1
|
Fuller DM, Wu Y, Schueder F, Rasool B, Nag S, Korfhage JL, Garcia-Milian R, Melnyk KD, Bewersdorf J, De Camilli P, Melia TJ. ATG2A engages Rab1a and ARFGAP1 positive membranes during autophagosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645038. [PMID: 40196537 PMCID: PMC11974814 DOI: 10.1101/2025.03.24.645038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Autophagosomes form from seed membranes that expand through bulk-lipid transport via the bridge-like lipid transporter ATG2. The origins of the seed membranes and their relationship to the lipid transport machinery are poorly understood. Using proximity labeling and a variety of fluorescence microscopy techniques, we show that ATG2A localizes to extra-Golgi ARFGAP1 puncta during autophagosome biogenesis. ARFGAP1 itself is dispensable during macroautophagy, but among other proteins associating to these membranes, we find that Rab1 is essential. ATG2A co-immunoprecipitates strongly with Rab1a, and siRNA-mediated depletion of Rab1 blocks autophagy downstream of LC3B lipidation, similar to ATG2A depletion. Further, when either autophagosome formation or the early secretory pathway is perturbed, ARFGAP1 and Rab1a accumulate at ectopic locations with autophagic machinery. Our results suggest that ATG2A engages a Rab1a complex on select early secretory membranes at an early stage in autophagosome biogenesis.
Collapse
Affiliation(s)
- Devin M. Fuller
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
| | - Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
- Department of Neuroscience, Yale University School of Medicine, New Haven CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Florian Schueder
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Burha Rasool
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Justin L. Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Rolando Garcia-Milian
- Bioinformatics Support Hub, Yale Medical Library, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510
| | - Katerina D. Melnyk
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
- Department of Neuroscience, Yale University School of Medicine, New Haven CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
| |
Collapse
|
2
|
Han X, Li P, Jiang M, Cao Y, Wang Y, Jiang L, Liu X, Wu W. Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives. J Zhejiang Univ Sci B 2025; 26:227-239. [PMID: 40082202 PMCID: PMC11906388 DOI: 10.1631/jzus.b2300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 03/16/2025]
Abstract
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy- and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Jia N, Ganesan D, Guan H, Jeong YY, Han S, Rajapaksha G, Nissenbaum M, Kusnecov AW, Cai Q. Mitochondrial bioenergetics stimulates autophagy for pathological MAPT/Tau clearance in tauopathy neurons. Autophagy 2025; 21:54-79. [PMID: 39171695 DOI: 10.1080/15548627.2024.2392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.Abbreviation: AA: antimycin A; AD, Alzheimer disease; ATP, adenosine triphosphate; AV, autophagosome/autophagic vacuole; AZ, active zone; Baf-A1: bafilomycin A1; CHX, cycloheximide; COX, cytochrome c oxidase; DIV, days in vitro; DRG, dorsal root ganglion; ETN, ethanolamine; FRET, Förster/fluorescence resonance energy transfer; FTD, frontotemporal dementia; Gln, glutamine; HA: hydroxylamine; HsMAPT/Tau, human MAPT; IMM, inner mitochondrial membrane; LAMP1, lysosomal-associated membrane protein 1; LIs, lysosomal inhibitors; MDAV, mitochondria-derived autophagic vacuole; MmMAPT/Tau, murine MAPT; NFT, neurofibrillary tangle; OCR, oxygen consumption rate; Omy: oligomycin; OXPHOS, oxidative phosphorylation; PPARGC1A/PGC-1alpha: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PE, phosphatidylethanolamine; phospho-MAPT/tau, hyperphosphorylated MAPT; PS, phosphatidylserine; PISD, phosphatidylserine decarboxylase;SQSTM1/p62, sequestosome 1; STX1, syntaxin 1; SYP, synaptophysin; Tg, transgenic; TCA, tricarboxylic acid; TEM, transmission electron microscopy.
Collapse
Affiliation(s)
- Nuo Jia
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dhasarathan Ganesan
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hongyuan Guan
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yu Young Jeong
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sinsuk Han
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gavesh Rajapaksha
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marialaina Nissenbaum
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Alexander W Kusnecov
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
4
|
FUJIOKA Y, N. NODA N. Mechanisms of autophagosome formation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:32-40. [PMID: 39805588 PMCID: PMC11808202 DOI: 10.2183/pjab.101.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum. This process is driven by the collaboration of lipid transfer (Atg2) and scrambling (Atg9) proteins. The IM assumes a cup shaped morphology and undergoes closure, resulting in the formation of a double membrane-bound autophagosome. The Atg8 lipidation system is hypothesized to be a pivotal factor in this process. This review presents an overview of the current understanding of these processes and discusses the basic mechanisms of autophagosome formation.
Collapse
Affiliation(s)
- Yuko FUJIOKA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo N. NODA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
5
|
Wilson ZN, West M, English AM, Odorizzi G, Hughes AL. Mitochondrial-derived compartments are multilamellar domains that encase membrane cargo and cytosol. J Cell Biol 2024; 223:e202307035. [PMID: 39136939 PMCID: PMC11320809 DOI: 10.1083/jcb.202307035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here, we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.
Collapse
Affiliation(s)
- Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Suda Y, Tachikawa H, Suda T, Kurokawa K, Nakano A, Irie K. Remodeling of the secretory pathway is coordinated with de novo membrane formation in budding yeast gametogenesis. iScience 2024; 27:110855. [PMID: 39319263 PMCID: PMC11419814 DOI: 10.1016/j.isci.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Gametogenesis in budding yeast involves a large-scale rearrangement of membrane traffic to allow the de novo formation of a membrane, called the prospore membrane (PSM). However, the mechanism underlying this event is not fully elucidated. Here, we show that the number of endoplasmic reticulum exit sites (ERES) per cell fluctuates and switches from decreasing to increasing upon the onset of PSM formation. Reduction in ERES number, presumably accompanying a transient stall in membrane traffic, resulting in the loss of preexisting Golgi apparatus from the cell, was followed by local ERES regeneration, leading to Golgi reassembly in nascent spores. We have revealed that protein phosphatase-1 (PP-1) and its development-specific subunit, Gip1, promote ERES regeneration through Sec16 foci formation. Furthermore, sed4Δ, a mutant with impaired ERES formation, showed defects in PSM growth and spore formation. Thus, ERES regeneration in nascent spores facilitates the segregation of membrane traffic organelles, leading to PSM growth.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Hiroyuki Tachikawa
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Tomomi Suda
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Filali-Mouncef Y, Leytens A, Vargas Duarte P, Zampieri M, Dengjel J, Reggiori F. An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 2024; 20:2323-2337. [PMID: 38958087 PMCID: PMC11423678 DOI: 10.1080/15548627.2024.2366749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Autophagosome biogenesis is a complex process orchestrated by dynamic interactions between Atg (autophagy-related) proteins and characterized by the turnover of specific cargoes, which can differ over time and depending on how autophagy is stimulated. Proteomic analyses are central to uncover protein-protein interaction networks and when combined with proximity-dependent biotinylation or proximity labeling (PL) approaches, they also permit to detect transient and weak interactions. However, current PL procedures for yeast Saccharomyces cerevisiae, one of the leading models for the study of autophagy, do not allow to keep temporal specificity and thus identify interactions and cargoes at a precise time point upon autophagy induction. Here, we present a new ascorbate peroxidase 2 (APEX2)-based PL protocol adapted to yeast that preserves temporal specificity and allows uncovering neighbor proteins by either western blot or proteomics. As a proof of concept, we applied this new method to identify Atg8 and Atg9 interactors and detected known binding partners as well as potential uncharacterized ones in rich and nitrogen starvation conditions. Also, as a proof of concept, we confirmed the spatial proximity interaction between Atg8 and Faa1. We believe that this protocol will be a new important experimental tool for all those researchers studying the mechanism and roles of autophagy in yeast, but also other cellular pathways in this model organism.Abbreviations: APEX2, ascorbate peroxidase 2, Atg, autophagy-related; BP, biotin phenol; Cvt, cytoplasm-to-vacuole targeting; ER, endoplasmic reticulum; LN2, liquid nitrogen; MS, mass spectrometry; PAS, phagophore assembly site; PL, proximity labeling; PE, phosphatidylethanolamine; PPINs, protein-protein interaction networks; PPIs, protein-protein interactions; RT, room temperature; SARs, selective autophagy receptors; WT, wild-type.
Collapse
Affiliation(s)
- Yasmina Filali-Mouncef
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, AV, The Netherlands
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Mattia Zampieri
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, AV, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| |
Collapse
|
8
|
Song MH, Sun Y, Qiu XB. Hijacking autophagy for infection by flaviviruses. Virus Res 2024; 347:199422. [PMID: 38901564 PMCID: PMC11252935 DOI: 10.1016/j.virusres.2024.199422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
Collapse
Affiliation(s)
- Ming-Hui Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China.
| |
Collapse
|
9
|
Shi Y, Suzuki K. Quantitative analysis of the spatial distance between autophagy-related membrane structures and the endoplasmic reticulum in Saccharomyces cerevisiae. Autophagy 2024; 20:1673-1680. [PMID: 38478967 PMCID: PMC11210900 DOI: 10.1080/15548627.2024.2330033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Macroautophagy/autophagy is the process by which cells degrade their cytoplasmic proteins or organelles in vacuoles to maintain cellular homeostasis under severe environmental conditions. In the yeast Saccharomyces cerevisiae, autophagy-related (Atg) proteins essential for autophagosome formation accumulate near the vacuole to form the dot-shaped phagophore assembly site/pre-autophagosomal structure (PAS). The PAS then generates the phagophore/isolation membrane (PG), which expands to become a closed double-membrane autophagosome. Hereinafter, we refer to the PAS, PG, and autophagosome as autophagy-related structures (ARSs). During autophagosome formation, Atg2 is responsible for tethering the ARS to the endoplasmic reticulum (ER) via ER exit sites (ERESs), and for transferring phospholipids from the ER to ARSs. Therefore, ARS and the ER are spatially close in the presence of Atg2 but are separated in its absence. Because the contact of an ARS with the ER must be established at the earliest stage of autophagosome formation, it is important to know whether the ARS is tethered to the ER. In this study, we developed a rapid and objective method to estimate tethering of the ARS to the ER by measuring the distance between the ARS and ERES under fluorescence microscopy, and found that tethering of the ARS to the ER was lost without Atg1. This method might be useful to predict the tethering activity of Atg2.Abbreviation: ARS, autophagy-related structure; Dautas, automated measurement of the distance between autophagy-related structures and ER exit sites analysis system; ERES, endoplasmic reticulum exit site; PAS, phagophore assembly site/pre-autophagosomal structure; PCR, polymerase chain reaction; PG, phagophore/isolation membrane; prApe1, precursor of vacuolar aminopeptidase I; Qautas, quantitative autophagy-related structure analysis system; SD/CA; synthetic dextrose plus casamino acid medium; WT, wild-type.
Collapse
Affiliation(s)
- Yang Shi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- Life Science Data Research Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Baumann V, Achleitner S, Tulli S, Schuschnig M, Klune L, Martens S. Faa1 membrane binding drives positive feedback in autophagosome biogenesis via fatty acid activation. J Cell Biol 2024; 223:e202309057. [PMID: 38573225 PMCID: PMC10993510 DOI: 10.1083/jcb.202309057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Autophagy serves as a stress response pathway by mediating the degradation of cellular material within lysosomes. In autophagy, this material is encapsulated in double-membrane vesicles termed autophagosomes, which form from precursors referred to as phagophores. Phagophores grow by lipid influx from the endoplasmic reticulum into Atg9-positive compartments and local lipid synthesis provides lipids for their expansion. How phagophore nucleation and expansion are coordinated with lipid synthesis is unclear. Here, we show that Faa1, an enzyme activating fatty acids, is recruited to Atg9 vesicles by directly binding to negatively charged membranes with a preference for phosphoinositides such as PI3P and PI4P. We define the membrane-binding surface of Faa1 and show that its direct interaction with the membrane is required for its recruitment to phagophores. Furthermore, the physiological localization of Faa1 is key for its efficient catalysis and promotes phagophore expansion. Our results suggest a positive feedback loop coupling phagophore nucleation and expansion to lipid synthesis.
Collapse
Affiliation(s)
- Verena Baumann
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Sonja Achleitner
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, A Doctoral School of the University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Lara Klune
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Zubova SG, Morshneva AV. The role of autophagy and macrophage polarization in the processes of chronic inflammation and regeneration. ЦИТОЛОГИЯ 2024; 66:20-34. [DOI: 10.31857/s0041377124010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The cause of many seriousillnesses, including diabetes, obesity, osteoporosis and neurodegenerative diseases is chronic inflammation that develops in adipose tissue, bones or the brain. This inflammation occurs due to a shift in the polarization of macrophages/microglia towards the pro-inflammatory phenotype M1. It has now been proven that the polarization of macrophages is determined by the intracellular level of autophagy in the macrophage. By modulating autophagy, it is possible to cause switching of macrophage activities towards M1 or M2. Summarizing the material accumulated in the literature, we believe that the activation of autophagy reprograms the macrophage towards M2, replacing its protein content, receptor apparatus and including a different type of metabolism. The term reprogramming is most suitable for this process, since it is followed by a change in the functional activity of the macrophage, namely, switching from cytotoxic pro-inflammatory activity to anti-inflammatory (regenerative). Modulation of autophagy can be an approach to the treatment of oncological diseases, neurodegenerative disorders, osteoporosis, diabetes and other serious diseases.
Collapse
Affiliation(s)
- S. G. Zubova
- Institute of Cytology of the Russian Academy of Sciences
| | | |
Collapse
|
12
|
Li M, Li J, Zhang S, Zhou L, Zhu Y, Li S, Li Q, Wang J, Song R. Progress in the study of autophagy-related proteins affecting resistance to chemotherapeutic drugs in leukemia. Front Cell Dev Biol 2024; 12:1394140. [PMID: 38887520 PMCID: PMC11180896 DOI: 10.3389/fcell.2024.1394140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Leukemia is a life-threatening malignant tumor of the hematopoietic system. Currently, the main treatment modalities are chemotherapy and hematopoietic stem cell transplantation. However, increased drug resistance due to decreased sensitivity of leukemia cells to chemotherapeutic drugs presents a major challenge in current treatments. Autophagy-associated proteins involved in autophagy initiation have now been shown to be involved in the development of various types of leukemia cells and are associated with drug resistance. Therefore, this review will explore the roles of autophagy-related proteins involved in four key autophagic processes: induction of autophagy and phagophore formation, phagophore extension, and autophagosome formation, on the development of various types of leukemias as well as drug resistance. Autophagy may become a promising therapeutic target for treating leukemia.
Collapse
Affiliation(s)
- Meng Li
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Zhang
- Clinical College, Xiamen Medical University, Xiamen, Fujian, China
| | - Linghan Zhou
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Yuanyuan Zhu
- Nursing Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Shen Li
- Rehabilitation Department, Henan Institute of Massage, Luoyang, Henan, China
| | - Qiong Li
- Nursing Department, Xinxiang Medical University, Xinxiang, China
| | - Junjie Wang
- Plastic Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Ruipeng Song
- Endocrinology Department, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
13
|
Wen J, Xu Q, Li J, Shen X, Zhou X, Huang J, Liu S. Sodium butyrate exerts a neuroprotective effect in rats with acute carbon monoxide poisoning by activating autophagy through the mTOR signaling pathway. Sci Rep 2024; 14:4610. [PMID: 38409245 PMCID: PMC10897214 DOI: 10.1038/s41598-024-55198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Acute carbon monoxide (CO) poisoning is a prevalent type of poisoning that causes significant harm globally. Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a severe complication that occurs after acute CO poisoning; however, the exact underlying pathological cause of DEACMP remains unclear. Accumulating evidence indicates that abnormal inflammation and immune-mediated brain damage, cellular apoptosis and autophagy, and direct neuronal toxicity are involved in the development of delayed neurologic sequelae. Sodium butyrate, a histone deacetylase inhibitor, has gained increasing attention for its numerous beneficial effects on various diseases, such as obesity, diabetes, inflammatory diseases, and cerebral damage. In this study, an acute carbon monoxide poisoning (ACOP) model is established in rats to investigate the mechanism of CO poisoning and the therapeutic potential of sodium butyrate. The results suggested that the ACOP rats had impaired spatial memory, and cell apoptosis was observed in the hippocampi with activated autophagy. Sodium butyrate treatment further increased the activation of autophagy in the hippocampi of CO-exposed rats, inhibited apoptosis, and consolidated spatial memory. These findings indicated that sodium butyrate may improve memory and cognitive function in ACMP rats by promoting autophagy and inhibiting apoptosis.
Collapse
Affiliation(s)
- Jing Wen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Qiong Xu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Li
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xuanyang Shen
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Xiaolong Zhou
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Huang
- North Sichuan Medical College Innovation Center for Science and Technology, Nanchong, 637000, China
| | - Shiping Liu
- Department of General Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
14
|
Jia N, Ganesan D, Guan H, Jeong YY, Han S, Nissenbaum M, Kusnecov AW, Cai Q. Mitochondrial bioenergetics stimulates autophagy for pathological tau clearance in tauopathy neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579959. [PMID: 38405759 PMCID: PMC10888759 DOI: 10.1101/2024.02.12.579959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hyperphosphorylation and aggregation of microtubule-associated tau is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer's disease (AD). Pathological tau is targeted by autophagy for clearance, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic failure has been shown to precede the development of tau pathology, it is unclear whether energy metabolism deficiency is involved in tauopathy-related autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy which, strikingly, leads to enhanced autophagy and pronounced tau clearance. OXPHOS-induced autophagy is attributed to increased ATP-dependent phosphatidylethanolamine biosynthesis in mitochondria. Excitingly, early bioenergetic stimulation boosts autophagy activity and reduces tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of bioenergetic dysfunction in tauopathy-linked autophagy defects and suggests a new therapeutic strategy to prevent toxic tau buildup in AD and other tauopathies.
Collapse
|
15
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Kundu S, Sarkar S, Acharya Chowdhury A. Anti-Leukemic Attributes of Natural Compounds Targeting Autophagy: A Closer Look into the Molecular Mechanisms. Nutr Cancer 2024; 76:236-251. [PMID: 38263604 DOI: 10.1080/01635581.2024.2306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Leukemia is a heterogeneous clonal cancer that affects millions of individuals around the world. Despite substantial breakthroughs in cancer treatment, traditional chemotherapy and radiotherapy remain ineffective, and therapeutic resistance still stands as a big obstacle. As a result, there is an increasing attention being paid currently toward the potency of natural compounds as a complementary or alternative therapy for leukemia. Autophagy, a conserved cellular process where damaged or defective cytosolic components and macromolecules are destroyed and recycled, plays a dual role in promoting or suppressing the continuance of cancer at different junctures of its development. Current studies have reported that autophagy has a cardinal function in the genesis and progression of leukemia, making it a promising target for novel treatments. In this review, we have explored the effectiveness of certain natural compounds, such as curcumin, resveratrol, tanshinone IIA, quercetin, tetrandrine, parthenolide, berberine, pristimerin, and alantolactone, that modulate autophagy and regulate its associated signaling cascades at a molecular level in different types of leukemia. They have been shown to have synergistic effects with conventional chemotherapy, emphasizing their potential as supplementary medicines. However, additional research is required to fully comprehend their mechanisms of action and to maximize their role in clinical perspectives.
Collapse
Affiliation(s)
- Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | |
Collapse
|
17
|
Noda NN. Structural view on autophagosome formation. FEBS Lett 2024; 598:84-106. [PMID: 37758522 DOI: 10.1002/1873-3468.14742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Autophagy is a conserved intracellular degradation system in eukaryotes, involving the sequestration of degradation targets into autophagosomes, which are subsequently delivered to lysosomes (or vacuoles in yeasts and plants) for degradation. In budding yeast, starvation-induced autophagosome formation relies on approximately 20 core Atg proteins, grouped into six functional categories: the Atg1/ULK complex, the phosphatidylinositol-3 kinase complex, the Atg9 transmembrane protein, the Atg2-Atg18/WIPI complex, the Atg8 lipidation system, and the Atg12-Atg5 conjugation system. Additionally, selective autophagy requires cargo receptors and other factors, including a fission factor, for specific sequestration. This review covers the 30-year history of structural studies on core Atg proteins and factors involved in selective autophagy, examining X-ray crystallography, NMR, and cryo-EM techniques. The molecular mechanisms of autophagy are explored based on protein structures, and future directions in the structural biology of autophagy are discussed, considering the advancements in the era of AlphaFold.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
18
|
Rivetta A, Allen K, Graham M, Potapova T, Slayman C, Liu X. Morphodynamics of non-canonical autophagic structures in Neurospora crassa. mSphere 2023; 8:e0046023. [PMID: 37847028 PMCID: PMC10732065 DOI: 10.1128/msphere.00460-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Neurospora is a quintessential tip-growing organism, which is well known for packaging and longitudinal transport of tip-building blocks. Thus far, however, little attention has been paid to the co-essential process of reclamation, that is-taking apart of upstream, older structural elements, otherwise known as "autophagy". We are not yet prepared to set out the chemistry of that elaborate process, but its morphological start alone is worthy of attention. Carbon starvation triggers significant autophagic changes, beginning with prolific vacuolation along the plasma membrane, and eventual filling of 70% (or more) of cytoplasmic volume. Additionally, the Neurospora plasma membrane elaborates a variety of phagophores which themselves often look lytic. These have either dual enclosing membranes, like the familiar autophagosomes, can be doubled and have four wrapping membranes, or can be compounded with multiple membrane layers. These reclamation processes must be accommodated by the mechanism of tip growth.
Collapse
Affiliation(s)
- Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kenneth Allen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tatiana Potapova
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow, Russia
| | - Clifford Slayman
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xinran Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Lv S, Zhang G, Huang Y, Li J, Yang N, Lu Y, Ma H, Ma Y, Teng J. Antidepressant pharmacological mechanisms: focusing on the regulation of autophagy. Front Pharmacol 2023; 14:1287234. [PMID: 38026940 PMCID: PMC10665873 DOI: 10.3389/fphar.2023.1287234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The core symptoms of depression are anhedonia and persistent hopelessness. Selective serotonin reuptake inhibitors (SSRIs) and their related medications are commonly used for clinical treatment, despite their significant adverse effects. Traditional Chinese medicine with its multiple targets, channels, and compounds, exhibit immense potential in treating depression. Autophagy, a vital process in depression pathology, has emerged as a promising target for intervention. This review summarized the pharmacological mechanisms of antidepressants by regulating autophagy. We presented insights from recent studies, discussed current research limitations, and proposed new strategies for basic research and their clinical application in depression.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoteng Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Lee Y, Kim B, Jang HS, Huh WK. Atg1-dependent phosphorylation of Vps34 is required for dynamic regulation of the phagophore assembly site and autophagy in Saccharomyces cerevisiae. Autophagy 2023; 19:2428-2442. [PMID: 36803233 PMCID: PMC10392759 DOI: 10.1080/15548627.2023.2182478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is a key catabolic pathway in which double-membrane autophagosomes sequester various substrates destined for degradation, enabling cells to maintain homeostasis and survive under stressful conditions. Several autophagy-related (Atg) proteins are recruited to the phagophore assembly site (PAS) and cooperatively function to generate autophagosomes. Vps34 is a class III phosphatidylinositol 3-kinase, and Atg14-containing Vps34 complex I plays essential roles in autophagosome formation. However, the regulatory mechanisms of yeast Vps34 complex I are still poorly understood. Here, we demonstrate that Atg1-dependent phosphorylation of Vps34 is required for robust autophagy activity in Saccharomyces cerevisiae. Following nitrogen starvation, Vps34 in complex I is selectively phosphorylated on multiple serine/threonine residues in its helical domain. This phosphorylation is important for full autophagy activation and cell survival. The absence of Atg1 or its kinase activity leads to complete loss of Vps34 phosphorylation in vivo, and Atg1 directly phosphorylates Vps34 in vitro, regardless of its complex association type. We also demonstrate that the localization of Vps34 complex I to the PAS provides a molecular basis for the complex I-specific phosphorylation of Vps34. This phosphorylation is required for the normal dynamics of Atg18 and Atg8 at the PAS. Together, our results reveal a novel regulatory mechanism of yeast Vps34 complex I and provide new insights into the Atg1-dependent dynamic regulation of the PAS.Abbreviations: ATG: autophagy-related; BARA: the repeated, autophagy-specific Co-IP: co-immunoprecipitation; GFP: green fluorescent protein; IP-MS: immunoprecipitation followed by tandem mass spectrometry; NTD: the N-terminal domain; PAS: phagophore assembly site; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: phosphatidylinositol 3-kinase; SUR: structurally uncharacterized region; Vps34[KD]: Vps34D731N.
Collapse
Affiliation(s)
- Yongook Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bongkeun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hae-Soo Jang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Wilson ZN, West M, English AM, Odorizzi G, Hughes AL. Mitochondrial-Derived Compartments are Multilamellar Domains that Encase Membrane Cargo and Cytosol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548169. [PMID: 37461645 PMCID: PMC10350034 DOI: 10.1101/2023.07.07.548169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.
Collapse
Affiliation(s)
- Zachary N. Wilson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Alyssa M. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|
22
|
Dabrowski R, Tulli S, Graef M. Parallel phospholipid transfer by Vps13 and Atg2 determines autophagosome biogenesis dynamics. J Cell Biol 2023; 222:e202211039. [PMID: 37115156 PMCID: PMC10148235 DOI: 10.1083/jcb.202211039] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
During autophagy, rapid membrane assembly expands small phagophores into large double-membrane autophagosomes. Theoretical modeling predicts that the majority of autophagosomal phospholipids are derived from highly efficient non-vesicular phospholipid transfer (PLT) across phagophore-ER contacts (PERCS). Currently, the phagophore-ER tether Atg2 is the only PLT protein known to drive phagophore expansion in vivo. Here, our quantitative live-cell imaging analysis reveals a poor correlation between the duration and size of forming autophagosomes and the number of Atg2 molecules at PERCS of starving yeast cells. Strikingly, we find that Atg2-mediated PLT is non-rate limiting for autophagosome biogenesis because membrane tether and the PLT protein Vps13 localizes to the rim and promotes the expansion of phagophores in parallel with Atg2. In the absence of Vps13, the number of Atg2 molecules at PERCS determines the duration and size of forming autophagosomes with an apparent in vivo transfer rate of ∼200 phospholipids per Atg2 molecule and second. We propose that conserved PLT proteins cooperate in channeling phospholipids across organelle contact sites for non-rate-limiting membrane assembly during autophagosome biogenesis.
Collapse
Affiliation(s)
- Rahel Dabrowski
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Susanna Tulli
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Graef
- Max Planck Research Group of Autophagy and Cellular Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
24
|
Capitanio C, Bieber A, Wilfling F. How Membrane Contact Sites Shape the Phagophore. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231162495. [PMID: 37366413 PMCID: PMC10243513 DOI: 10.1177/25152564231162495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/28/2023]
Abstract
During macroautophagy, phagophores establish multiple membrane contact sites (MCSs) with other organelles that are pivotal for proper phagophore assembly and growth. In S. cerevisiae, phagophore contacts have been observed with the vacuole, the ER, and lipid droplets. In situ imaging studies have greatly advanced our understanding of the structure and function of these sites. Here, we discuss how in situ structural methods like cryo-CLEM can give unprecedented insights into MCSs, and how they help to elucidate the structural arrangements of MCSs within cells. We further summarize the current knowledge of the contact sites in autophagy, focusing on autophagosome biogenesis in the model organism S. cerevisiae.
Collapse
Affiliation(s)
- Cristina Capitanio
- Department of Molecular Machines and
Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP)
Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna Bieber
- Department of Molecular Machines and
Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aligning Science Across Parkinson's (ASAP)
Collaborative Research Network, Chevy Chase, MD, USA
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt a. M., Germany
| |
Collapse
|
25
|
Vargas Duarte P, Reggiori F. The Organization and Function of the Phagophore-ER Membrane Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231183898. [PMID: 37465355 PMCID: PMC10350784 DOI: 10.1177/25152564231183898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is characterized by the de novo formation of double-membrane vesicles termed autophagosomes. The precursor structure of autophagosomes is a membrane cistern called phagophore, which elongates through a massive acquisition of lipids until closure. The phagophore establishes membrane-contact sites (MCSs) with the endoplasmic reticulum (ER), where conserved ATG proteins belonging to the ATG9 lipid scramblase, ATG2 lipid transfer and Atg18/WIPI4 β-propeller families concentrate. Several recent in vivo and in vitro studies have uncovered the relevance of these proteins and MCSs in the lipid supply required for autophagosome formation. Although important conceptual advances have been reached, the functional interrelationship between ATG9, ATG2 and Atg18/WIPI4 proteins at the phagophore-ER MCSs and their role in the phagophore expansion are not completely understood. In this review, we describe the current knowledge about the structure, interactions, localizations, and molecular functions of these proteins, with a particular emphasis on the yeast Saccharomyces cerevisiae and mammalian systems.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| |
Collapse
|
26
|
Takahashi S, Saito C, Koyama-Honda I, Mizushima N. Quantitative 3D correlative light and electron microscopy of organelle association during autophagy. Cell Struct Funct 2022; 47:89-99. [PMID: 36418108 PMCID: PMC10511054 DOI: 10.1247/csf.22071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
In macroautophagy, disk-shaped double-membrane structures called phagophores elongate to form cup-shaped structures, becoming autophagosomes upon closure. These autophagosomes then fuse with lysosomes to become autolysosomes and degrade engulfed material. Autophagosome formation is reported to involve other organelles, including the endoplasmic reticulum (ER) and mitochondria. Organelles are also taken up by autophagosomes as autophagy cargos. However, few studies have performed systematic spatiotemporal analysis of inter-organelle relationships during macroautophagy. Here, we investigated the organelles in contact with phagophores, autophagosomes, and autolysosomes by using three-dimensional correlative light and electron microscopy with array tomography in cells starved 30 min. As previously reported, all phagophores associate with the ER. The surface area of phagophores in contact with the ER decreases gradually as they mature into autophagosomes and autolysosomes. However, the ER still associates with 92% of autophagosomes and 79% of autolysosomes, suggesting that most autophagosomes remain on the ER after closure and even when they fuse with lysosomes. In addition, we found that phagophores form frequently near other autophagic structures, suggesting the presence of potential hot spots for autophagosome formation. We also analyzed the contents of phagophores and autophagosomes and found that the ER is the most frequently engulfed organelle (detected in 65% of total phagophores and autophagosomes). These quantitative three-dimensional ultrastructural data provide insights into autophagosome-organelle relationships during macroautophagy.Key words: 3D-CLEM, autophagosome, electron microscopy, endoplasmic reticulum, lysosome.
Collapse
Affiliation(s)
- Satoru Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chieko Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Zwilling E, Reggiori F. Membrane Contact Sites in Autophagy. Cells 2022; 11:3813. [PMID: 36497073 PMCID: PMC9735501 DOI: 10.3390/cells11233813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes utilize different communication strategies to coordinate processes between different cellular compartments either indirectly, through vesicular transport, or directly, via membrane contact sites (MCSs). MCSs have been implicated in lipid metabolism, calcium signaling and the regulation of organelle biogenesis in various cell types. Several studies have shown that MCSs play a crucial role in the regulation of macroautophagy, an intracellular catabolic transport route that is characterized by the delivery of cargoes (proteins, protein complexes or aggregates, organelles and pathogens) to yeast and plant vacuoles or mammalian lysosomes, for their degradation and recycling into basic metabolites. Macroautophagy is characterized by the de novo formation of double-membrane vesicles called autophagosomes, and their biogenesis requires an enormous amount of lipids. MCSs appear to have a central role in this supply, as well as in the organization of the autophagy-related (ATG) machinery. In this review, we will summarize the evidence for the participation of specific MCSs in autophagosome formation, with a focus on the budding yeast and mammalian systems.
Collapse
Affiliation(s)
- Emma Zwilling
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000C Aarhus, Denmark
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000C Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000C Aarhus, Denmark
| |
Collapse
|
28
|
Chumpen Ramirez S, Gómez-Sánchez R, Verlhac P, Hardenberg R, Margheritis E, Cosentino K, Reggiori F, Ungermann C. --Atg9 interactions via its transmembrane domains are required for phagophore expansion during autophagy. Autophagy 2022:1-20. [PMID: 36354155 DOI: 10.1080/15548627.2022.2136340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During macroautophagy/autophagy, precursor cisterna known as phagophores expand and sequester portions of the cytoplasm and/or organelles, and subsequently close resulting in double-membrane transport vesicles called autophagosomes. Autophagosomes fuse with lysosomes/vacuoles to allow the degradation and recycling of their cargoes. We previously showed that sequential binding of yeast Atg2 and Atg18 to Atg9, the only conserved transmembrane protein in autophagy, at the extremities of the phagophore mediates the establishment of membrane contact sites between the phagophore and the endoplasmic reticulum. As the Atg2-Atg18 complex transfers lipids between adjacent membranes in vitro, it has been postulated that this activity and the scramblase activity of the trimers formed by Atg9 are required for the phagophore expansion. Here, we present evidence that Atg9 indeed promotes Atg2-Atg18 complex-mediated lipid transfer in vitro, although this is not the only requirement for its function in vivo. In particular, we show that Atg9 function is dramatically compromised by a F627A mutation within the conserved interface between the transmembrane domains of the Atg9 monomers. Although Atg9F627A self-interacts and binds to the Atg2-Atg18 complex, the F627A mutation blocks the phagophore expansion and thus autophagy progression. This phenotype is conserved because the corresponding human ATG9A mutant severely impairs autophagy as well. Importantly, Atg9F627A has identical scramblase activity in vitro like Atg9, and as with the wild-type protein enhances Atg2-Atg18-mediated lipid transfer. Collectively, our data reveal that interactions of Atg9 trimers via their transmembrane segments play a key role in phagophore expansion beyond Atg9's role as a lipid scramblase.Abbreviations: BafA1: bafilomycin A1; Cvt: cytoplasm-to-vacuole targeting; Cryo-EM: cryo-electron microscopy; ER: endoplasmic reticulum; GFP: green fluorescent protein; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCS: membrane contact site; NBD-PE: N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine; PAS: phagophore assembly site; PE: phosphatidylethanolamine; prApe1: precursor Ape1; PtdIns3P: phosphatidylinositol-3-phosphate; SLB: supported lipid bilayer; SUV: small unilamellar vesicle; TMD: transmembrane domain; WT: wild type.
Collapse
Affiliation(s)
- Sabrina Chumpen Ramirez
- Osnabrück University, Department of Biology/Chemistry, Biochemistry section, Osnabrück, Germany
| | - Rubén Gómez-Sánchez
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pauline Verlhac
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ralph Hardenberg
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Katia Cosentino
- Osnabrück University, Department of Biology/Chemistry, Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Biomedicine, Aarhus University, Ole Worms Alle 4, 8000 Aarhus C, Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Christian Ungermann
- Osnabrück University, Department of Biology/Chemistry, Biochemistry section, Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
29
|
Huang Y, Yan S, Dong X, Jiao X, Wang S, Li D, Wang G. Deficiency of MST1 in endometriosis related peritoneal macrophages promoted the autophagy of ectopic endometrial stromal cells by IL-10. Front Immunol 2022; 13:993788. [PMID: 36263059 PMCID: PMC9575673 DOI: 10.3389/fimmu.2022.993788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022] Open
Abstract
Changes in the function of peritoneal macrophages contribute to the homeostasis of the peritoneal immune microenvironment in endometriosis. The mechanism by which ectopic tissues escape phagocytic clearance by macrophages to achieve ectopic colonization and proliferation is unknown. The expression of CD163 in peritoneal macrophages in patients with endometriosis is increased, with the overexpression of MAPK, which can promote the M2-type polarization of macrophages and reduce their ability to phagocytose ectopic endometrial cells. As an upstream regulator of MAPK, MST1 expression is deficient in peritoneal macrophages of patients with endometriosis. This process is regulated by miR-887-5p, a noncoding RNA targeting MST1. Moreover, MST1-knockout macrophages secrete anti-inflammatory factor IL-10, which promotes autophagy of ectopic endometrial stromal cells. These results suggest that MST1 deficient macrophages may accelerate the autophagy of ectopic endometrium via IL-10 which was regulated by miR-887-5p.
Collapse
Affiliation(s)
- Yufei Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Shumin Yan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Xiaoyu Dong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Xue Jiao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Gynecology Laboratory, Shandong Provincial Hospital, Jinan, Shandong, China
- *Correspondence: Guoyun Wang,
| |
Collapse
|
30
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
32
|
Arif A, Khawar MB, Mehmood R, Abbasi MH, Sheikh N. Dichotomous role of autophagy in cancer. ASIAN BIOMED 2022; 16:111-120. [PMID: 37551378 PMCID: PMC10321184 DOI: 10.2478/abm-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that plays physiological and pathological roles in a cell. Its effect on cellular metabolism, the proteome, and the number and quality of organelles, diversely holds the potential to alter cellular functions. It acts paradoxically in cancer as a tumor inhibitor as well as a tumor promoter. In the early stage of tumorigenesis, it prevents tumor initiation by the so-called "quality control mechanism" and suppresses cancer progression. For late-staged tumors that are exposed to stress, it acts as a vibrant process of degradation and recycling that promotes cancer by facilitating metastasis. Despite this dichotomy, the crucial role of autophagy is evident in cancer, and associated with mammalian targets of rapamycin (mTOR), p53, and Ras-derived major cancer networks. Irrespective of the controversy regarding autophagic manipulation, promotion and suppression of autophagy act as potential therapeutic targets in cancer treatment and may provide various anticancer therapies.
Collapse
Affiliation(s)
- Amin Arif
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muhammad Babar Khawar
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Narowal, Narowal51750, Pakistan
| | - Rabia Mehmood
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| | - Muddasir Hassan Abbasi
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
- Department of Zoology, University of Okara, Okara56130, Pakistan
| | - Nadeem Sheikh
- Institute of Zoology, University of the Punjab, Lahore54000, Pakistan
| |
Collapse
|
33
|
Liang S, Wu YS, Li DY, Tang JX, Liu HF. Autophagy and Renal Fibrosis. Aging Dis 2022; 13:712-731. [PMID: 35656109 PMCID: PMC9116923 DOI: 10.14336/ad.2021.1027] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis is a common process of almost all the chronic kidney diseases progressing to end-stage kidney disease. As a highly conserved lysosomal protein degradation pathway, autophagy is responsible for degrading protein aggregates, damaged organelles, or invading pathogens to maintain intracellular homeostasis. Growing evidence reveals that autophagy is involved in the progression of renal fibrosis, both in the tubulointerstitial compartment and in the glomeruli. Nevertheless, the specific role of autophagy in renal fibrosis has still not been fully understood. Therefore, in this review we will describe the characteristics of autophagy and summarize the recent advances in understanding the functions of autophagy in renal fibrosis. Moreover, the problem existing in this field and the possibility of autophagy as the potential therapeutic target for renal fibrosis have also been discussed.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
- Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, Guangdong, China.
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
34
|
Wang Z, Chen M, Pan X, Wang L, Yin C, Lin Q, Jiang J, Zhang Y, Wan B. Knockout of GGPPS1 restrains rab37-mediated autophagy in response to ventilator-induced lung injury. Hum Cell 2022; 35:871-884. [PMID: 35334098 PMCID: PMC8948466 DOI: 10.1007/s13577-022-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022]
Abstract
Mechanical ventilation may cause ventilator-induced lung injury (VILI) in patients requiring ventilator support. Inhibition of autophagy is an important approach to ameliorate VILI as it always enhances lung injury after exposure to various stress agents. This study aimed to further reveal the potential mechanisms underlying the effects of geranylgeranyl diphosphate synthase large subunit 1 (GGPPS1) knockout and autophagy in VILI using C57BL/6 mice with lung-specific GGPPS1 knockout that were subjected to mechanical ventilation. The results demonstrate that GGPPS1 knockout mice exhibit significantly attenuated VILI based on the histologic score, the lung wet-to-dry ratio, total protein levels, neutrophils in bronchoalveolar lavage fluid, and reduced levels of inflammatory cytokines. Importantly, the expression levels of autophagy markers were obviously decreased in GGPPS1 knockout mice compared with wild-type mice. The inhibitory effects of GGPPS1 knockout on autophagy were further confirmed by measuring the ultrastructural change of lung tissues under transmission electron microscopy. In addition, knockdown of GGPPS1 in RAW264.7 cells reduced cyclic stretch-induced inflammation and autophagy. The benefits of GGPPS1 knockout for VILI can be partially eliminated through treatment with rapamycin. Further analysis revealed that Rab37 was significantly downregulated in GGPPS1 knockout mice after mechanical ventilation, while it was highly expressed in the control group. Simultaneously, Rab37 overexpression significantly enhances autophagy in cells that are treated with cyclin stretch, including GGPPS1 knockout cells. Collectively, our results indicate that GGPPS1 knockout results in reduced expression of Rab37 proteins, further restraining autophagy and VILI.
Collapse
Affiliation(s)
- Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Meizi Chen
- Department of General Internal Medicine, The First Hospital of Chenzhou, Chenzhou, 423000, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Cheng Yin
- Department of Clinical Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Jingjing Jiang
- Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 210002, China.
| |
Collapse
|
35
|
Fission Yeast Autophagy Machinery. Cells 2022; 11:cells11071086. [PMID: 35406650 PMCID: PMC8997447 DOI: 10.3390/cells11071086] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is a conserved process that delivers cytoplasmic components to the vacuole/lysosome. It plays important roles in maintaining cellular homeostasis and conferring stress resistance. In the fission yeast Schizosaccharomyces pombe, autophagy is important for cell survival under nutrient depletion and ER stress conditions. Experimental analyses of fission yeast autophagy machinery in the last 10 years have unveiled both similarities and differences in autophagosome biogenesis mechanisms between fission yeast and other model eukaryotes for autophagy research, in particular, the budding yeast Saccharomyces cerevisiae. More recently, selective autophagy pathways that deliver hydrolytic enzymes, the ER, and mitochondria to the vacuole have been discovered in fission yeast, yielding novel insights into how cargo selectivity can be achieved in autophagy. Here, we review the progress made in understanding the autophagy machinery in fission yeast.
Collapse
|
36
|
Toulmay A, Whittle FB, Yang J, Bai X, Diarra J, Banerjee S, Levine TP, Golden A, Prinz WA. Vps13-like proteins provide phosphatidylethanolamine for GPI anchor synthesis in the ER. J Cell Biol 2022; 221:e202111095. [PMID: 35015055 PMCID: PMC8757616 DOI: 10.1083/jcb.202111095] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid membrane anchor found on surface proteins in all eukaryotes. It is synthesized in the ER membrane. Each GPI anchor requires three molecules of ethanolamine phosphate (P-Etn), which are derived from phosphatidylethanolamine (PE). We found that efficient GPI anchor synthesis in Saccharomyces cerevisiae requires Csf1; cells lacking Csf1 accumulate GPI precursors lacking P-Etn. Structure predictions suggest Csf1 is a tube-forming lipid transport protein like Vps13. Csf1 is found at contact sites between the ER and other organelles. It interacts with the ER protein Mcd4, an enzyme that adds P-Etn to nascent GPI anchors, suggesting Csf1 channels PE to Mcd4 in the ER at contact sites to support GPI anchor biosynthesis. CSF1 has orthologues in Caenorhabditis elegans (lpd-3) and humans (KIAA1109/TWEEK); mutations in KIAA1109 cause the autosomal recessive neurodevelopmental disorder Alkuraya-Kučinskas syndrome. Knockout of lpd-3 and knockdown of KIAA1109 reduced GPI-anchored proteins on the surface of cells, suggesting Csf1 orthologues in human cells support GPI anchor biosynthesis.
Collapse
Affiliation(s)
- Alexandre Toulmay
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Fawn B. Whittle
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jerry Yang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jessica Diarra
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Subhrajit Banerjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tim P. Levine
- University College London, Institute of Ophthalmology, London, UK
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - William A. Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Li S, Yan R, Xu J, Zhao S, Ma X, Sun Q, Zhang M, Li Y, Liu JJG, Chen L, Li S, Xu K, Ge L. A new type of ERGIC-ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis. Cell Res 2022; 32:119-138. [PMID: 34561617 PMCID: PMC8461442 DOI: 10.1038/s41422-021-00563-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Under stress, the endomembrane system undergoes reorganization to support autophagosome biogenesis, which is a central step in autophagy. How the endomembrane system remodels has been poorly understood. Here we identify a new type of membrane contact formed between the ER-Golgi intermediate compartment (ERGIC) and the ER-exit site (ERES) in the ER-Golgi system, which is essential for promoting autophagosome biogenesis induced by different stress stimuli. The ERGIC-ERES contact is established by the interaction between TMED9 and SEC12 which generates a short distance opposition (as close as 2-5 nm) between the two compartments. The tight membrane contact allows the ERES-located SEC12 to transactivate COPII assembly on the ERGIC. In addition, a portion of SEC12 also relocates to the ERGIC. Through both mechanisms, the ERGIC-ERES contact promotes formation of the ERGIC-derived COPII vesicle, a membrane precursor of the autophagosome. The ERGIC-ERES contact is physically and functionally different from the TFG-mediated ERGIC-ERES adjunction involved in secretory protein transport, and therefore defines a unique endomembrane structure generated upon stress conditions for autophagic membrane formation.
Collapse
Affiliation(s)
- Shulin Li
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Yan
- grid.47840.3f0000 0001 2181 7878Department of Chemistry, University of California, Berkeley, CA USA
| | - Jialu Xu
- grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China ,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Shiqun Zhao
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China ,grid.419265.d0000 0004 1806 6075National Center for Nanoscience and Technology, Beijing, China
| | - Xinyu Ma
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiming Sun
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry, Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Min Zhang
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| | - Jun-Jie Gogo Liu
- grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China ,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Liangyi Chen
- grid.11135.370000 0001 2256 9319Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China ,grid.419265.d0000 0004 1806 6075National Center for Nanoscience and Technology, Beijing, China
| | - Sai Li
- grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China ,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Ke Xu
- grid.47840.3f0000 0001 2181 7878Department of Chemistry, University of California, Berkeley, CA USA
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Center for Life Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
38
|
Molecular regulation of autophagosome formation. Biochem Soc Trans 2022; 50:55-69. [PMID: 35076688 PMCID: PMC9022990 DOI: 10.1042/bst20210819] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
Macroautophagy, hereafter autophagy, is a degradative process conserved among eukaryotes, which is essential to maintain cellular homeostasis. Defects in autophagy lead to numerous human diseases, including various types of cancer and neurodegenerative disorders. The hallmark of autophagy is the de novo formation of autophagosomes, which are double-membrane vesicles that sequester and deliver cytoplasmic materials to lysosomes/vacuoles for degradation. The mechanism of autophagosome biogenesis entered a molecular era with the identification of autophagy-related (ATG) proteins. Although there are many unanswered questions and aspects that have raised some controversies, enormous advances have been done in our understanding of the process of autophagy in recent years. In this review, we describe the current knowledge about the molecular regulation of autophagosome formation, with a particular focus on budding yeast and mammalian cells.
Collapse
|
39
|
Hollenstein DM, Licheva M, Konradi N, Schweida D, Mancilla H, Mari M, Reggiori F, Kraft C. Spatial control of avidity regulates initiation and progression of selective autophagy. Nat Commun 2021; 12:7194. [PMID: 34893607 PMCID: PMC8664900 DOI: 10.1038/s41467-021-27420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022] Open
Abstract
Autophagosomes form at the endoplasmic reticulum in mammals, and between the vacuole and the endoplasmic reticulum in yeast. However, the roles of these sites and the mechanisms regulating autophagosome formation are incompletely understood. Vac8 is required for autophagy and recruits the Atg1 kinase complex to the vacuole. Here we show that Vac8 acts as a central hub to nucleate the phagophore assembly site at the vacuolar membrane during selective autophagy. Vac8 directly recruits the cargo complex via the Atg11 scaffold. In addition, Vac8 recruits the phosphatidylinositol 3-kinase complex independently of autophagy. Cargo-dependent clustering and Vac8-dependent sequestering of these early autophagy factors, along with local Atg1 activation, promote phagophore assembly site assembly at the vacuole. Importantly, ectopic Vac8 redirects autophagosome formation to the nuclear membrane, indicating that the vacuolar membrane is not specifically required. We propose that multiple avidity-driven interactions drive the initiation and progression of selective autophagy.
Collapse
Affiliation(s)
- David M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicole Konradi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - David Schweida
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
40
|
Identification of Autophagy-Related Genes in the Potato Psyllid, Bactericera cockerelli and Their Expression Profile in Response to ' Candidatus Liberibacter Solanacearum' in the Gut. INSECTS 2021; 12:insects12121073. [PMID: 34940161 PMCID: PMC8708441 DOI: 10.3390/insects12121073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary In North America, the bacterial plant pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) infects solanaceous plants. Currently, Lso haplotypes, LsoA and LsoB are transmitted by potato psyllid, Bactericera cockerelli (Šulc). Because these bacteria are transmitted in a circulative and persistent manner, the gut of the psyllid is the first organ they encounter and could be a barrier to its transmission. Therefore, it is important to understand the molecular mechanisms involved in Lso acquisition and transmission. This study explored if an autophagic response was triggered in response to LsoA and/or LsoB in the gut of the adult potato psyllid. The results showed that Lso may induce the autophagic response in the adult psyllid gut since the majority of autophagy-related genes (ATGs) are sensitive and responsive to the exposure or infection of both LsoA and LsoB. Therefore, this study represents a stepping-stone towards understanding the molecular mechanisms involved in Lso transmission. Abstract Autophagy, also known as type II programmed cell death, is a cellular mechanism of “self-eating”. Autophagy plays an important role against pathogen infection in numerous organisms. Recently, it has been demonstrated that autophagy can be activated and even manipulated by plant viruses to facilitate their transmission within insect vectors. However, little is known about the role of autophagy in the interactions of insect vectors with plant bacterial pathogens. ‘Candidatus Liberibacter solanacearum’ (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. Two Lso haplotypes, LsoA and LsoB, are transmitted by the potato psyllid, Bactericera cockerelli and cause damaging diseases in solanaceous plants (e.g., zebra chip in potatoes). Both LsoA and LsoB are transmitted by the potato psyllid in a persistent circulative manner: they colonize and replicate within psyllid tissues. Following acquisition, the gut is the first organ Lso encounters and could be a barrier for transmission. In this study, we annotated autophagy-related genes (ATGs) from the potato psyllid transcriptome and evaluated their expression in response to Lso infection at the gut interface. In total, 19 ATGs belonging to 17 different families were identified. The comprehensive expression profile analysis revealed that the majority of the ATGs were regulated in the psyllid gut following the exposure or infection to each Lso haplotype, LsoA and LsoB, suggesting a potential role of autophagy in response to Lso at the psyllid gut interface.
Collapse
|
41
|
Quezada-Rodríguez EH, Gómez-Velasco H, Arthikala MK, Lara M, Hernández-López A, Nanjareddy K. Exploration of Autophagy Families in Legumes and Dissection of the ATG18 Family with a Special Focus on Phaseolus vulgaris. PLANTS 2021; 10:plants10122619. [PMID: 34961093 PMCID: PMC8703869 DOI: 10.3390/plants10122619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Macroautophagy/autophagy is a fundamental catabolic pathway that maintains cellular homeostasis in eukaryotic cells by forming double-membrane-bound vesicles named autophagosomes. The autophagy family genes remain largely unexplored except in some model organisms. Legumes are a large family of economically important crops, and knowledge of their important cellular processes is essential. Here, to first address the knowledge gaps, we identified 17 ATG families in Phaseolus vulgaris, Medicago truncatula and Glycine max based on Arabidopsis sequences and elucidated their phylogenetic relationships. Second, we dissected ATG18 in subfamilies from early plant lineages, chlorophytes to higher plants, legumes, which included a total of 27 photosynthetic organisms. Third, we focused on the ATG18 family in P. vulgaris to understand the protein structure and developed a 3D model for PvATG18b. Our results identified ATG homologs in the chosen legumes and differential expression data revealed the nitrate-responsive nature of ATG genes. A multidimensional scaling analysis of 280 protein sequences from 27 photosynthetic organisms classified ATG18 homologs into three subfamilies that were not based on the BCAS3 domain alone. The domain structure, protein motifs (FRRG) and the stable folding conformation structure of PvATG18b revealing the possible lipid-binding sites and transmembrane helices led us to propose PvATG18b as the functional homolog of AtATG18b. The findings of this study contribute to an in-depth understanding of the autophagy process in legumes and improve our knowledge of ATG18 subfamilies.
Collapse
Affiliation(s)
- Elsa-Herminia Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Cuidad Universitaria, Cuidad de Mexico C.P. 04510, Mexico;
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca C.P. 62271, Mexico;
| | - Antonio Hernández-López
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), León C.P. 37684, Mexico; (E.-H.Q.-R.); (M.-K.A.); (A.H.-L.)
- Correspondence: ; Tel.: +52-477-1940800 (ext. 43462)
| |
Collapse
|
42
|
Mailler E, Guardia CM, Bai X, Jarnik M, Williamson CD, Li Y, Maio N, Golden A, Bonifacino JS. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun 2021; 12:6750. [PMID: 34799570 PMCID: PMC8605025 DOI: 10.1038/s41467-021-26999-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.
Collapse
Affiliation(s)
- Elodie Mailler
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Carlos M Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nunziata Maio
- Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
44
|
Guardia CM, Jain A, Mattera R, Friefeld A, Li Y, Bonifacino JS. RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery. Mol Biol Cell 2021; 32:ar25. [PMID: 34432492 PMCID: PMC8693955 DOI: 10.1091/mbc.e21-06-0295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
Autophagy-related protein 9 (ATG9) is a transmembrane protein component of the autophagy machinery that cycles between the trans-Golgi network (TGN) in the perinuclear area and other compartments in the peripheral area of the cell. In mammalian cells, export of the ATG9A isoform from the TGN into ATG9A-containing vesicles is mediated by the adaptor protein 4 (AP-4) complex. However, the mechanisms responsible for the subsequent distribution of these vesicles to the cell periphery are unclear. Herein we show that the AP-4-accessory protein RUSC2 couples ATG9A-containing vesicles to the plus-end-directed microtubule motor kinesin-1 via an interaction between a disordered region of RUSC2 and the kinesin-1 light chain. This interaction is counteracted by the microtubule-associated protein WDR47. These findings uncover a mechanism for the peripheral distribution of ATG9A-containing vesicles involving the function of RUSC2 as a kinesin-1 adaptor and WDR47 as a negative regulator of this function.
Collapse
Affiliation(s)
- Carlos M. Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Akansha Jain
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Alex Friefeld
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| |
Collapse
|
45
|
Ktistakis NT. The dynamics of mitochondrial autophagy at the initiation stage. Biochem Soc Trans 2021; 49:2199-2210. [PMID: 34665253 PMCID: PMC8589415 DOI: 10.1042/bst20210272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
The pathway of mitochondrial-specific autophagy (mitophagy, defined here as the specific elimination of mitochondria following distinct mitochondrial injuries or developmental/metabolic alterations) is important in health and disease. This review will be focussed on the earliest steps of the pathway concerning the mechanisms and requirements for initiating autophagosome formation on a mitochondrial target. More specifically, and in view of the fact that we understand the basic mechanism of non-selective autophagy and are beginning to reshape this knowledge towards the pathways of selective autophagy, two aspects of mitophagy will be covered: (i) How does a machinery normally working in association with the endoplasmic reticulum (ER) to make an autophagosome can also do so at a site distinct from the ER such as on the surface of the targeted cargo? and (ii) how does the machinery deal with cargo of multiple sizes?
Collapse
|
46
|
Lee JE, Kim N, Jung M, Mun JY, Yoo JY. SHISA5/SCOTIN restrains spontaneous autophagy induction by blocking contact between the ERES and phagophores. Autophagy 2021; 18:1613-1628. [PMID: 34720018 PMCID: PMC9298459 DOI: 10.1080/15548627.2021.1994297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The phagophore expands into autophagosomes in close proximity to endoplasmic reticulum (ER) exit sites (ERESs). Here, we propose that a single-pass ER transmembrane protein, SHISA5/SCOTIN, acts as an autophagy suppressor under basal condition by blocking the contact between the phagophore and ERES. HeLa cells lacking SHISA5 displayed higher levels of macroautophagy/autophagy. The enhanced autophagy in SHISA5 KO cells requires class III phosphatidylinositol 3-kinase complex I (PtdIns3K-C1) activity and functional assembly of ERES, but not ULK1 activity. A proximity ligation assay (PLA) of SEC16A (Sec16 homolog A, endoplasmic reticulum export factor)-WIPI2 (WD repeat domain, phosphoinositide interacting 2) and SEC31A (Sec31 homolog A, COPII coat complex component)-MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) demonstrated that contact between the ERES and phagophore increased in SHISA5 KO cells, and the cytosolic domain of SHISA5 was sufficient to rescue this phenotype. Close proximity between ERES and phagophore in SHISA5 KO cells was also visualized by performing an ultrastructure correlative image analysis of SEC31A associated with LC3-positive membranes. Furthermore, we observed that SHISA5 was located near ERES under basal conditions, but displaced away from ERES under autophagy-inducing conditions. These data suggest that SHISA5 functions to block spontaneous contact between ERES and phagophore, and the blockage effect of SHISA5 should be relieved for the proper induction of autophagy.
Collapse
Affiliation(s)
- Jee-Eun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ji-Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
47
|
Orii M, Tsuji T, Ogasawara Y, Fujimoto T. Transmembrane phospholipid translocation mediated by Atg9 is involved in autophagosome formation. J Cell Biol 2021; 220:211678. [PMID: 33439214 PMCID: PMC7809878 DOI: 10.1083/jcb.202009194] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanism of isolation membrane formation in autophagy is receiving intensive study. We recently found that Atg9 translocates phospholipids across liposomal membranes and proposed that this functionality plays an essential role in the expansion of isolation membranes. The distribution of phosphatidylinositol 3-phosphate in both leaflets of yeast autophagosomal membranes supports this proposal, but if Atg9-mediated lipid transport is crucial, symmetrical distribution in autophagosomes should be found broadly for other phospholipids. To test this idea, we analyzed the distributions of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol 4-phosphate by freeze-fracture electron microscopy. We found that all these phospholipids are distributed with comparable densities in the two leaflets of autophagosomes and autophagic bodies. Moreover, de novo–synthesized phosphatidylcholine is incorporated into autophagosomes preferentially and shows symmetrical distribution in autophagosomes within 30 min after synthesis, whereas this symmetrical distribution is compromised in yeast expressing an Atg9 mutant. These results indicate that transbilayer phospholipid movement that is mediated by Atg9 is involved in the biogenesis of autophagosomes.
Collapse
Affiliation(s)
- Minami Orii
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuma Tsuji
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuta Ogasawara
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toyoshi Fujimoto
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Reinisch KM, Prinz WA. Mechanisms of nonvesicular lipid transport. J Cell Biol 2021; 220:211813. [PMID: 33605998 PMCID: PMC7901144 DOI: 10.1083/jcb.202012058] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
We have long known that lipids traffic between cellular membranes via vesicles but have only recently appreciated the role of nonvesicular lipid transport. Nonvesicular transport can be high volume, supporting biogenesis of rapidly expanding membranes, or more targeted and precise, allowing cells to rapidly alter levels of specific lipids in membranes. Most such transport probably occurs at membrane contact sites, where organelles are closely apposed, and requires lipid transport proteins (LTPs), which solubilize lipids to shield them from the aqueous phase during their transport between membranes. Some LTPs are cup like and shuttle lipid monomers between membranes. Others form conduits allowing lipid flow between membranes. This review describes what we know about nonvesicular lipid transfer mechanisms while also identifying many remaining unknowns: How do LTPs facilitate lipid movement from and into membranes, do LTPs require accessory proteins for efficient transfer in vivo, and how is directionality of transport determined?
Collapse
Affiliation(s)
- Karin M Reinisch
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
49
|
Nakamura TS, Suda Y, Muneshige K, Fujieda Y, Okumura Y, Inoue I, Tanaka T, Takahashi T, Nakanishi H, Gao XD, Okada Y, Neiman AM, Tachikawa H. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet 2021; 17:e1009727. [PMID: 34407079 PMCID: PMC8372973 DOI: 10.1371/journal.pgen.1009727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023] Open
Abstract
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation. Vps13 family proteins are conserved lipid transfer proteins that function at organelle contact sites and have been implicated in a number of different neurological diseases. In the yeast Saccharomyces cerevisiae, Vps13 is encoded by a single gene and is localized to various contact sites by interaction with different adaptor proteins and/or lipids, however its regulation is yet to be clarified. We have previously shown that during the developmental process of sporulation, Vps13 is recruited to de novo membrane structures called prospore membranes (PSMs) by a specific adaptor complex, and Vps13 and its adaptors are required for PSM extension. Here we reveal that loss of an adaptor can be overcome by lowering phosphatidylinositol-4-phosphate (PI4P) levels, either by inhibiting PI 4-kinase on the PSM or recruiting PI 4-phospatase to the PSM and that PI4P levels in the PSM affect Vps13 function. Further, we show that Vps13 forms endoplasmic reticulum (ER)-PSM contact sites, that ER-plasma membrane tethering proteins are recruited to ER-PSM contacts, and these proteins may function in conjunction with Vps13. Thus, our work shines light on both the mechanisms of intracellular remodeling and the function of this important class of lipid transfer proteins.
Collapse
Affiliation(s)
- Tsuyoshi S. Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Kenji Muneshige
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujieda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuya Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ichiro Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Takahashi
- Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics and Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physics, Universal Biology Institute, and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
50
|
Noda NN. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158956. [PMID: 33932584 DOI: 10.1016/j.bbalip.2021.158956] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Autophagy, an intracellular degradation mechanism, involves de novo generation of autophagosomes that sequester and deliver cytoplasmic components to the lysosome for degradation. The mechanism behind autophagosomal membrane expansion has been a longstanding enigma in this field. Recent structural and biochemical analyses have revealed that two mysterious autophagy-related (Atg) proteins, Atg2 and Atg9, are novel types of intermembrane and interleaflet lipid transporters, respectively. This review summarizes recent discoveries surrounding Atg2 and Atg9 as a lipid transporter and discusses the molecular mechanism of autophagosomal membrane expansion driven by collaboration between these two lipid transporters.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
| |
Collapse
|