1
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Chu CM, Sabbineni B, Cen HH, Hu X, Sun WG, Brownrigg GP, Xia YH, Rogalski J, Johnson JD. Signal transduction pathways controlling Ins2 gene activity and beta cell state transitions. iScience 2025; 28:112015. [PMID: 40144638 PMCID: PMC11938086 DOI: 10.1016/j.isci.2025.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic β cells exist in low and high insulin gene activity states that are dynamic on a scale of hours to days. Here, we used live 3D imaging, mass spectrometry proteomics, and targeted perturbations of β cell signaling to comprehensively investigate Ins2(GFP)HIGH and Ins2(GFP)LOW β cell states. We identified the two Ins2 gene activity states in intact isolated islets and showed that cells in the same state were more likely to be nearer to each other. We report the proteomes of pure β cells to a depth of 5555 proteins and show that β cells with high Ins2 gene activity had reduced β cell immaturity factors, as well as increased translation. We identified activators of cAMP signaling (GLP1, IBMX) as powerful drivers of Ins2(GFP)LOW to Ins2(GFP)HIGH transitions. Okadaic acid and cyclosporine A had the opposite effects. This study provides new insight into the proteomic profiles and regulation of β cell states.
Collapse
Affiliation(s)
- Chieh Min Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Bhavya Sabbineni
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - George P. Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Jason Rogalski
- Proteomics and Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia and the Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Baghestani S, Haldin C, Kosijer P, Alam CM, Toivola DM. β-Cell keratin 8 maintains islet mechanical integrity, mitochondrial ultrastructure, and β-cell glucose transporter 2 plasma membrane targeting. Am J Physiol Cell Physiol 2024; 327:C462-C476. [PMID: 38912736 DOI: 10.1152/ajpcell.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Islet β-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in β-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main β-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in β-cells, mice with targeted deletion of β-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in β-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of β-cell K8 leads to a major reduction in K18. Islets without β-cell K8 are more fragile, and these β-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of β-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in β-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. β-Cell K8 is required for islet and β-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in β-cells. Here for the first time, we assessed the β-cell autonomous mechanical and nonmechanical roles of keratin 8 in β-cell function. We demonstrated the importance of keratin 8 in islet and β-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.
Collapse
Affiliation(s)
- Sarah Baghestani
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Caroline Haldin
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Petar Kosijer
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Catharina M Alam
- School of Applied Sciences, Edinburgh Napier University, Edinburg, United Kingdom
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Stenvall CGA, Tayyab M, Grönroos TJ, Ilomäki MA, Viiri K, Ridge KM, Polari L, Toivola DM. Targeted deletion of keratin 8 in intestinal epithelial cells disrupts tissue integrity and predisposes to tumorigenesis in the colon. Cell Mol Life Sci 2021; 79:10. [PMID: 34951664 PMCID: PMC8709826 DOI: 10.1007/s00018-021-04081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/08/2023]
Abstract
Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.
Collapse
Affiliation(s)
- Carl-Gustaf A Stenvall
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Mina Tayyab
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Maria A Ilomäki
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | - Karen M Ridge
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Gęgotek A, Atalay S, Skrzydlewska E. UV induced changes in proteome of rats plasma are reversed by dermally applied cannabidiol. Sci Rep 2021; 11:20666. [PMID: 34667212 PMCID: PMC8526570 DOI: 10.1038/s41598-021-00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
6
|
Alam CM, Baghestani S, Pajari A, Omary MB, Toivola DM. Keratin 7 Is a Constituent of the Keratin Network in Mouse Pancreatic Islets and Is Upregulated in Experimental Diabetes. Int J Mol Sci 2021; 22:ijms22157784. [PMID: 34360548 PMCID: PMC8346022 DOI: 10.3390/ijms22157784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 β-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of β-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ β-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse β-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.
Collapse
Affiliation(s)
- Catharina M. Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Correspondence: (C.M.A.); (D.M.T.)
| | - Sarah Baghestani
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - Ada Pajari
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - M. Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA;
| | - Diana M. Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
- Correspondence: (C.M.A.); (D.M.T.)
| |
Collapse
|
7
|
Zhang L, Zeng X, Li Y, Chen S, Tang L, Wang N, Yang X, Lin M. Keratin 1 attenuates hypoxic pulmonary artery hypertension by suppressing pulmonary artery media smooth muscle expansion. Acta Physiol (Oxf) 2021; 231:e13558. [PMID: 32920982 DOI: 10.1111/apha.13558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
AIM Abnormally activated vascular smooth muscle cells are key factors in pulmonary artery remodelling (PAR) and pulmonary artery hypertension (PAH). Keratin 1 is involved in inflammatory diseases; however, its role in PAH is unknown. We speculated that keratin 1 could regulate PASMCs and prevent PAH. METHODS Rats were exposed to hypoxia (10% O2 ) or MCT (50 mg/kg, intraperitoneal injection) or treated with AAV6 virus. PAR was measured through HE and Masson staining. PASMC activities were measured using MTS assay, EdU and Western blot analyses after cell knockdown with siRNAs or overexpression with Krt1 vectors. RESULTS 1. Hypoxic PAR was associated with a decrease in keratin 1, especially in PASMCs. 2. Keratin 1 knockdown led to cell proliferation, migration and contraction to synthetic transformation, while keratin 1 overexpression attenuated hypoxia-induced changes in PASMCs. 3. Decreased keratin 1 induced TLR7 upregulation and mediated increases in the inflammatory factors S100a8 and S100a9. 4. Keratin 1 overexpression reduced the inflammatory factor expression induced by TLR7 activation. 5. Further studies demonstrated that keratin 1 expression was negatively correlated with pulmonary vascular pressure following prolonged hypoxia. 6. Pre-treatment with keratin 1 decreased pulmonary artery pressure and the right heart hypertrophy index and alleviated PAR in two model rats. 7. Keratin 1 exhibited a hypermethylation status in hypoxic pulmonary arteries in the sequencing. Hypoxia-induced decrease in keratin 1 expression was associated with Dnmt1 upregulation induced by YY1 downregulation in PASMCs. CONCLUSION This study suggests that keratin 1 regulates PASMC expansion and has a preventive effect on PAH.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Xi‐Xi Zeng
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
- Department of Clinical Laboratory the Affiliated Hospital of Jiujiang University Jiujiang China
| | - Yu‐Mei Li
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
- Fujian Center for Safety Evaluation of New Drug Fujian Medical University Fuzhou China
| | - Shao‐Kun Chen
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Li‐Yu Tang
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Nan Wang
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| | - Xi Yang
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
- Fujian Center for Safety Evaluation of New Drug Fujian Medical University Fuzhou China
| | - Mo‐Jun Lin
- Department of Physiology & Pathophysiology The School of Basic Medical SciencesFujian Medical University Fuzhou China
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases Fujian Medical University Fuzhou China
| |
Collapse
|
8
|
Auge I. Intracellular events in diabetes mellitus - Behind the scenes. Acta Physiol (Oxf) 2020; 229:e13468. [PMID: 32174000 DOI: 10.1111/apha.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Isabel Auge
- Klinik für Innere Medizin III AG Experimentelle Nephrologie Universitätsklinikum Jena Jena Germany
| |
Collapse
|
9
|
Tommasi C, Rogerson C, Depledge DP, Jones M, Naeem AS, Venturini C, Frampton D, Tutill HJ, Way B, Breuer J, O'Shaughnessy RFL. Kallikrein-Mediated Cytokeratin 10 Degradation Is Required for Varicella Zoster Virus Propagation in Skin. J Invest Dermatol 2019; 140:774-784.e11. [PMID: 31626786 DOI: 10.1016/j.jid.2019.08.448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Varicella zoster virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening, particularly in the immunocompromized. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and antiviral drugs. In VZV-infected skin, kallikrein 6 and the ubiquitin ligase MDM2 are upregulated concomitant with keratin 10 (KRT10) downregulation. MDM2 binds to KRT10, targeting it for degradation via the ubiquitin-proteasome pathway. Preventing KRT10 degradation reduced VZV propagation in culture and prevented epidermal disruption in skin explants. KRT10 knockdown induced expression of NR4A1 and enhanced viral propagation in culture. NR4A1 knockdown prevented viral propagation in culture, reduced LC3 levels, and increased LAMP2 expression. We therefore describe a drug-able pathway whereby MDM2 ubiquitinates and degrades KRT10, increasing NR4A1 expression and allowing VZV replication and propagation.
Collapse
Affiliation(s)
- Cristina Tommasi
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, United Kingdom
| | - Daniel P Depledge
- Infection and Immunity, University College London, London, United Kingdom; Department of Microbiology, New York University, New York, New York
| | - Meleri Jones
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, United Kingdom; Infection and Immunity, University College London, London, United Kingdom
| | - Aishath S Naeem
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Cristina Venturini
- Infection and Immunity, University College London, London, United Kingdom
| | - Dan Frampton
- Infection and Immunity, University College London, London, United Kingdom
| | - Helena J Tutill
- Infection and Immunity, University College London, London, United Kingdom
| | - Benjamin Way
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Judith Breuer
- Infection and Immunity, University College London, London, United Kingdom
| | - Ryan F L O'Shaughnessy
- Livingstone Skin Research Centre, Immunobiology and Dermatology, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
10
|
Werner S, Keller L, Pantel K. Epithelial keratins: Biology and implications as diagnostic markers for liquid biopsies. Mol Aspects Med 2019; 72:100817. [PMID: 31563278 DOI: 10.1016/j.mam.2019.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
Keratins are essential elements of the cytoskeleton of normal and malignant epithelial cells. Because carcinomas commonly maintain their specific keratin expression pattern during malignant transformation, keratins are extensively used as tumor markers in cancer diagnosis including the detection of circulating tumor cells in blood of carcinoma patients. Interestingly, recent biological insights demonstrate that epithelial keratins should not only be considered as mere tumor markers. Emerging evidence suggests an active biological role of keratins in tumor cell dissemination and metastasis. In this review, we illustrate the family of keratin proteins, summarize the latest biological insights into keratin function related to cancer metastasis and discuss the current use of keratins for detection of CTCs and other blood biomarkers used in oncology.
Collapse
Affiliation(s)
- Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Alam CM, Silvander JSG, Helenius TO, Toivola DM. Decreased levels of keratin 8 sensitize mice to streptozotocin-induced diabetes. Acta Physiol (Oxf) 2018; 224:e13085. [PMID: 29719117 PMCID: PMC6175344 DOI: 10.1111/apha.13085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023]
Abstract
AIM Diabetes is a result of an interplay between genetic, environmental and lifestyle factors. Keratin intermediate filaments are stress proteins in epithelial cells, and keratin mutations predispose to several human diseases. However, the involvement of keratins in diabetes is not well known. K8 and its partner K18 are the main β-cell keratins, and knockout of K8 (K8-/- ) in mice causes mislocalization of glucose transporter 2, mitochondrial defects, reduced insulin content and altered systemic glucose/insulin control. We hypothesize that K8/K18 offer protection during β-cell stress and that decreased K8 levels contribute to diabetes susceptibility. METHODS K8-heterozygous knockout (K8+/- ) and wild-type (K8+/+ ) mice were used to evaluate the influence of keratin levels on endocrine pancreatic function and diabetes development under basal conditions and after T1D streptozotocin (STZ)-induced β-cell stress and T2D high-fat diet (HFD). RESULTS Murine K8+/- endocrine islets express ~50% less K8/K18 compared with K8+/+ . The decreased keratin levels have little impact on basal systemic glucose/insulin regulation, β-cell health or insulin levels. Diabetes incidence and blood glucose levels are significantly higher in K8+/- mice after low-dose/chronic STZ treatment, and STZ causes more β-cell damage and polyuria in K8+/- compared with K8+/+ . K8 appears upregulated 5 weeks after STZ treatment in K8+/+ islets but not in K8+/- . K8+/- mice showed no major susceptibility risk to HFD compared to K8+/+ . CONCLUSION Partial K8 deficiency reduces β-cell stress tolerance and aggravates diabetes development in response to STZ, while there is no major susceptibility to HFD.
Collapse
Affiliation(s)
- C. M. Alam
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Turku Finland
| | - J. S. G. Silvander
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
| | - T. O. Helenius
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
| | - D. M. Toivola
- Department of Biosciences, Cell Biology; Faculty of Science and Engineering; Åbo Akademi University; Turku Finland
- Turku Center for Disease Modeling; University of Turku; Turku Finland
| |
Collapse
|
12
|
Nurten E, Vogel M, Michael Kapellen T, Richter S, Garten A, Penke M, Schuster S, Körner A, Kiess W, Kratzsch J. Omentin-1 and NAMPT serum concentrations are higher and CK-18 levels are lower in children and adolescents with type 1 diabetes when compared to healthy age, sex and BMI matched controls. J Pediatr Endocrinol Metab 2018; 31:959-969. [PMID: 30179852 DOI: 10.1515/jpem-2018-0353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Background Adipokines were shown to affect glucose homeostasis and β-cell function in patients with pancreatic dysfunction which is associated with changes in the adipose tissue secretory profile. However, information about adipokines associated with β-cell dysfunction is lacking in pediatric patients with type 1 diabetes. Methods (1) We compared serum concentrations of nicotinamide phosphoribosyltransferase (NAMPT), omentin-1 and caspase-cleaved cytokeratin 18 fragment M30 (CK-18) in pediatric type 1 diabetes patients (n=245) and healthy age, sex and body mass index standard deviation score (BMI-SDS) matched controls (n=243). (2) We investigated the influence of insulin treatment on serum concentrations of NAMPT, omentin-1 and CK-18 in groups of patients with type 1 diabetes stratified according to the duration of their disease: at onset (n=50), ≥6 months and <5 years (n=185), ≥5 and <10 years (n=98), and ≥10 years (n=52). Results Patients at onset compared with healthy controls demonstrated no significant differences in NAMPT levels (p=0.129), whereas omentin-1 levels were elevated (p<0.001) and CK-18 levels were lowered (p=0.034). In contrast, NAMPT and omentin-1 were elevated and CK-18 serum levels were lower in longstanding patients compared to healthy controls (p<0.001). NAMPT serum levels did not change significantly during the duration of type 1 diabetes (p=0.546). At onset, omentin-1 and CK-18 levels were higher than in any group of longstanding type 1 diabetes (p<0.025). Conclusions Altered serum levels of NAMPT, omentin-1 and CK-18 in pediatric type 1 diabetes patients indicate metabolic changes caused by adipose tissue dysregulation which do not normalize during insulin therapy.
Collapse
Affiliation(s)
- Esra Nurten
- University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany.,University of Leipzig, Center for Pediatric Research, Leipzig, Germany.,University of Leipzig, Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig, Germany.,University of Leipzig, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Mandy Vogel
- University of Leipzig, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Thomas Michael Kapellen
- University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany.,University of Leipzig, Center for Pediatric Research, Leipzig, Germany
| | - Sandy Richter
- University of Leipzig, Center for Pediatric Research, Leipzig, Germany
| | - Antje Garten
- University of Leipzig, Center for Pediatric Research, Leipzig, Germany
| | - Melanie Penke
- University of Leipzig, Center for Pediatric Research, Leipzig, Germany
| | - Susanne Schuster
- University of Leipzig, Center for Pediatric Research, Leipzig, Germany
| | - Antje Körner
- University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany.,University of Leipzig, Center for Pediatric Research, Leipzig, Germany
| | - Wieland Kiess
- University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany.,University of Leipzig, Center for Pediatric Research, Leipzig, Germany.,University of Leipzig, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, Germany
| | - Jürgen Kratzsch
- University of Leipzig, Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, 04103 Leipzig, Germany, Phone: +49 341 97 22200, Fax: +49 341 97 22209
| |
Collapse
|
13
|
The role of keratins in the digestive system: lessons from transgenic mouse models. Histochem Cell Biol 2018; 150:351-359. [PMID: 30039330 DOI: 10.1007/s00418-018-1695-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
Keratins are the largest subfamily of intermediate filament proteins. They are either type I acidic or type II basic keratins. Keratins form obligate heteropolymer in epithelial cells and their expression patterns are tissue-specific. Studies have shown that keratin mutations are the cause of many diseases in humans or predispose humans to acquiring them. Using mouse models to study keratin-associated human diseases is critical, because they allow researchers to get a better understanding of these diseases and their progressions, and so many such studies have been conducted. Acknowledging the importance, researches with genetically modified mice expressing human disease-associated keratin mutants have been widely done. Numerous studies using keratin knockout mice, keratin-overexpressed mice, or transgenic mice expressing keratin mutants have been conducted. This review summarizes the mouse models that have been used to study type I and type II keratin expression in the digestive organs, namely, the liver, pancreas, and colon.
Collapse
|
14
|
Siddiqui S, Lustig A, Carter A, Sankar M, Daimon CM, Premont RT, Etienne H, van Gastel J, Azmi A, Janssens J, Becker KG, Zhang Y, Wood W, Lehrmann E, Martin JG, Martin B, Taub DD, Maudsley S. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption. Aging (Albany NY) 2017; 9:706-740. [PMID: 28260693 PMCID: PMC5391227 DOI: 10.18632/aging.101185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/19/2017] [Indexed: 12/12/2022]
Abstract
Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of 'neurometabolic' integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2-/- mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2-/- (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical 'organ', i.e. 'parathymic lobes'. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe - suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature 'aging' phenotype of GIT2KO mice.
Collapse
Affiliation(s)
- Sana Siddiqui
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Ana Lustig
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Arnell Carter
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Mathavi Sankar
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Caitlin M Daimon
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | | | - Harmonie Etienne
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jaana van Gastel
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Kevin G Becker
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - William Wood
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - James G Martin
- Research Institute of the MUHC, Centre for Translational Biology (CTB), Meakins-Christie Laboratories, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Dennis D Taub
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| |
Collapse
|
15
|
Silvander JSG, Kvarnström SM, Kumari-Ilieva A, Shrestha A, Alam CM, Toivola DM. Keratins regulate β-cell mitochondrial morphology, motility, and homeostasis. FASEB J 2017; 31:4578-4587. [PMID: 28666985 DOI: 10.1096/fj.201700095r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Loss of the epithelial intermediate filament protein keratin 8 (K8) in murine β cells leads to irregular insulin vesicles and decreased insulin levels. Because mitochondria are central in glucose-stimulated insulin secretion, the relationship between keratins and β-cell mitochondrial function and morphology was investigated. β cells in murine K8-knockout (K8-/-) islets of Langerhans have increased numbers of mitochondria, which are rounder and have diffuse cristae, as seen by electron microscopy. The mitochondrial network in primary cultured K8-/- β cells is more fragmented compared with K8+/+ mitochondria, correlating with decreased levels of mitofusin 2 and the mitofusin 2- and keratin-binding protein trichoplein. K8-/- β-cell mitochondria have decreased levels of total and mitochondrial cytochrome c, which correlates with a reduction in electron transport complexes I and IV. This provokes loss of mitochondrial membrane potential and reduction of ATP and insulin amount, as seen in K8-/- β cells. Mitochondria in K8 wild-type β cells and MIN6 insulinoma cells overexpressing K8 and 18 are more stationary compared with mitochondria in keratin-deficient cells. In conclusion, keratins, likely through trichoplein-mitofusin interactions, regulate both structural and dynamic functions of β-cell mitochondria, which could have implications for downstream insulin secretion.-Silvander, J. S. G., Kvarnström, S. M., Kumari-Ilieva, A., Shrestha, A., Alam, C. M., Toivola, D. M. Keratins regulate β-cell mitochondrial morphology, motility, and homeostasis.
Collapse
Affiliation(s)
- Jonas S G Silvander
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sofie M Kvarnström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Angeli Kumari-Ilieva
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anup Shrestha
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Catharina M Alam
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
16
|
Keratin gene mutations influence the keratinocyte response to DNA damage and cytokine induced apoptosis. Arch Dermatol Res 2017. [DOI: 10.1007/s00403-017-1757-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Li R, Liao XH, Ye JZ, Li MR, Wu YQ, Hu X, Zhong BH. Association of keratin 8/18 variants with non-alcoholic fatty liver disease and insulin resistance in Chinese patients: A case-control study. World J Gastroenterol 2017; 23:4047-4053. [PMID: 28652657 PMCID: PMC5473123 DOI: 10.3748/wjg.v23.i22.4047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/10/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To test the hypothesis that K8/K18 variants predispose humans to non-alcoholic fatty liver disease (NAFLD) progression and its metabolic phenotypes.
METHODS We selected a total of 373 unrelated adult subjects from our Physical Examination Department, including 200 unrelated NAFLD patients and 173 controls of both genders and different ages. Diagnoses of NAFLD were established according to ultrasonic signs of fatty liver. All subjects were tested for population characteristics, lipid profile, liver tests, as well as glucose tests. Genomic DNA was obtained from peripheral blood with a DNeasy Tissue Kit. K8/K18 coding regions were analyzed, including 15 exons and exon-intron boundaries.
RESULTS Among 200 NAFLD patients, 10 (5%) heterozygous carriers of keratin variants were identified. There were 5 amino-acid-altering heterozygous variants and 6 non-coding heterozygous variants. One novel amino-acid-altering heterozygous variant (K18 N193S) and three novel non-coding variants were observed (K8 IVS5-9A→G, K8 IVS6+19G→A, K18 T195T). A total of 9 patients had a single variant and 1 patient had compound variants (K18 N193S+K8 IVS3-15C→G). Only one R341H variant was found in the control group (1 of 173, 0.58%). The frequency of keratin variants in NAFLD patients was significantly higher than that in the control group (5% vs 0.58%, P = 0.015). Notably, the keratin variants were significantly associated with insulin resistance (IR) in NAFLD patients (8.86% in NAFLD patients with IR vs 2.5% in NAFLD patients without IR, P = 0.043).
CONCLUSION K8/K18 variants are overrepresented in Chinese NAFLD patients and might accelerate liver fat storage through IR.
Collapse
|
18
|
Keratins regulate colonic epithelial cell differentiation through the Notch1 signalling pathway. Cell Death Differ 2017; 24:984-996. [PMID: 28475172 PMCID: PMC5442467 DOI: 10.1038/cdd.2017.28] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 12/30/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Keratins (K) are intermediate filament proteins important in stress protection and mechanical support of epithelial tissues. K8, K18 and K19 are the main colonic keratins, and K8-knockout (K8−/−) mice display a keratin dose-dependent hyperproliferation of colonic crypts and a colitis-phenotype. However, the impact of the loss of K8 on intestinal cell differentiation has so far been unknown. Here we show that K8 regulates Notch1 signalling activity and differentiation in the epithelium of the large intestine. Proximity ligation and immunoprecipitation assays demonstrate that K8 and Notch1 co-localize and interact in cell cultures, and in vivo in the colonic epithelial cells. K8 with its heteropolymeric partner K18 enhance Notch1 protein levels and activity in a dose dependent manner. The levels of the full-length Notch1 receptor (FLN), the Notch1 intracellular domain (NICD) and expression of Notch1 downstream target genes are reduced in the absence of K8, and the K8-dependent loss of Notch1 activity can be rescued with re-expression of K8/K18 in K8-knockout CRISPR/Cas9 Caco-2 cells protein levels. In vivo, K8 deletion with subsequent Notch1 downregulation leads to a shift in differentiation towards a goblet cell and enteroendocrine phenotype from an enterocyte cell fate. Furthermore, the K8−/− colonic hyperproliferation results from an increased number of transit amplifying progenitor cells in these mice. K8/K18 thus interact with Notch1 and regulate Notch1 signalling activity during differentiation of the colonic epithelium.
Collapse
|
19
|
Roux A, Loranger A, Lavoie JN, Marceau N. Keratin 8/18 regulation of insulin receptor signaling and trafficking in hepatocytes through a concerted phosphoinositide-dependent Akt and Rab5 modulation. FASEB J 2017; 31:3555-3573. [PMID: 28442548 DOI: 10.1096/fj.201700036r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/11/2017] [Indexed: 01/30/2023]
Abstract
Keratins (Ks) are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a differentiation-regulated manner. Hepatocyte IFs are made only of K8/K18 pairs, which means that a K8 loss in K8-null mice leads to degradation of K18. Functionally, there is accumulating evidence that IFs contribute to signaling platforms. Here, we investigate the role of K8/K18 IFs in the regulation of insulin receptor (IR) signaling and trafficking in hepatocytes. We find that the IR substrate 1 (IRS1)/PI3K/Akt signaling cascade-downstream of IR-displays prolonged activation in K8-null compared with wild-type hepatocytes. Assessment of the Akt/mammalian target of rapamycin complex 1-mediated feedback loop to IRS1/PI3K, in the absence or presence of drug inhibitors, further supports a preferential K8/K18 IF intervention at the surface membrane. In K8-null hepatocytes, IR trafficking vesicles that are labeled by Rab5/EEA1/phosphatidylinositol 3-phosphate accumulate at a juxtanuclear region via a microtubule-dependent process. Moreover, interference with phosphatidylinositol 4,5-biphosphate signaling aggravates IR/Rab5 accumulation. Overall, results uncover K8/K18 IF regulation of IR signaling via a concerted modulation of phosphatidylinositol 4,5-biphosphate-dependent IRS1/PI3K/Akt signaling and Rab5/phosphatidylinositol 3-phosphate/microtubule trafficking in hepatocytes.-Roux, A., Loranger, A., Lavoie, J. N., Marceau, N. Keratin 8/18 regulation of insulin receptor signaling and trafficking in hepatocytes through a concerted phosphoinositide-dependent Akt and Rab5 modulation.
Collapse
Affiliation(s)
- Alexandra Roux
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| | - Anne Loranger
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| | - Josée N Lavoie
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| | - Normand Marceau
- Centre de Recherche Sur le Cancer de l'Université Laval, Québec City, Quebec, Canada; .,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec City, Quebec, Canada
| |
Collapse
|
20
|
Campos JM, Neves LX, de Paiva NCN, de Oliveira E Castro RA, Casé AH, Carneiro CM, Andrade MHG, Castro-Borges W. Understanding global changes of the liver proteome during murine schistosomiasis using a label-free shotgun approach. J Proteomics 2017; 151:193-203. [PMID: 27427331 DOI: 10.1016/j.jprot.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
Schistosomiasis is an endemic disease affecting over 207 million people worldwide caused by helminth parasites of the genus Schistosoma. In Brazil the disease is responsible for the loss of up to 800 lives annually, resulting from the desabilitating effects of this chronic condition. In this study, we infected Balb/c mice with Schistosoma mansoni and analysed global changes in the proteomic profile of soluble liver proteins. Our shotgun analyses revealed predominance of up-regulation of proteins at 5weeks of infection, coinciding with the onset of egg laying, and a remarkable down-regulation of liver constituents at 7weeks, when severe tissue damage is installed. Representatives of glycolytic enzymes and stress response (in particular at the endoplasmic reticulum) were among the most differentially expressed molecules found in the infected liver. Collectively, our data contribute over 70 molecules not previously reported to be found at altered levels in murine schistosomiasis to further exploration of their potential as biomarkers of the disease. Moreover, understanding their intricate interaction using bioinformatics approach can potentially bring clarity to unknown mechanisms linked to the establishment of this condition in the vertebrate host. SIGNIFICANCE To our knowledge, this study refers to the first shotgun proteomic analysis to provide an inventory of the global changes in the liver soluble proteome caused by Schistosoma mansoni in the Balb/c model. It also innovates by yielding data on quantification of the identified molecules as a manner to clarify and give insights into the underlying mechanisms for establishment of Schistosomiasis, a neglected tropical disease with historical prevalence in Brazil.
Collapse
Affiliation(s)
- Jonatan Marques Campos
- Programa de Pós Graduação em Bioengenharia, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil; Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Xavier Neves
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | - Ana Helena Casé
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Departamento de Análises Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Milton Hércules Guerra Andrade
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
21
|
|
22
|
Kumar V, Bouameur JE, Bär J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Vijayaraj P, Brazel CB, Heller S, Binder H, Löffler-Wirth H, Seibel P, Magin TM. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 2016; 211:1057-75. [PMID: 26644517 PMCID: PMC4674273 DOI: 10.1083/jcb.201404147] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal keratin filaments are important components and organizers of the cornified envelope and regulate mitochondrial metabolism by modulating their membrane composition. Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.
Collapse
Affiliation(s)
- Vinod Kumar
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Janina Bär
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Denver, CO 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Denver, CO 80045
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Susanne Brodesser
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Sören Thiering
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | | | - Christina B Brazel
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Heller
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Thomas M Magin
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
23
|
|
24
|
Perng MD, Huang YS, Quinlan RA. Purification of Protein Chaperones and Their Functional Assays with Intermediate Filaments. Methods Enzymol 2016; 569:155-75. [DOI: 10.1016/bs.mie.2015.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Roux A, Gilbert S, Loranger A, Marceau N. Impact of keratin intermediate filaments on insulin-mediated glucose metabolism regulation in the liver and disease association. FASEB J 2015; 30:491-502. [PMID: 26467793 DOI: 10.1096/fj.15-277905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
In all cells, a tight regulation exists between glucose uptake and utilization to prevent diseases related to its perturbed metabolism. In insulin-targeted cells, such as hepatocytes, proper glucose utilization requires an elaborate interplay between the insulin receptor, the glucose transporter, and mitochondria that involves the participation of actin microfilaments and microtubules. In addition, there is increasing evidence of an involvement of the third cytoskeletal network provided by intermediate filaments (IFs). Keratins belong to the multigene family of IF proteins, coordinately expressed as distinct pairs within the context of epithelial cell differentiation. Hepatocyte IFs are made up of the [keratin (K)8/K18] pair only, whereas pancreatic β-cell IFs additionally include small amounts of K7. There are accumulating examples of K8/K18 involvement in the glucose-insulin cross-talk, including the modulation of plasma glucose levels, insulin release from pancreatic β-cells, and insulin-mediated glucose uptake and glycogen production in hepatocytes after a K8/K18 loss. This review integrates the mechanistic features that support such an impact of K8/K18 IFs on insulin-dependent glucose metabolism regulation in liver and its implication in glucose- or insulin-associated diseases.
Collapse
Affiliation(s)
- Alexandra Roux
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| | - Stéphane Gilbert
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| | - Anne Loranger
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| | - Normand Marceau
- Centre de Recherche sur le Cancer, Université Laval, and Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
| |
Collapse
|
26
|
Pavlikova N, Smetana P, Halada P, Kovar J. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. ENVIRONMENTAL RESEARCH 2015; 142:257-263. [PMID: 26186133 DOI: 10.1016/j.envres.2015.06.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE.
Collapse
Affiliation(s)
- Nela Pavlikova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Pavel Smetana
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovar
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
27
|
Helenius TO, Misiorek JO, Nyström JH, Fortelius LE, Habtezion A, Liao J, Asghar MN, Zhang H, Azhar S, Omary MB, Toivola DM. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism. Mol Biol Cell 2015; 26:2298-310. [PMID: 25904331 PMCID: PMC4462946 DOI: 10.1091/mbc.e14-02-0736] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
Absence of colonic keratin 8 causes intestinal inflammation and decreased levels of the ketogenic enzyme HMGCS2. Upstream, the butyrate transporter MCT1 is decreased, leading to increased luminal butyrate. Ketogenic conditions fail to induce HMGCS2 in the keratin 8–knockout colon, suggesting a role for keratins in colonocyte energy homeostasis. Simple-type epithelial keratins are intermediate filament proteins important for mechanical stability and stress protection. Keratin mutations predispose to human liver disorders, whereas their roles in intestinal diseases are unclear. Absence of keratin 8 (K8) in mice leads to colitis, decreased Na/Cl uptake, protein mistargeting, and longer crypts, suggesting that keratins contribute to intestinal homeostasis. We describe the rate-limiting enzyme of the ketogenic energy metabolism pathway, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), as a major down-regulated protein in the K8-knockout (K8−/−) colon. K8 absence leads to decreased quantity and activity of HMGCS2, and the down-regulation is not dependent on the inflammatory state, since HMGCS2 is not decreased in dextran sulfate sodium-induced colitis. Peroxisome proliferator–activated receptor α, a transcriptional activator of HMGCS2, is similarly down-regulated. Ketogenic conditions—starvation or ketogenic diet—increase K8+/+ HMGCS2, whereas this response is blunted in the K8−/− colon. Microbiota-produced short-chain fatty acids (SCFAs), substrates in the colonic ketone body pathway, are increased in stool, which correlates with decreased levels of their main transporter, monocarboxylate transporter 1 (MCT1). Microbial populations, including the main SCFA-butyrate producers in the colon, were not altered in the K8−/−. In summary, the regulation of the SCFA-MCT1-HMGCS2 axis is disrupted in K8−/− colonocytes, suggesting a role for keratins in colonocyte energy metabolism and homeostasis.
Collapse
Affiliation(s)
- Terhi O Helenius
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Julia O Misiorek
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Joel H Nyström
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Lina E Fortelius
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, CA 94305
| | | | - M Nadeem Asghar
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Haiyan Zhang
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, and Stanford University School of Medicine, Palo Alto, CA 94304
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, and Stanford University School of Medicine, Palo Alto, CA 94304
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 VA Ann Arbor Health Care System, Ann Arbor, MI 48105
| | - Diana M Toivola
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
28
|
Toivola DM, Boor P, Alam C, Strnad P. Keratins in health and disease. Curr Opin Cell Biol 2015; 32:73-81. [PMID: 25599598 DOI: 10.1016/j.ceb.2014.12.008] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 02/01/2023]
Abstract
The cytoprotective keratins (K) compose the intermediate filaments of epithelial cells and their inherited and spontaneous mutations give rise to keratinopathies. For example, mutations in K1/K5/K10/K14 cause epidermal skin diseases whereas simple epithelial K8/K18/K19 variants predispose to development of several liver disorders. Due to their abundance, tissue- and context-specific expression, keratins constitute excellent diagnostic markers of both neoplastic and non-neoplastic diseases. During injury and in disease, keratin expression levels, cellular localization or posttranslational modifications are altered. Accumulating evidence suggests that these changes modulate multiple processes including cell migration, tumor growth/metastasis and development of infections. Therefore, our understanding of keratins is shifting from diagnostic markers to active disease modifiers.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Catharina Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
29
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Piwil2 inhibits keratin 8 degradation through promoting p38-induced phosphorylation to resist Fas-mediated apoptosis. Mol Cell Biol 2014; 34:3928-38. [PMID: 25113562 DOI: 10.1128/mcb.00745-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The piwi-like 2 (piwil2) gene is widely expressed in tumors and protects cells from apoptosis induced by a variety of stress stimuli. However, the role of Piwil2 in Fas-mediated apoptosis remains unknown. Here, we present evidence that Piwil2 inhibits Fas-mediated apoptosis. By a bacterial two-hybrid screening, we identify a new Piwil2-interacting partner, keratin 8 (K8), a major intermediate filament protein protecting the cell from Fas-mediated apoptosis. Our results show that Piwil2 binds to K8 and p38 through its PIWI domain and forms a Piwil2/K8/P38 triple protein-protein complex. Thus, Piwil2 increases the phosphorylation level of K8 Ser-73 and then inhibits ubiquitin-mediated degradation of K8. As a result, the knockdown of Piwil2 increases the Fas protein level at the membrane. In addition to our previous finding that Piwil2 inhibits the expression of p53 through the Src/STAT3 pathway, here we demonstrate that Piwil2 represses p53 phosphorylation through p38. Our present study indicates that Piwil2 plays a role in Fas-mediated apoptosis for the first time and also can affect p53 phosphorylation in tumor cells, revealing a novel mechanism of Piwil2 in apoptosis, and supports that Piwil2 plays an active role in tumorigenesis.
Collapse
|
31
|
|
32
|
Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, Salas PJ. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci 2014; 127:3568-77. [PMID: 24876225 DOI: 10.1242/jcs.151084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atypical PKC (ι/λ and ζ; hereafter referred to as aPKC) is a key player in the acquisition of epithelial polarity and participates in other signaling cascades including the control of NF-κB signaling. This kinase is post-translationally regulated through Hsp70-mediated refolding. Previous work has shown that such a chaperoning activity is specifically localized to keratin intermediate filaments. Our work was performed with the goal of identifying the molecule(s) that block Hsp70 activity on keratin filaments during inflammation. A transcriptional screen allowed us to focus on BAG-1, a multi-functional protein that assists Hsp70 in nucleotide exchange but also blocks its activity at higher concentrations. We found the BAG-1 isoform BAG-1M upregulated threefold in human Caco-2 cells following stimulation with tumor necrosis factor receptor α (TNFα) to induce a pro-inflammatory response, and up to sixfold in mouse enterocytes following treatment with dextran sodium sulfate (DSS) to induce colitis. BAG-1M, but no other isoform, was found to co-purify with intermediate filaments and block Hsp70 activity in the keratin fraction but not in the soluble fraction within the range of concentrations found in epithelial cells cultured under control and inflammation conditions. Constitutive expression of BAG-1M decreased levels of phosphorylated aPKC. By contrast, knockdown of BAG-1, blocked the TNFα-induced decrease of phosphorylated aPKC. We conclude that BAG-1M mediates Hsp70 inhibition downstream of NF-κB.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Nova Southeastern University, Department of Physiology, Fort Lauderdale, FL 33314, USA University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Zhanna Kozhekbaeva
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Radia Forteza
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Vipin Dulam
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Yolanda Figueroa
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Robert Warren
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | - Pedro J Salas
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| |
Collapse
|
33
|
Tapia-Limonchi R, Díaz I, Cahuana GM, Bautista M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells. Islets 2014; 6:e995997. [PMID: 25658244 PMCID: PMC4398281 DOI: 10.1080/19382014.2014.995997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Irene Díaz
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Mario Bautista
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)-Fundación Progreso y Salud; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
- Correspondence to: Francisco J. Bedoya;
| |
Collapse
|