebriel R, Kvist J, Andersson N, Õunap K, Reinson K, Wojcik MH, Bijlsma EK, Hoffer MJV, Ryan MM, Stark Z, Walsh M, Cuppen I, van den Boogaard MJH, Bharucha-Goebel D, Donkervoort S, Winchester S, Zori R, Bönnemann CG, Maroofian R, O’Connor E, Houlden H, Zhao F, Carpén O, White M, Sreedharan J, Stewart M, Ylikallio E, Tyynismaa H. Distinct effects on mRNA export factor GANP underlie neurological disease phenotypes and alter gene expression depending on intron content. Hum Mol Genet 2020; 29:1426-1439. [PMID: 32202298 PMCID: PMC7297229 DOI: 10.1093/hmg/ddaa051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022] Open
Abstract
Defects in the mRNA export scaffold protein GANP, encoded by the MCM3AP gene, cause autosomal recessive early-onset peripheral neuropathy with or without intellectual disability. We extend here the phenotypic range associated with MCM3AP variants, by describing a severely hypotonic child and a sibling pair with a progressive encephalopathic syndrome. In addition, our analysis of skin fibroblasts from affected individuals from seven unrelated families indicates that disease variants result in depletion of GANP except when they alter critical residues in the Sac3 mRNA binding domain. GANP depletion was associated with more severe phenotypes compared with the Sac3 variants. Patient fibroblasts showed transcriptome alterations that suggested intron content-dependent regulation of gene expression. For example, all differentially expressed intronless genes were downregulated, including ATXN7L3B, which couples mRNA export to transcription activation by association with the TREX-2 and SAGA complexes. Our results provide insight into the molecular basis behind genotype-phenotype correlations in MCM3AP-associated disease and suggest mechanisms by which GANP defects might alter RNA metabolism.
Collapse
Affiliation(s)
- Rosa Woldegebriel
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Genomics and Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique M Ryan
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Royal Children’s Hospital, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne 3052, Australia
| | - Zornitza Stark
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne 3052, Australia
| | - Maie Walsh
- Murdoch Children’s Research Institute, Melbourne 3052, Australia
| | - Inge Cuppen
- Department of Pediatric Neurology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Diana Bharucha-Goebel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Division of Neurology, Children's National Health System, Washington, DC, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Winchester
- Child Neurology Center of Northwest Florida, Pensacola, FL, USA
| | - Roberto Zori
- Division of Genetics and Metabolism, University of Florida, Gainesville, FL, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Emer O’Connor
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Fang Zhao
- Department of Pathology and Genetics, HUSLAB Laboratories, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matthew White
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00290 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. Int J Mol Sci 2020; 21:E2477. [PMID: 32252492 PMCID: PMC7177960 DOI: 10.3390/ijms21072477] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Still unresolved is the question of how a lifetime accumulation of somatic gene copy number alterations impact organ functionality and aging and age-related pathologies. Such an issue appears particularly relevant in the broadly post-mitotic central nervous system (CNS), where non-replicative neurons are restricted in DNA-repair choices and are prone to accumulate DNA damage, as they remain unreplaced over a lifetime. Both DNA injuries and consecutive DNA-repair strategies are processes that can evoke extrachromosomal circular DNA species, apparently from either part of the genome. Due to their capacity to amplify gene copies and related transcripts, the individual cellular load of extrachromosomal circular DNAs will contribute to a dynamic pool of additional coding and regulatory chromatin elements. Analogous to tumor tissues, where the mosaicism of circular DNAs plays a well-characterized role in oncogene plasticity and drug resistance, we suggest involvement of the "circulome" also in the CNS. Accordingly, we summarize current knowledge on the molecular biogenesis, homeostasis and gene regulatory impacts of circular extrachromosomal DNA and propose, in light of recent discoveries, a critical role in CNS aging and neurodegeneration. Future studies will elucidate the influence of individual extrachromosomal DNA species according to their sequence complexity and regional distribution or cell-type-specific abundance.
Collapse
Affiliation(s)
- Quratul Ain
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|
31
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
32
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
33
|
Soheilypour M, Mofrad MRK. Quality control of mRNAs at the entry of the nuclear pore: Cooperation in a complex molecular system. Nucleus 2019; 9:202-211. [PMID: 29431587 PMCID: PMC5973141 DOI: 10.1080/19491034.2018.1439304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite extensive research on how mRNAs are quality controlled prior to export into the cytoplasm, the exact underlying mechanisms are still under debate. Specifically, it is unclear how quality control proteins at the entry of the nuclear pore complex (NPC) distinguish normal and aberrant mRNAs. While some of the involved components are suggested to act as switches and recruit different factors to normal versus aberrant mRNAs, some experimental and computational evidence suggests that the combined effect of the regulated stochastic interactions between the involved components could potentially achieve an efficient quality control of mRNAs. In this review, we present a state-of-the-art portrait of the mRNA quality control research and discuss the current hypotheses proposed for dynamics of the cooperation between the involved components and how it leads to their shared goal: mRNA quality control prior to export into the cytoplasm.
Collapse
Affiliation(s)
- Mohammad Soheilypour
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| | - Mohammad R K Mofrad
- a Molecular Cell Biomechanics Laboratory , Departments of Bioengineering and Mechanical Engineering, University of California , Berkeley
| |
Collapse
|
34
|
Sedghi M, Moslemi AR, Cabrera-Serrano M, Ansari B, Ghasemi M, Baktashian M, Fattahpour A, Tajsharghi H. Recessive Charcot-Marie-Tooth and multiple sclerosis associated with a variant in MCM3AP. Brain Commun 2019; 1:fcz011. [PMID: 32954258 PMCID: PMC7425404 DOI: 10.1093/braincomms/fcz011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
Variants in MCM3AP, encoding the germinal-centre associated nuclear protein, have been associated with progressive polyneuropathy with or without intellectual disability and ptosis in some cases, and with a complex phenotype with immunodeficiency, skin changes and myelodysplasia. MCM3AP encoded protein functions as an acetyltransferase that acetylates the replication protein, MCM3, and plays a key role in the regulation of DNA replication. In this study, we report a novel variant in MCM3AP (p.Ile954Thr), in a family including three affected individuals with characteristic features of Charcot-Marie-Tooth neuropathy and multiple sclerosis, an inflammatory condition of the central nervous system without known genetic cause. The affected individuals were homozygous for a missense MCM3AP variant, located at the Sac3 domain, which was predicted to affect conserved amino acid likely important for the function of the germinal-centre associated nuclear protein. Our data support further expansion of the clinical spectrum linked to MCM3AP variant and highlight that MCM3AP should be considered in patients with accompaniment of recessive motor axonal Charcot-Marie-Tooth neuropathy and multiple sclerosis.
Collapse
Affiliation(s)
- Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali-Reza Moslemi
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Macarena Cabrera-Serrano
- Department of Neurology, Hospital Universitario Virgen del Rocio, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
| | - Behnaz Ansari
- Department of neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Ghasemi
- Department of neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Baktashian
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fattahpour
- Radiology Resident, Department of Radiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Tajsharghi
- Division of Biomedicine, School of Health Science, University of Skovde, SE-541 28 Skovde, Sweden
| |
Collapse
|
35
|
Ben-Yishay R, Mor A, Shraga A, Ashkenazy-Titelman A, Kinor N, Schwed-Gross A, Jacob A, Kozer N, Kumar P, Garini Y, Shav-Tal Y. Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore. J Cell Biol 2019; 218:2962-2981. [PMID: 31375530 PMCID: PMC6719458 DOI: 10.1083/jcb.201901127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Translocation of mRNA through the nuclear pore complex (NPC) requires interactions with different NPC regions. To determine the interactions that are crucial for effective mRNA export in living cells, we examined mRNA export within individual pores by applying various types of mRNA export blocks that stalled mRNPs at different stages of transition. Focusing on the major mRNA export factor NXF1, we found that initial mRNP binding to the NPC did not require NXF1 in the NPC, whereas release into the cytoplasm did. NXF1 localization in the NPC did not require RNA or RNA binding. Superresolution microscopy showed that NXF1 consistently occupied positions on the cytoplasmic side of the NPC. Interactions with specific nucleoporins were pinpointed using FLIM-FRET for measuring protein-protein interactions inside single NPCs, showing that Dbp5 helicase activity of mRNA release is conserved in yeast and humans. Altogether, we find that specific interactions on the cytoplasmic side of the NPC are fundamental for the directional flow of mRNA export.
Collapse
Affiliation(s)
- Rakefet Ben-Yishay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amir Mor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amit Shraga
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Schwed-Gross
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Noga Kozer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Pramod Kumar
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yuval Garini
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel .,Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
36
|
Co-translational assembly of mammalian nuclear multisubunit complexes. Nat Commun 2019; 10:1740. [PMID: 30988355 PMCID: PMC6465333 DOI: 10.1038/s41467-019-09749-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/29/2019] [Indexed: 01/07/2023] Open
Abstract
Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes. Genes encoding protein complex subunits are often dispersed in the genome of eukaryotes, raising the question how these protein complexes assemble. Here, the authors provide evidence that mammalian nuclear transcription complexes are formed co-translationally to ensure specific and functional interactions.
Collapse
|
37
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
38
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Abstract
The Three prime repair exonuclease 2 (TREX-2) complex functions as a platform to which many of the components of the nuclear mRNA processing machinery bind, facilitating integration of this phase of the gene expression pathway, as well as mediating the re-positioning of highly regulated actively transcribing genes (such as GAL1) to nuclear pores (NPCs) to accelerate their activation. In Saccharomyces cerevisiae the TREX-2 complex is based on a Sac3 scaffold to which Thp1, Sem1, Cdc31 and two Sus1 chains are bound. A combination of X-ray crystallography and electron microscopy studies have established the structure of two major regions of this complex: the M-region that functions to bind nucleic acids and the CID region that functions to link the complex to nuclear pores. These structures have facilitated the engineering of mutants that have been used to define the contributions made by the TREX-2 complex to locating high-expressed genes to nuclear pores and the contributions made to mRNA nuclear export.
Collapse
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
40
|
Palazzo AF, Lee ES. Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and lncRNAs. Front Genet 2018; 9:440. [PMID: 30386371 PMCID: PMC6199362 DOI: 10.3389/fgene.2018.00440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes are divided into two major compartments: the nucleus where RNA is synthesized and processed, and the cytoplasm, where mRNA is translated into proteins. Although many different RNAs are made, only a subset is allowed access to the cytoplasm, primarily RNAs involved in protein synthesis (mRNA, tRNA, and rRNA). In contrast, nuclear retained transcripts are mostly long non-coding RNAs (lncRNAs) whose role in cell physiology has been a source of much investigation in the past few years. In addition, it is likely that many non-functional RNAs, which arise by spurious transcription and misprocessing of functional RNAs, are also retained in the nucleus and degraded. In this review, the main sequence features that dictate whether any particular mRNA or lncRNA is a substrate for retention in the nucleus, or export to the cytoplasm, are discussed. Although nuclear export is promoted by RNA-splicing due to the fact that the spliceosome can help recruit export factors to the mature RNA, nuclear export does not require splicing. Indeed, most stable unspliced transcripts are well exported and associate with these same export factors in a splicing-independent manner. In contrast, nuclear retention is promoted by specialized cis-elements found in certain RNAs. This new understanding of the determinants of nuclear retention and cytoplasmic export provides a deeper understanding of how information flow is regulated in eukaryotic cells. Ultimately these processes promote the evolution of complexity in eukaryotes by shaping the genomic content through constructive neutral evolution.
Collapse
|
41
|
Evangelista FM, Maglott-Roth A, Stierle M, Brino L, Soutoglou E, Tora L. Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair. J Cell Biol 2018; 217:3382-3397. [PMID: 30054449 PMCID: PMC6168256 DOI: 10.1083/jcb.201803074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/22/2022] Open
Abstract
The SAGA coactivator complex and the nuclear pore–associated TREX-2 complex couple transcription with mRNA export. Evangelista et al. identify a novel interplay between TREX-2 and the deubiquitination module of SAGA that is necessary to maintain monoubiquitinated H2B levels required for efficient DNA repair through homologous recombination. DNA repair is critical to maintaining genome integrity, and its dysfunction can cause accumulation of unresolved damage that leads to genomic instability. The Spt–Ada–Gcn5 acetyltransferase (SAGA) coactivator complex and the nuclear pore–associated transcription and export complex 2 (TREX-2) couple transcription with mRNA export. In this study, we identify a novel interplay between human TREX-2 and the deubiquitination module (DUBm) of SAGA required for genome stability. We find that the scaffold subunit of TREX-2, GANP, positively regulates DNA repair through homologous recombination (HR). In contrast, DUBm adaptor subunits ENY2 and ATXNL3 are required to limit unscheduled HR. These opposite roles are achieved through monoubiquitinated histone H2B (H2Bub1). Interestingly, the activity of the DUBm of SAGA on H2Bub1 is dependent on the integrity of the TREX-2 complex. Thus, we describe the existence of a functional interaction between human TREX-2 and SAGA DUBm that is key to maintaining the H2B/HB2ub1 balance needed for efficient repair and HR.
Collapse
Affiliation(s)
- Federica M Evangelista
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anne Maglott-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Laurent Brino
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
42
|
Hautbergue GM. RNA Nuclear Export: From Neurological Disorders to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1007:89-109. [PMID: 28840554 DOI: 10.1007/978-3-319-60733-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume M Hautbergue
- RNA Biology Laboratory, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
43
|
Pfab A, Bruckmann A, Nazet J, Merkl R, Grasser KD. The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. J Mol Biol 2018; 430:1479-1494. [PMID: 29588169 DOI: 10.1016/j.jmb.2018.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
The conserved nuclear protein ENY2 (Sus1 in yeast) is involved in coupling transcription and mRNA export in yeast and metazoa, as it is a component both of the transcriptional co-activator complex SAGA and of the mRNA export complex TREX-2. Arabidopsis thaliana ENY2 is widely expressed in the plant and it localizes to the nucleoplasm, but unlike its yeast/metazoan orthologs, it is not enriched in the nuclear envelope. Affinity purification of ENY2 in combination with mass spectrometry revealed that it co-purified with SAGA components, but not with the nuclear pore-associated TREX-2. In addition, further targeted proteomics analyses by reciprocal tagging established the composition of the Arabidopsis SAGA complex consisting of the four modules HATm, SPTm, TAFm and DUBm, and that several SAGA subunits occur in alternative variants. While the HATm, SPTm and TAFm robustly co-purified with each other, the deubiquitination module (DUBm) appears to associate with the other SAGA modules more weakly/dynamically. Consistent with a homology model of the Arabidopsis DUBm, the SGF11 protein interacts directly with ENY2 and UBP22. Plants depleted in the DUBm components, SGF11 or ENY2, are phenotypically only mildly affected, but they contain increased levels of ubiquitinated histone H2B, indicating that the SAGA-DUBm has histone deubiquitination activity in plants. In addition to transcription-related proteins (i.e., transcript elongation factors, Mediator), many splicing factors were found to associate with SAGA, linking the SAGA complex and ongoing transcription with mRNA processing.
Collapse
Affiliation(s)
- Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Julian Nazet
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
44
|
Xiao C, Yu Q, Zhang B, Li J, Zhang D, Li M. The mRNA export factor Sac3 maintains nuclear homeostasis and regulates cytoskeleton organization in Candida albicans. Future Microbiol 2018; 13:283-296. [PMID: 29436239 DOI: 10.2217/fmb-2017-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In eukaryotes, the nuclear export of mRNAs is essential for gene expression and regulations of numerous cellular processes. This study aimed to identify the mRNA export factor Sac3 in Candida albicans. MATERIALS & METHODS A sac3Δ/Δ mutant was obtained using PCR-mediated homologous recombination. RESULTS Disruption of SAC3 caused abnormal accumulation of mRNA in the nuclei. Further investigations revealed that sac3Δ/Δ mutant exhibited a severely growth defect, which was related to abnormal aggregation of microtubules. Moreover, loss of Sac3 caused a defect in hyphal polarized growth, which was associated with depolarization of actin cytoskeleton. In addition, the virulence of sac3Δ/Δ mutant was seriously attenuated. CONCLUSION Our findings provide new insights into the mRNA export factor Sac3 in C. albicans.
Collapse
Affiliation(s)
- Chenpeng Xiao
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
45
|
Xiao C, Yu Q, Zhang B, Li J, Zhang D, Li M. Role of the mRNA export factor Sus1 in oxidative stress tolerance in Candida albicans. Biochem Biophys Res Commun 2018; 496:253-259. [DOI: 10.1016/j.bbrc.2018.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
46
|
Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci 2017; 42:850-861. [PMID: 28964624 PMCID: PMC5660625 DOI: 10.1016/j.tibs.2017.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.
Collapse
Affiliation(s)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
47
|
Ilyin AA, Ryazansky SS, Doronin SA, Olenkina OM, Mikhaleva EA, Yakushev EY, Abramov YA, Belyakin SN, Ivankin AV, Pindyurin AV, Gvozdev VA, Klenov MS, Shevelyov YY. Piwi interacts with chromatin at nuclear pores and promiscuously binds nuclear transcripts in Drosophila ovarian somatic cells. Nucleic Acids Res 2017; 45:7666-7680. [PMID: 28472469 PMCID: PMC5570135 DOI: 10.1093/nar/gkx355] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/20/2017] [Indexed: 12/26/2022] Open
Abstract
Piwi in a complex with Piwi-interacting RNAs (piRNAs) triggers transcriptional silencing of transposable elements (TEs) in Drosophila ovaries, thus ensuring genome stability. To do this, Piwi must scan the nascent transcripts of genes and TEs for complementarity to piRNAs. The mechanism of this scanning is currently unknown. Here we report the DamID-seq mapping of multiple Piwi-interacting chromosomal domains in somatic cells of Drosophila ovaries. These domains significantly overlap with genomic regions tethered to Nuclear Pore Complexes (NPCs). Accordingly, Piwi was coimmunoprecipitated with the component of NPCs Elys and with the Xmas-2 subunit of RNA transcription and export complex, known to interact with NPCs. However, only a small Piwi fraction has transient access to DNA at nuclear pores. Importantly, although 36% of the protein-coding genes overlap with Piwi-interacting domains and RNA-immunoprecipitation results demonstrate promiscuous Piwi binding to numerous genic and TE nuclear transcripts, according to available data Piwi does not silence these genes, likely due to the absence of perfect base-pairing between piRNAs and their transcripts.
Collapse
Affiliation(s)
- Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Sergei S Ryazansky
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Semen A Doronin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Oxana M Olenkina
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Elena A Mikhaleva
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Evgeny Y Yakushev
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yuri A Abramov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Stepan N Belyakin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anton V Ivankin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey V Pindyurin
- Department of Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| |
Collapse
|
48
|
Salas-Pino S, Gallardo P, Barrales RR, Braun S, Daga RR. The fission yeast nucleoporin Alm1 is required for proteasomal degradation of kinetochore components. J Cell Biol 2017; 216:3591-3608. [PMID: 28974540 PMCID: PMC5674884 DOI: 10.1083/jcb.201612194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/28/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
TPR nucleoporins form the nuclear pore complex basket. The fission yeast TPR Alm1 is required for localization of the proteasome to the nuclear envelope, which is in turn required for kinetochore homeostasis and proper chromosome segregation. Kinetochores (KTs) are large multiprotein complexes that constitute the interface between centromeric chromatin and the mitotic spindle during chromosome segregation. In spite of their essential role, little is known about how centromeres and KTs are assembled and how their precise stoichiometry is regulated. In this study, we show that the nuclear pore basket component Alm1 is required to maintain both the proteasome and its anchor, Cut8, at the nuclear envelope, which in turn regulates proteostasis of certain inner KT components. Consistently, alm1-deleted cells show increased levels of KT proteins, including CENP-CCnp3, spindle assembly checkpoint activation, and chromosome segregation defects. Our data demonstrate a novel function of the nucleoporin Alm1 in proteasome localization required for KT homeostasis.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| | - Paola Gallardo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| | - Ramón R Barrales
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martiensried, Germany
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martiensried, Germany.,International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas, Junta de Andalucia, Seville, Spain
| |
Collapse
|
49
|
Ylikallio E, Woldegebriel R, Tumiati M, Isohanni P, Ryan MM, Stark Z, Walsh M, Sawyer SL, Bell KM, Oshlack A, Lockhart PJ, Shcherbii M, Estrada-Cuzcano A, Atkinson D, Hartley T, Tetreault M, Cuppen I, van der Pol WL, Candayan A, Battaloglu E, Parman Y, van Gassen KLI, van den Boogaard MJH, Boycott KM, Kauppi L, Jordanova A, Lönnqvist T, Tyynismaa H. MCM3AP in recessive Charcot-Marie-Tooth neuropathy and mild intellectual disability. Brain 2017. [PMID: 28633435 DOI: 10.1093/brain/awx138] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Defects in mRNA export from the nucleus have been linked to various neurodegenerative disorders. We report mutations in the gene MCM3AP, encoding the germinal center associated nuclear protein (GANP), in nine affected individuals from five unrelated families. The variants were associated with severe childhood onset primarily axonal (four families) or demyelinating (one family) Charcot-Marie-Tooth neuropathy. Mild to moderate intellectual disability was present in seven of nine affected individuals. The affected individuals were either compound heterozygous or homozygous for different MCM3AP variants, which were predicted to cause depletion of GANP or affect conserved amino acids with likely importance for its function. Accordingly, fibroblasts of affected individuals from one family demonstrated severe depletion of GANP. GANP has been described to function as an mRNA export factor, and to suppress TDP-43-mediated motor neuron degeneration in flies. Thus our results suggest defective mRNA export from nucleus as a potential pathogenic mechanism of axonal degeneration in these patients. The identification of MCM3AP variants in affected individuals from multiple centres establishes it as a disease gene for childhood-onset recessively inherited Charcot-Marie-Tooth neuropathy with intellectual disability.
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Rosa Woldegebriel
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Manuela Tumiati
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, 00290 Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Department of Child Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Monique M Ryan
- Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia.,Royal Children's Hospital, Melbourne, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Maie Walsh
- Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Sarah L Sawyer
- Department of Genetics and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, Canada
| | - Katrina M Bell
- Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Melbourne, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, 3052, Australia.,Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Victoria, 3052, Australia
| | - Mariia Shcherbii
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland
| | - Alejandro Estrada-Cuzcano
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, 2610 Antwerpen, Belgium
| | - Derek Atkinson
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, 2610 Antwerpen, Belgium
| | - Taila Hartley
- Department of Genetics and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, Canada
| | - Martine Tetreault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Center, Montreal, QC H3A 1A4, Canada
| | - Inge Cuppen
- Department of Paediatric Neurology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, 3508 Utrecht, The Netherlands
| | - Ayse Candayan
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Esra Battaloglu
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Yesim Parman
- Istanbul University, Istanbul Medical School, Department of Neurology, Istanbul, Turkey
| | - Koen L I van Gassen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Kym M Boycott
- Department of Genetics and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, Canada
| | - Liisa Kauppi
- Research Programs Unit, Genome-Scale Biology, University of Helsinki, 00290 Helsinki, Finland
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, 2610 Antwerpen, Belgium
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, 00290 Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
50
|
Li P, Stumpf M, Müller R, Eichinger L, Glöckner G, Noegel AA. The function of the inner nuclear envelope protein SUN1 in mRNA export is regulated by phosphorylation. Sci Rep 2017; 7:9157. [PMID: 28831067 PMCID: PMC5567243 DOI: 10.1038/s41598-017-08837-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023] Open
Abstract
SUN1, a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, functions in mammalian mRNA export through the NXF1-dependent pathway. It associates with mRNP complexes by direct interaction with NXF1. It also binds to the NPC through association with the nuclear pore component Nup153, which is involved in mRNA export. The SUN1-NXF1 association is at least partly regulated by a protein kinase C (PKC) which phosphorylates serine 113 (S113) in the N-terminal domain leading to reduced interaction. The phosphorylation appears to be important for the SUN1 function in nuclear mRNA export since GFP-SUN1 carrying a S113A mutation was less efficient in restoring mRNA export after SUN1 knockdown as compared to the wild type protein. By contrast, GFP-SUN1-S113D resembling the phosphorylated state allowed very efficient export of poly(A)+RNA. Furthermore, probing a possible role of the LINC complex component Nesprin-2 in this process we observed impaired mRNA export in Nesprin-2 knockdown cells. This effect might be independent of SUN1 as expression of a GFP tagged SUN-domain deficient SUN1, which no longer can interact with Nesprin-2, did not affect mRNA export.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931, Cologne, Germany.,Institutes of Biomedical Sciences, Shanxi University, 030006, Taiyuan, China
| | - Maria Stumpf
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931, Cologne, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931, Cologne, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931, Cologne, Germany
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931, Cologne, Germany.
| | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931, Cologne, Germany.
| |
Collapse
|