1
|
Hu J, Weber JN, Fuess LE, Steinel NC, Bolnick DI, Wang M. A spectral framework to map QTLs affecting joint differential networks of gene co-expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587398. [PMID: 38585912 PMCID: PMC10996691 DOI: 10.1101/2024.03.29.587398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Studying the mechanisms underlying the genotype-phenotype association is crucial in genetics. Gene expression studies have deepened our understanding of the genotype → expression → phenotype mechanisms. However, traditional expression quantitative trait loci (eQTL) methods often overlook the critical role of gene co-expression networks in translating genotype into phenotype. This gap highlights the need for more powerful statistical methods to analyze genotype → network → phenotype mechanism. Here, we develop a network-based method, called snQTL, to map quantitative trait loci affecting gene co-expression networks. Our approach tests the association between genotypes and joint differential networks of gene co-expression via a tensor-based spectral statistics, thereby overcoming the ubiquitous multiple testing challenges in existing methods. We demonstrate the effectiveness of snQTL in the analysis of three-spined stickleback (Gasterosteus aculeatus) data. Compared to conventional methods, our method snQTL uncovers chromosomal regions affecting gene co-expression networks, including one strong candidate gene that would have been missed by traditional eQTL analyses. Our framework suggests the limitation of current approaches and offers a powerful network-based tool for functional loci discoveries.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Statistics, University of Wisconsin-Madison
| | - Jesse N. Weber
- Department of Integrative Biology, University of Wisconsin-Madison
| | | | | | - Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Miaoyan Wang
- Department of Statistics, University of Wisconsin-Madison
| |
Collapse
|
2
|
Li C, Alemany-Ribes M, Raftery RM, Nwoko U, Warman ML, Craft AM. Directed differentiation of human pluripotent stem cells into articular cartilage reveals effects caused by absence of WISP3, the gene responsible for progressive pseudorheumatoid arthropathy of childhood. Ann Rheum Dis 2023; 82:1547-1557. [PMID: 37679035 DOI: 10.1136/ard-2023-224304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Progressive pseudorheumatoid arthropathy of childhood (PPAC), caused by deficiency of WNT1 inducible signalling pathway protein 3 (WISP3), has been challenging to study because no animal model of the disease exists and cartilage recovered from affected patients is indistinguishable from common end-stage osteoarthritis. Therefore, to gain insights into why precocious articular cartilage failure occurs in this disease, we made in vitro derived articular cartilage using isogenic WISP3-deficient and WISP3-sufficient human pluripotent stem cells (hPSCs). METHODS We generated articular cartilage-like tissues from induced-(i) PSCs from two patients with PPAC and one wild-type human embryonic stem cell line in which we knocked out WISP3. We compared these tissues to in vitro-derived articular cartilage tissues from two isogenic WISP3-sufficient control lines using histology, bulk RNA sequencing, single cell RNA sequencing and in situ hybridisation. RESULTS WISP3-deficient and WISP3-sufficient hPSCs both differentiated into articular cartilage-like tissues that appeared histologically similar. However, the transcriptomes of WISP3-deficient tissues differed significantly from WISP3-sufficient tissues and pointed to increased TGFβ, TNFα/NFκB, and IL-2/STAT5 signalling and decreased oxidative phosphorylation. Single cell sequencing and in situ hybridisation revealed that WISP3-deficient cartilage contained a significantly higher fraction (~4 fold increase, p<0.001) of superficial zone chondrocytes compared with deeper zone chondrocytes than did WISP3-sufficient cartilage. CONCLUSIONS WISP3-deficient and WISP3-sufficient hPSCs can be differentiated into articular cartilage-like tissues, but these tissues differ in their transcriptomes and in the relative abundances of chondrocyte subtypes they contain. These findings provide important starting points for in vivo studies when an animal model of PPAC or presymptomatic patient-derived articular cartilage becomes available.
Collapse
Affiliation(s)
- Chaochang Li
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mireia Alemany-Ribes
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rosanne M Raftery
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Uzochi Nwoko
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Matthew L Warman
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - April M Craft
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
El Dessouki D, Amr K, Kholoussi N, Rady HM, Temtamy SA, Abdou MMS, Aglan M. Clinical and molecular characterization in a cohort of patients with progressive pseudorheumatoid dysplasia. Am J Med Genet A 2023; 191:2329-2336. [PMID: 37377052 DOI: 10.1002/ajmg.a.63339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Progressive pseudorheumatoid dysplasia (PPRD), a rare autosomal recessive syndrome, is a type of skeletal dysplasia associated with pain, stiffness, swelling of multiple joints, and the absence of destructive changes. PPRD occurs due to loss of function pathogenic variants in WISP3 (CCN6) gene, located on chromosome 6q22. In this study, 23 unrelated Egyptian PPRD patients were clinically diagnosed based on medical history, physical and radiological examinations, and laboratory investigations. Sequencing of the whole WISP3 (CCN6) exons and introns boundaries was carried out for all patients. A total of 11 different sequence variations were identified in the WISP3 (CCN6) gene, five of them were new pathogenic variants: the NM_003880.3: c.80T>A (p.L27*), c.161delG (p.C54fs*12), c.737T>C (p.Leu246Pro), c.347-1G>A (IVS3-1G>A), and c.376C>T (p.Q126*). The results of this study expand the spectrum of WISP3 (CCN6) pathogenic variants associated with PPRD. Clinical and genetic analysis is important for proper genetic counseling to curb this rare disorder in the families.
Collapse
Affiliation(s)
- Dina El Dessouki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Khalda Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Naglaa Kholoussi
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hanaa M Rady
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samia Ali Temtamy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Manal M S Abdou
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Li C, Ribes MA, Raftery R, Nwoko U, Warman ML, Craft AM. Directed differentiation of human pluripotent stem cells into articular cartilage reveals effects caused by absence of WISP3 , the gene responsible for Progressive Pseudorheumatoid Arthropathy of Childhood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535214. [PMID: 37066225 PMCID: PMC10103998 DOI: 10.1101/2023.04.01.535214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Objectives Progressive Pseudorheumatoid Arthropathy of Childhood (PPAC), caused by deficiency of WNT1 inducible signaling pathway protein 3 ( WISP3 ), has been challenging to study because no animal model of the disease exists and cartilage recovered from affected patients is indistinguishable from common end-stage osteoarthritis. Therefore, to gain insights into why precocious articular cartilage failure occurs in this disease, we made in vitro derived articular cartilage using isogenic WISP3 -deficient and WISP3 -sufficient human pluripotent stem cells (hPSCs). Methods We generated articular cartilage-like tissues from induced-(i)PSCs from 2 patients with PPAC and 1 wild-type human embryonic stem cell line in which we knocked out WISP3. We compared these tissues to in vitro -derived articular cartilage tissues from 2 isogenic WISP3 -sufficient control lines using histology, bulk RNA sequencing, single cell RNA sequencing, and in situ hybridization. Results WISP3 -deficient and WISP3 -sufficient hPSCs both differentiated into articular cartilage-like tissues that appeared histologically similar. However, the transcriptomes of WISP3 -deficient tissues differed significantly from WISP3 -sufficient tissues and pointed to increased TGFβ, TNFα/NFkB, and IL-2/STAT5 signaling and decreased oxidative phosphorylation. Single cell sequencing and in situ hybridization revealed that WISP3 -deficient cartilage contained a significantly higher fraction (∼ 4-fold increase, p < 0.001) of superficial zone chondrocytes compared to deeper zone chondrocytes than did WISP3 -sufficient cartilage. Conclusions WISP3 -deficient and WISP3 -sufficient hPSCs can be differentiated into articular cartilage-like tissues, but these tissues differ in their transcriptomes and in the relative abundances of chondrocyte sub-types they contain. These findings provide important starting points for in vivo studies when an animal model of PPAC or presymptomtic patient-derived articular cartilage becomes available. KEY MESSAGES What is already known on this topic: Loss-of-function mutations in WISP3 cause Progressive Pseudorheumatoid Arthropathy of Childhood (PPAC), yet the precise function of WISP3 in cartilage is unknown due to the absence of cartilage disease Wisp3 knockout mice and the lack of available PPAC patient cartilage that is not end-stage. Thus, most functional studies of WISP3 have been performed in vitro using WISP3 over-expressing cell lines (i.e., not wild-type) and WISP3 -deficient chondrocytes. What this study adds: We describe 3 new WISP3 -deficient human pluripotent stem cell (hPSC) lines and show they can be differentiated into articular cartilage-like tissue. We compare in vitro -derived articular cartilage made from WISP3 -deficient and isogenic WISP3 - sufficient hPSCs using bulk RNA sequencing, single cell RNA sequencing, and in situ hybridization. We observe significant differences in the expression of genes previously associated with cartilage formation and homeostasis in the TGFβ, TNFα/NFkB, and IL-2/STAT5 signaling pathways. We also observe that WISP3-deficient cartilage-like tissues contain significantly higher fractions of chondrocytes that express superficial zone transcripts. These data suggest precocious cartilage failure in PPAC is the result of abnormal articular cartilage formation, dysregulated homeostatic signaling, or both.How this study might affect research, practice or policy: This study uses in vitro -derived articular cartilage to generate hypotheses for why cartilage fails in children with PPAC. This work prioritizes downstream studies to be performed when pre-symptomatic patient-derived cartilage samples or animal model of PPAC becomes available. It is essential to know how WISP3 functions in cartilage to develop therapies that benefit patients with PPAC and other degenerative joint diseases.
Collapse
|
5
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
6
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
7
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Sengupta A, Padhan DK, Ganguly A, Sen M. Ccn6 Is Required for Mitochondrial Integrity and Skeletal Muscle Function in Zebrafish. Front Cell Dev Biol 2021; 9:627409. [PMID: 33644064 PMCID: PMC7905066 DOI: 10.3389/fcell.2021.627409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the CCN6 (WISP3) gene are linked with a debilitating musculoskeletal disorder, termed progressive pseudorheumatoid dysplasia (PPRD). Yet, the functional significance of CCN6 in the musculoskeletal system remains unclear. Using zebrafish as a model organism, we demonstrated that zebrafish Ccn6 is present partly as a component of mitochondrial respiratory complexes in the skeletal muscle of zebrafish. Morpholino-mediated depletion of Ccn6 in the skeletal muscle leads to a significant reduction in mitochondrial respiratory complex assembly and activity, which correlates with loss of muscle mitochondrial abundance. These mitochondrial deficiencies are associated with notable architectural and functional anomalies in the zebrafish muscle. Taken together, our results indicate that Ccn6-mediated regulation of mitochondrial respiratory complex assembly/activity and mitochondrial integrity is important for the maintenance of skeletal muscle structure and function in zebrafish. Furthermore, this study suggests that defects related to mitochondrial respiratory complex assembly/activity and integrity could be an underlying cause of muscle weakness and a failed musculoskeletal system in PPRD.
Collapse
Affiliation(s)
- Archya Sengupta
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Deepesh Kumar Padhan
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ananya Ganguly
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Malini Sen
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Yao B, Zhou Z, Zhang M, Leng X, Zhao D. Investigating the molecular control of deer antler extract on articular cartilage. J Orthop Surg Res 2021; 16:8. [PMID: 33407721 PMCID: PMC7788833 DOI: 10.1186/s13018-020-02148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
10
|
Padhan DK, Sengupta A, Patra M, Ganguly A, Mahata SK, Sen M. CCN6 regulates mitochondrial respiratory complex assembly and activity. FASEB J 2020; 34:12163-12176. [PMID: 32686858 DOI: 10.1096/fj.202000405rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Cellular communication network factor 6 (CCN6) mutations are linked with Progressive Pseudo Rheumatoid Dysplasia (PPRD) a debilitating musculoskeletal disorder. The function of CCN6 and the mechanism of PPRD pathogenesis remain unclear. Accordingly, we focused on the functional characterization of CCN6 and CCN6 mutants. Using size exclusion chromatography and native polyacrylamide gel electrophoresis we demonstrated that CCN6 is present as a component of the mitochondrial respiratory complex in human chondrocyte lines. By means of siRNA-mediated transfection and electron microscopy we showed that moderate reduction in CCN6 expression decreases the RER- mitochondria inter-membrane distance. Parallel native PAGE, immunoblotting and Complex I activity assays furthermore revealed increase in both mitochondrial distribution of CCN6 and mitochondrial respiratory complex assembly/activity in CCN6 depleted cells. CCN6 mutants resembling those linked with PPRD, which were generated by CRISPR-Cas9 technology displayed low level of expression of mutant CCN6 protein and inhibited respiratory complex assembly/activity. Electron microscopy and MTT assay of the mutants revealed abnormal mitochondria and poor cell viability. Taken together, our results indicate that CCN6 regulates mitochondrial respiratory complex assembly/activity as part of the mitochondrial respiratory complex by controlling the proximity of RER with the mitochondria, and CCN6 mutations disrupt mitochondrial respiratory complex assembly/activity resulting in mitochondrial defects and poor cell viability.
Collapse
Affiliation(s)
- Deepesh Kumar Padhan
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Archya Sengupta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Milan Patra
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ananya Ganguly
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sushil Kumar Mahata
- VA San Diego Healthcare System, University of California, San Diego, CA, USA
| | - Malini Sen
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Bone elongation is a complex process driven by multiple intrinsic (hormones, growth factors) and extrinsic (nutrition, environment) variables. Bones grow in length by endochondral ossification in cartilaginous growth plates at ends of developing long bones. This review provides an updated overview of the important factors that influence this process. RECENT FINDINGS Insulin-like growth factor-1 (IGF-1) is the major hormone required for growth and a drug for treating pediatric skeletal disorders. Temperature is an underrecognized environmental variable that also impacts linear growth. This paper reviews the current state of knowledge regarding the interaction of IGF-1 and environmental factors on bone elongation. Understanding how internal and external variables regulate bone lengthening is essential for developing and improving treatments for an array of bone elongation disorders. Future studies may benefit from understanding how these unique relationships could offer realistic new approaches for increasing bone length in different growth-limiting conditions.
Collapse
Affiliation(s)
- Holly L Racine
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV, 26074, USA
| | - Maria A Serrat
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
- Department of Orthopaedics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
12
|
|
13
|
Torreggiani S, Torcoletti M, Campos-Xavier B, Baldo F, Agostoni C, Superti-Furga A, Filocamo G. Progressive pseudorheumatoid dysplasia: a rare childhood disease. Rheumatol Int 2018; 39:441-452. [PMID: 30327864 DOI: 10.1007/s00296-018-4170-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023]
Abstract
Progressive pseudorheumatoid dysplasia (PPRD) is a genetic bone disorder characterised by the progressive degeneration of articular cartilage that leads to pain, stiffness and joint enlargement. As PPRD is a rare disease, available literature is mainly represented by single case reports and only a few larger case series. Our aim is to review the literature concerning clinical, laboratory and radiological features of PPRD. PPRD is due to a mutation in Wnt1-inducible signalling protein 3 (WISP3) gene, which encodes a signalling factor involved in cartilage homeostasis. The disease onset in childhood and skeletal changes progresses over time leading to significant disability. PPRD is a rare condition that should be suspected if a child develops symmetrical polyarticular involvement without systemic inflammation, knobbly interphalangeal joints of the hands, and gait abnormalities. A full skeletal survey, or at least a lateral radiograph of the spine, can direct towards a correct diagnosis that can be confirmed molecularly. More than 70 WISP3 mutations have so far been reported. Genetic testing should start with the study of genomic DNA extracted from blood leucocytes, but intronic mutations in WISP3 causing splicing aberrations can only be detected by analysing WISP3 mRNA, which can be extracted from cultured skin fibroblasts. A skin biopsy is, therefore, indicated in patients with typical PPRD findings and negative mutation screening of genomic DNA.
Collapse
Affiliation(s)
- Sofia Torreggiani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy.
| | - Marta Torcoletti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Francesco Baldo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| | - Carlo Agostoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Giovanni Filocamo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 9, 20122, Milan, Italy
| |
Collapse
|
14
|
WISP-3/CCN6 inhibits apoptosis by regulating caspase pathway after hyperoxia in lung epithelial cells. Gene 2018; 673:82-87. [PMID: 29920361 DOI: 10.1016/j.gene.2018.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/29/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Abstract
Cell death is a normal phenomenon in the course of biological development, moreover, which is also a prominent feature in lung exposed to hyperoxia. Severe hypoxia occurs in ALI/ARDS patients, who generally require high concentration oxygen therapy assisted by mechanical ventilation. Nevertheless, high oxygen can cause excessive reactive oxygen species (ROS), leading to apoptosis in lung epithelial cells, which has been reported in our previous study. Herein, the correlation between increments of ROS and CCN6 expression was negative in CCN6-mediated the mitochondria dependent, intrinsic apoptotic pathway. Our latest research explained that CCN6 can inhibit caspase-8 mediated extrinsic apoptotic pathway to protect cells from hyperoxia-induced apoptosis. As demonstrated by Western Blot Analysis, Caspase 8 cleavage and Caspase 3 cleavage in CCN6-depleted cells exceeded the control group treated with high oxygen (48 h). And deletion of CCN6 enhanced caspase-8 activation after hyperoxia shown by Flow Cytometry. Although, it is unclear how CCN6 participated in the regulation of apoptotic pathways, the future targeted therapy drugs inhibiting CCN6 may be useful in the treatment of ALI/ARDS.
Collapse
|
15
|
Zhang J, Yan M, Zhang Y, Yang H, Sun Y. Association analysis on polymorphisms in WISP3 gene and developmental dysplasia of the hip in Han Chinese population: A case-control study. Gene 2018; 664:192-195. [PMID: 29680248 DOI: 10.1016/j.gene.2018.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
Abstract
Developmental dysplasia of the hip (DDH) is a common skeletal disorder whereby genetic factors play a role in etiology. Multiple genes have been reported to be associated with the occurrence of DDH. WISP3 gene was found to be a causative gene for progressive pseudorheumatoid dysplasia (PPD). Reports of WISP3 gene in association with DDH are lacking. We conducted a case-control candidate gene association study enrolling three hundred and eighty-six patients with radiology confirmed DDH and 558 healthy controls. Additional haplotype-analysis was conducted to find the significant haplotype for DDH. Five SNPs rs69306665 (upstream of WISP3), rs1022313 (WISP3), rs1230345 (WISP3), rs17073268 (WISP3) and rs10456877 (downstream of WISP3) were identified for association with DDH, showing significant difference of allele frequencies with similar odds ratio ranging from 0.71 to 0.77 (p < 0.01) between cases and controls. Two haplotypes were identified between cases and controls through haplotype analysis: AAAAA with an odds ratio of 0.76 (95% CI: 0.60-0.98, p = 0.032299) and GGCGG with an odds ratio of 1.67 (95% CI: 1.37-2.04, p = 3.67 ∗ 10-7). The results suggested WISP3 gene was associated with DDH in Chinese Han population. GGCGG haplotype might be a biomarker for DDH.
Collapse
Affiliation(s)
- Junxin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Moqi Yan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yijian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Sun
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, P.R. China.
| |
Collapse
|
16
|
Sailani MR, Chappell J, Jingga I, Narasimha A, Zia A, Lynch JL, Mazrouei S, Bernstein JA, Aryani O, Snyder MP. WISP3 mutation associated with pseudorheumatoid dysplasia. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a001990. [PMID: 29092958 PMCID: PMC5793776 DOI: 10.1101/mcs.a001990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/28/2017] [Indexed: 01/28/2023] Open
Abstract
Progressive pseudorheumatoid dysplasia (PPD) is a skeletal dysplasia characterized by predominant involvement of articular cartilage with progressive joint stiffness. Here we report genetic characterization of a consanguineous family segregating an uncharacterized from of skeletal dysplasia. Whole-exome sequencing of four affected siblings and their parents identified a loss-of-function homozygous mutation in the WISP3 gene, leading to diagnosis of PPD in the affected individuals. The identified variant (Chr6: 112382301; WISP3:c.156C>A p.Cys52*) is rare and predicted to cause premature termination of the WISP3 protein.
Collapse
Affiliation(s)
- M Reza Sailani
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - James Chappell
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Inlora Jingga
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Anil Narasimha
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Amin Zia
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Janet Linnea Lynch
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Safoura Mazrouei
- Clinic of Internal Medicine, Department of Cardiology, University Heart Center, Jena University Hospital, 07747 Jena, Germany
| | | | - Omid Aryani
- Department of Neuroscience, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Endocrinology and Metabolic Research Institute, Tehran University of Medical Sciences, Tehran 1599666615, Iran
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| |
Collapse
|
17
|
Lu D, Qu J, Sun L, Li Q, Ling H, Yang N, Ma T, Wang Q, Li M, Zhang K, Li Z. Ca2+/Mg2+ homeostasis‑related TRPM7 channel mediates chondrocyte hypertrophy via regulation of the PI3K‑Akt signaling pathway. Mol Med Rep 2017; 16:5699-5705. [PMID: 28849029 DOI: 10.3892/mmr.2017.7300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
Abstract
Chondrocytes are specialized cells that form cartilage tissue, and are able to respond to their osmotic environment and exercise important roles in endochondral ossification via undergoing proliferation, hypertrophy and apoptosis. The transient receptor melastatin potential 7 (TRPM7) cation channel can modulate the intracellular and extracellular levels of Ca2+ and Mg2+, and therefore the cellular osmotic environment. However, the molecular pathways involved in TRPM7‑mediated signal transduction have yet to be elucidated. In the present study, the expression and functionality of TRPM7 were investigated during chondrocyte proliferation and hypertrophy. The ATDC5 mouse cell line was employed and cellular viability was evaluated using the MTT assay, whereas hypertrophy was monitored via evaluating the expression of chondrogenic marker genes and the activity of alkaline phosphatase (ALP). Gene expression of TRPM7 appeared slightly upregulated during the proliferative stages of chondrocyte development, and significantly upregulated during the hypertrophic stages, suggesting the importance of Ca2+/Mg2+ homeostasis for chondrocyte growth. Low extracellular Ca2+/Mg2+ levels significantly reduced the expression of type X collagen, Indian hedgehog homolog (Ihh) and matrix metalloproteinase (MMP)‑13 genes, as well as ALP activity; however, cell viability remained unaffected. Conversely, the gene expression levels of TRPM7 appeared upregulated in ATDC5 cells under low extracellular Ca2+ or Mg2+ conditions. Silencing TRPM7 expression during the chondrocyte differentiation period also reduced type X collagen, Ihh and MMP‑13 gene expression, and ALP activity. Furthermore, the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K)‑Akt signaling pathway was activated following TRPM7 overexpression, and inhibited following TRPM7 silencing. Notably, the actions of TRPM7 on chondrocyte hypertrophy were abolished through the inhibition of PI3K‑Akt signaling. The present results suggested that TRPM7 may be involved in Ca2+/Mg2+ homeostasis during chondrocyte hypertrophy, and contribute to endochondral ossification via interacting with the PI3K‑Akt signaling pathway.
Collapse
Affiliation(s)
- Daigang Lu
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jining Qu
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Liang Sun
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Qiang Li
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Hua Ling
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Na Yang
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Teng Ma
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Qian Wang
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Ming Li
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Zhong Li
- Department of Orthopedics and Trauma, Xi'an Honghui Hospital, Affiliated to School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
18
|
Lin X, Yang P, Reece EA, Yang P. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol 2017; 217:216.e1-216.e13. [PMID: 28412087 PMCID: PMC5787338 DOI: 10.1016/j.ajog.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. OBJECTIVE This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. STUDY DESIGN The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. RESULTS The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P < .05). CONCLUSION Maternal type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xue Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Penghua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
19
|
Samsa WE, Zhou X, Zhou G. Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 2016; 62:3-15. [PMID: 27418125 DOI: 10.1016/j.semcdb.2016.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
The growth plate is a highly specialized and dynamic cartilage structure that serves many essential functions in skeleton patterning, growth and endochondral ossification in developing vertebrates. Major signaling pathways initiated by classical morphogens and by other systemic and tissue-specific factors are intimately involved in key aspects of growth plate development. As a corollary of these essential functions, disturbances in these pathways due to mutations or environmental factors lead to severe skeleton disorders. Here, we review these pathways and the most recent progress made in understanding their roles in chondrocyte differentiation in growth plate development and activity. Furthermore, we discuss newly uncovered pathways involved in growth plate formation, including mTOR, the circadian clock, and the COP9 signalosome.
Collapse
Affiliation(s)
- William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Zhou
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
20
|
Patra M, Mahata SK, Padhan DK, Sen M. CCN6 regulates mitochondrial function. J Cell Sci 2016; 129:2841-51. [PMID: 27252383 DOI: 10.1242/jcs.186247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/08/2016] [Indexed: 12/29/2022] Open
Abstract
Despite established links of CCN6, or Wnt induced signaling protein-3 (WISP3), with progressive pseudo rheumatoid dysplasia, functional characterization of CCN6 remains incomplete. In light of the documented negative correlation between accumulation of reactive oxygen species (ROS) and CCN6 expression, we investigated whether CCN6 regulates ROS accumulation through its influence on mitochondrial function. We found that CCN6 localizes to mitochondria, and depletion of CCN6 in the chondrocyte cell line C-28/I2 by using siRNA results in altered mitochondrial electron transport and respiration. Enhanced electron transport chain (ETC) activity of CCN6-depleted cells was reflected by increased mitochondrial ROS levels in association with augmented mitochondrial ATP synthesis, mitochondrial membrane potential and Ca(2+) Additionally, CCN6-depleted cells display ROS-dependent PGC1α (also known as PPARGC1A) induction, which correlates with increased mitochondrial mass and volume density, together with altered mitochondrial morphology. Interestingly, transcription factor Nrf2 (also known as NFE2L2) repressed CCN6 expression. Taken together, our results suggest that CCN6 acts as a molecular brake, which is appropriately balanced by Nrf2, in regulating mitochondrial function.
Collapse
Affiliation(s)
- Milan Patra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian institute of Chemical Biology, 4-Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sushil K Mahata
- Metabolic Physiology and Ultrastructure Biology Laboratory, University of California, San Diego, CA 92093-0732, USA Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Deepesh K Padhan
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian institute of Chemical Biology, 4-Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Sen
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian institute of Chemical Biology, 4-Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
21
|
Zhong L, Huang X, Karperien M, Post JN. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Int J Mol Sci 2015; 16:19225-47. [PMID: 26287176 PMCID: PMC4581295 DOI: 10.3390/ijms160819225] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.
Collapse
Affiliation(s)
- Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
22
|
Komatsu M, Nakamura Y, Maruyama M, Abe K, Watanapokasin R, Kato H. Expression profiles of human CCN genes in patients with osteoarthritis or rheumatoid arthritis. J Orthop Sci 2015; 20:708-16. [PMID: 25986313 DOI: 10.1007/s00776-015-0727-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) and rheumatoid arthritis (RA) are widespread disabling joint disorders that are considered to be polygenic in nature. This study investigated the spatial expression patterns of all six known human CCN genes using end-stage OA and RA joint samples. DESIGN We performed in situ hybridization and histological analysis to investigate the spatial expression patterns of human CCN genes using joint tissues obtained during total knee and hip joint replacement procedures on patients with advanced OA or RA. Normal joint tissues taken while performing bipolar hip replacement surgeries were used as controls. RESULTS All CCN genes were expressed at higher levels in OA and RA synovial samples as compared with normal controls. Whereas CCN3 and CCN6 were undetectable in control, OA, and RA cartilage, CCN1, CCN2, CCN4, and CCN5 were expressed to a greater extent in OA and RA knee cartilage. CONCLUSIONS Our results indicate an involvement of several CCN genes in the pathophysiology of OA and RA.
Collapse
Affiliation(s)
- Masatoshi Komatsu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Liu L, Li N, Zhao Z, Li W, Xia W. Novel WISP3 mutations causing spondyloepiphyseal dysplasia tarda with progressive arthropathy in two unrelated Chinese families. Joint Bone Spine 2015; 82:125-8. [DOI: 10.1016/j.jbspin.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/15/2014] [Indexed: 11/28/2022]
|
24
|
Desjardin C, Charles C, Benoist-Lasselin C, Riviere J, Gilles M, Chassande O, Morgenthaler C, Laloé D, Lecardonnel J, Flamant F, Legeai-Mallet L, Schibler L. Chondrocytes play a major role in the stimulation of bone growth by thyroid hormone. Endocrinology 2014; 155:3123-35. [PMID: 24914940 DOI: 10.1210/en.2014-1109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) is required for postnatal skeletal growth. It exerts its effect by binding to nuclear receptors, TRs including TRα1 and TRβ1, which are present in most cell types. These cell types include chondrocytes and osteoblasts, the interactions of which are known to regulate endochondral bone formation. In order to analyze the respective functions of T3 stimulation in chondrocytes and osteoblasts during postnatal growth, we use Cre/loxP recombination to express a dominant-negative TRα1(L400R) mutant receptor in a cell-specific manner. Phenotype analysis revealed that inhibiting T3 response in chondrocytes is sufficient to reproduce the defects observed in hypothyroid mice, not only for cartilage maturation, but also for ossification and mineralization. TRα1(L400R) in chondrocytes also results in skull deformation. In the meantime, TRα1(L400R) expression in mature osteoblasts has no visible effect. Transcriptome analysis identifies a number of changes in gene expression induced by TRα1(L400R) in cartilage. These changes suggest that T3 normally cross talks with several other signaling pathways to promote chondrocytes proliferation, differentiation, and skeletal growth.
Collapse
Affiliation(s)
- Clémence Desjardin
- Institut National de la Recherche Agronomique (INRA) (C.D., J.R., M.G., C.M., D.L., J.L., L.S.), UMR1313, Biologie Intégrative et Génétique Animale, Jouy-en-Josas, France; Centre National de la Recherche Scientifique (CNRS) UMR 5242 (C.C.), ENS Lyon, Institut de Génomique Fonctionnelle, Université de Lyon, Lyon, France; Institut Imagine (C.B.-L., L.L.-G.) Institut National de la Santé et de la Recherche Medicale, U1163, Université Paris Descartes, 75015 Paris, France; University of Bordeaux (O.C.), U1026, Bioingénierie Tissulaire, Bordeaux, France; and Institut de Génomique Fonctionnelle de Lyon (F.F.), Université de Lyon, CNRS, INRA, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Aberrant redeployment of the 'transient' events responsible for bone development and postnatal longitudinal growth has been reported in some diseases in what is otherwise inherently 'stable' cartilage. Lessons may be learnt from the molecular mechanisms underpinning transient chondrocyte differentiation and function, and their application may better identify disease aetiology. Here, we review the current evidence supporting this possibility. We firstly outline endochondral ossification and the cellular and physiological mechanisms by which it is controlled in the postnatal growth plate. We then compare the biology of these transient cartilaginous structures to the inherently stable articular cartilage. Finally, we highlight specific scenarios in which the redeployment of these embryonic processes may contribute to disease development, with the foresight that deciphering those mechanisms regulating pathological changes and loss of cartilage stability will aid future research into effective disease-modifying therapies.
Collapse
Affiliation(s)
- K A Staines
- (Correspondence should be addressed to K A Staines; )
| | | | | | - C Farquharson
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College Street, London, NW1 0TUUK
| | | |
Collapse
|