1
|
Peng S, Su H, Chen T, Li X, Du J, Jiang H, Zhao M. The Potential Regulatory Network of Glutamate Metabolic Pathway Disturbance in Chinese Han Withdrawal Methamphetamine Abusers. Front Genet 2021; 12:653443. [PMID: 33833781 PMCID: PMC8021790 DOI: 10.3389/fgene.2021.653443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Objects To explore the long-term influence of methamphetamine abuse on metabolomics character, with gas chromatography-mass spectrometry (GS-MS) technology, and the potential regulatory network using the bioinformatics method. Methods Forty withdrawal methamphetamine abusers (WMA) were recruited from Shanghai Gaojing Forced Isolation Detoxification Institute. Forty healthy controls (HC) were recruited from society. GS-MS technology was used to detect metabolic products in serum. A bioinformatics method was used to build a regulatory network. Q-PCR was used to detect the candidate gene expressions, and ELISA was used to detect the regulatory enzyme expressions. Results Four pathways were significantly changed in the MA compared to the HC: (1) the arginine synthesis pathway, (2) alanine, aspartic acid and glutamate metabolic pathway, (3) cysteine and methionine metabolic pathway, and (4) the ascorbate and aldarate pathway (enrichment analysis p < 0.05, Impactor factor > 0.2). When focusing on the ‘Alanine, aspartate, and glutamate metabolism’ pathway, a regulatory network was established, and the expression of candidate regulatory genes and enzymes was verified. It was found that the expression of DLG2 (Discs large MAGUK scaffold protein 2), PLA2G4 (Phospholipase A2 group IVE), PDE4D (Phosphodiesterase 4D), PDE4B (Phosphodiesterase 4B), and EPHB2 (Ephrin type-B receptor 2) were significantly different between the two groups (p < 0.05), However, after adjusting for age and BMI, only DLG2, PLA2G4, and EPHB2 remained significant (p < 0.05). The expression of enzymes was not significantly different (p > 0.05). Conclusion Methamphetamine abuse influences the metabolic process in the long term, and DLG2, PLA2G4, and EPHB2 may regulate the glutamate metabolism pathway.
Collapse
Affiliation(s)
- Sufang Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Mol Cell Biochem 2021; 476:2753-2775. [PMID: 33713246 DOI: 10.1007/s11010-021-04121-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.
Collapse
|
3
|
Prunonosa Cervera I, Gabriel BM, Aldiss P, Morton NM. The phospholipase A2 family's role in metabolic diseases: Focus on skeletal muscle. Physiol Rep 2021; 9:e14662. [PMID: 33433056 PMCID: PMC7802192 DOI: 10.14814/phy2.14662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity and type 2 diabetes has increased substantially in recent years creating a global health burden. In obesity, skeletal muscle, the main tissue responsible for insulin-mediated glucose uptake, exhibits dysregulation of insulin signaling, glucose uptake, lipid metabolism, and mitochondrial function, thus, promoting type 2 diabetes. The phospholipase A2 (PLA2) enzyme family mediates lipid signaling and membrane remodeling and may play an important role in metabolic disorders such as obesity, diabetes, hyperlipidemia, and fatty liver disease. The PLA2 family consists of 16 members clustered in four groups. PLA2s hydrolyze the sn-2 ester bond of phospholipids generating free fatty acids and lysophospholipids. Differential tissue and subcellular PLA2 expression patterns and the abundance of distinct fatty acyl groups in the target phospholipid determine the impact of individual family members on metabolic functions and, potentially, diseases. Here, we update the current knowledge of the role of the PLA2 family in skeletal muscle, with a view to their potential for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
- Iris Prunonosa Cervera
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Brendan M. Gabriel
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
- Department of Physiology and PharmacologyIntegrative PhysiologyKarolinska InstituteStockholmSweden
- Aberdeen Cardiovascular & Diabetes CentreThe Rowett InstituteUniversity of AberdeenAberdeenUK
| | - Peter Aldiss
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Nicholas M. Morton
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
5
|
Pérez-González M, Mendioroz M, Badesso S, Sucunza D, Roldan M, Espelosín M, Ursua S, Luján R, Cuadrado-Tejedor M, Garcia-Osta A. PLA2G4E, a candidate gene for resilience in Alzheimer´s disease and a new target for dementia treatment. Prog Neurobiol 2020; 191:101818. [PMID: 32380223 DOI: 10.1016/j.pneurobio.2020.101818] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Clinical studies revealed that some aged-individuals accumulate a significant number of histopathological Alzheimer´s disease (AD) lesions in their brain, yet without developing any signs of dementia. Animal models of AD represent suitable tools to identify genes that might promote cognitive resilience and hence, this study first set out to identify cognitively resilient individuals in the aged-Tg2576 mouse model. A transcriptomic analysis of these mice identified PLA2G4E as a gene that might confer resistance to dementia. Indeed, a significant decrease in PLA2G4E is evident in the brain of late-stage AD patients, whereas no such changes are observed in early stage patients with AD neuropathological lesions but no signs of dementia. We demonstrated that adeno-associated viral vector-mediated overexpression of PLA2G4E in hippocampal neurons completely restored cognitive deficits in elderly APP/PS1 mice, without affecting the amyloid or tau pathology. These PLA2G4E overexpressing APP/PS1 mice developed significantly more dendritic spines than sham-injected mice, coinciding with the cognitive improvement observed. Hence, these results support the idea that a loss of PLA2G4E might play a key role in the onset of dementia in AD, highlighting the potential of PLA2G4E overexpression as a novel therapeutic strategy to manage AD and other disorders that course with memory deficits.
Collapse
Affiliation(s)
- Marta Pérez-González
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Maite Mendioroz
- IdiSNA (Navarra Institute for Health Research) Pamplona, Spain; Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarra (UPNA), Pamplona, Spain; Department of Neurology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Sara Badesso
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Diego Sucunza
- Parkinson´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Miren Roldan
- IdiSNA (Navarra Institute for Health Research) Pamplona, Spain; Neuroepigenetics Laboratory, Navarrabiomed, Public University of Navarra (UPNA), Pamplona, Spain
| | - Maria Espelosín
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Susana Ursua
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Mar Cuadrado-Tejedor
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain.
| | - Ana Garcia-Osta
- Alzheimer´s Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research) Pamplona, Spain.
| |
Collapse
|
6
|
Ward KE, Sengupta R, Ropa JP, Amiar S, Stahelin RV. The Cytosolic Phospholipase A 2α N-terminal C2 Domain Binds and Oligomerizes on Membranes with Positive Curvature. Biomolecules 2020; 10:biom10040647. [PMID: 32331436 PMCID: PMC7226022 DOI: 10.3390/biom10040647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/04/2023] Open
Abstract
Group IV phospholipase A2α (cPLA2α) regulates the production of prostaglandins and leukotrienes via the formation of arachidonic acid from membrane phospholipids. The targeting and membrane binding of cPLA2α to the Golgi involves the N-terminal C2 domain, whereas the catalytic domain produces arachidonic acid. Although most studies of cPLA2α concern its catalytic activity, it is also linked to homeostatic processes involving the generation of vesicles that traffic material from the Golgi to the plasma membrane. Here we investigated how membrane curvature influences the homeostatic role of cPLA2α in vesicular trafficking. The cPLA2α C2 domain is known to induce changes in positive membrane curvature, a process which is dependent on cPLA2α membrane penetration. We showed that cPLA2α undergoes C2 domain-dependent oligomerization on membranes in vitro and in cells. We found that the association of the cPLA2α C2 domain with membranes is limited to membranes with positive curvature, and enhanced C2 domain oligomerization was observed on vesicles ~50 nm in diameter. We demonstrated that the cPLA2α C2 domain localizes to cholesterol enriched Golgi-derived vesicles independently of cPLA2α catalytic activity. Moreover, we demonstrate the C2 domain selectively localizes to lipid droplets whereas the full-length enzyme to a much lesser extent. Our results therefore provide novel insight into the molecular forces that mediate C2 domain-dependent membrane localization in vitro and in cells.
Collapse
Affiliation(s)
- Katherine E. Ward
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA; (K.E.W.); (J.P.R.)
| | - Ranjan Sengupta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
| | - James P. Ropa
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46556, USA; (K.E.W.); (J.P.R.)
| | - Souad Amiar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA; (R.S.); (S.A.)
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +01-765-494-4152
| |
Collapse
|
7
|
Stone G, Choi A, Meritxell O, Gorham J, Heydarpour M, Seidman CE, Seidman JG, Aranki SF, Body SC, Carey VJ, Raby BA, Stranger BE, Muehlschlegel JD. Sex differences in gene expression in response to ischemia in the human left ventricular myocardium. Hum Mol Genet 2020; 28:1682-1693. [PMID: 30649309 DOI: 10.1093/hmg/ddz014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 01/28/2023] Open
Abstract
Sex differences exist in the prevalence, presentation and outcomes of ischemic heart disease (IHD). Females have higher risk of heart failure post-myocardial infarction relative to males and are two to three times more likely to die after coronary artery bypass grafting surgery. We examined sex differences in human myocardial gene expression in response to ischemia. Left ventricular biopsies from 68 male/46 female patients undergoing aortic valve replacement surgery were obtained at baseline and after a median 74 min of cold cardioplegic arrest/ischemia. Transcriptomes were quantified by RNA-sequencing. Cell-type enrichment analysis was used to estimate the identity and relative proportions of different cell types in each sample. A sex-specific response to ischemia was observed for 271 genes. Notably, the expression FAM5C, PLA2G4E and CYP1A1 showed an increased expression in females compared to males due to ischemia and DIO3, MT1G and CMA1 showed a decreased expression in females compared to males due to ischemia. Functional annotation analysis revealed sex-specific modulation of the oxytocin signaling pathway and common pathway of fibrin clot formation. Expression quantitative trait locus (eQTL) analysis identified variant-by-sex interaction eQTLs, indicative of sex differences in the genotypic effects on gene expression. Cell-type enrichment analysis showed sex-bias in proportion of specific cell types. Common lymphoid progenitor cells and M2 macrophages were found to increase in female samples from pre- to post-ischemia, but no change was observed in male samples. These differences in response to myocardial ischemia provide insight into the sexual dimorphism of IHD and may aid in the development of sex-specific therapies that reduce myocardial injury.
Collapse
Affiliation(s)
- Gregory Stone
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley Choi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliva Meritxell
- Institute for Genomics and Systems Biology, Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jon G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sary F Aranki
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent J Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara E Stranger
- Institute for Genomics and Systems Biology, Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Shin JW, Lee JC. Roles of microglial membranes in Alzheimer's disease. CURRENT TOPICS IN MEMBRANES 2020; 86:301-314. [PMID: 33837697 PMCID: PMC8082413 DOI: 10.1016/bs.ctm.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of Alzheimer's disease (AD) risk genes are highly and selectively expressed by microglia in the brain. Several of these genes are related to lipid and cholesterol metabolism, lipid synthesis, lipid transport, endocytosis, exocytosis and phagocytosis. Therefore, studying the roles of cellular membrane biophysics in microglial function should improve our understanding of the AD pathology. In this chapter, we discuss how lipid rafts and membrane-cytoskeleton adhesion impact microglial-mediated oxidative stress and clearance of amyloid-β peptide (Aβ). We also discuss potential roles of lipid membrane-bound extracellular vesicles as carriers of pathological factors to promote inflammation and cytotoxicity.
Collapse
Affiliation(s)
- Jae-Won Shin
- Department of Bioengineering, University of Illinois at Chicago, College of Medicine, Chicago, IL, United States; Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, IL, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, College of Medicine, Chicago, IL, United States.
| |
Collapse
|
9
|
Binte Mustafiz SS, Uyama T, Morito K, Takahashi N, Kawai K, Hussain Z, Tsuboi K, Araki N, Yamamoto K, Tanaka T, Ueda N. Intracellular Ca 2+-dependent formation of N-acyl-phosphatidylethanolamines by human cytosolic phospholipase A 2ε. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158515. [PMID: 31473348 DOI: 10.1016/j.bbalip.2019.158515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
N-Acyl-phosphatidylethanolamines (NAPEs) are known to be precursors of bioactive N-acylethanolamines (NAEs), including the endocannabinoid arachidonoylethanolamide (anandamide) and anti-inflammatory palmitoylethanolamide. In mammals, NAPEs are produced by N-acyltransferases, which transfer an acyl chain from the sn-1 position of glycerophospholipid to the amino group of phosphatidylethanolamine (PE). Recently, the ɛ isoform of cytosolic phospholipase A2 (cPLA2ɛ) was found to be Ca2+-dependent N-acyltransferase. However, it was poorly understood which types of phospholipids serve as substrates in living cells. In the present study, we established a human embryonic kidney 293 cell line, in which doxycycline potently induces human cPLA2ɛ, and used these cells to analyze endogenous substrates and products of cPLA2ɛ with liquid chromatography-tandem mass spectrometry. When treated with doxycycline and Ca2+ ionophore, the cells produced various species of diacyl- and alkenylacyl-types of NAPEs as well as NAEs in large quantities. Moreover, the levels of diacyl- and alkenylacyl-types of PEs and diacyl-phosphatidylcholines (PCs) decreased, while those of lysophosphatidylethanolamines and lysophosphatidylcholines increased. These results suggested that cPLA2ɛ Ca2+-dependently produces NAPEs by utilizing endogenous diacyl- and alkenylacyl-types of PEs as acyl acceptors and diacyl-type PCs and diacyl-type PEs as acyl donors.
Collapse
Affiliation(s)
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Katsuya Morito
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Naoko Takahashi
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kei Yamamoto
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan; PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tamotsu Tanaka
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
10
|
Kita Y, Shindou H, Shimizu T. Cytosolic phospholipase A2 and lysophospholipid acyltransferases. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:838-845. [DOI: 10.1016/j.bbalip.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/01/2023]
|
11
|
Binte Mustafiz SS, Uyama T, Hussain Z, Kawai K, Tsuboi K, Araki N, Ueda N. The role of intracellular anionic phospholipids in the production of N-acyl-phosphatidylethanolamines by cytosolic phospholipase A2ɛ. J Biochem 2019; 165:343-352. [PMID: 30517655 DOI: 10.1093/jb/mvy104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
N-Acyl-phosphatidylethanolamines (NAPEs) represent a class of glycerophospholipids and serve as the precursors of bioactive N-acylethanolamines, including arachidonoylethanolamide (anandamide), palmitoylethanolamide and oleoylethanolamide. NAPEs are produced in mammals by N-acyltransferases, the enzymes which transfer an acyl chain of glycerophospholipids to the amino group of phosphatidylethanolamine. Recently, the ɛ isoform of cytosolic phospholipase A2 (cPLA2ɛ, also called PLA2G4E) was identified as Ca2+-dependent N-acyltransferase. We showed that the activity is remarkably stimulated by phosphatidylserine (PS) in vitro. In the present study, we investigated whether or not endogenous PS regulates the function of cPLA2ɛ in living cells. When PS synthesis was suppressed by the knockdown of PS synthases in cPLA2ɛ-expressing cells, the cPLA2ɛ level and its N-acyltransferase activity were significantly reduced. Mutagenesis studies revealed that all of C2, lipase and polybasic domains of cPLA2ɛ were required for its proper localization as well as the enzyme activity. Liposome-based assays showed that several anionic glycerophospholipids, including PS, phosphatidic acid and phosphatidylinositol 4,5-bisphosphate, enhance the Ca2+-dependent binding of purified cPLA2ɛ to liposome membrane and stimulate its N-acyltransferase activity. Altogether, these results suggested that endogenous PS and other anionic phospholipids affect the localization and enzyme activity of cPLA2ɛ.
Collapse
Affiliation(s)
| | | | | | - Katsuhisa Kawai
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | |
Collapse
|
12
|
Rioux G, Pouliot-Bérubé C, Simard M, Benhassine M, Soucy J, Guérin SL, Pouliot R. The Tissue-Engineered Human Psoriatic Skin Substitute: A Valuable In Vitro Model to Identify Genes with Altered Expression in Lesional Psoriasis. Int J Mol Sci 2018; 19:E2923. [PMID: 30261611 PMCID: PMC6213003 DOI: 10.3390/ijms19102923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease for which no cure has emerged. Its complex etiology requires the development of an in vitro model representative of the pathology. In this study, we exploited gene profiling analyses on microarray in order to characterize and further optimize the production of a human psoriatic skin model representative of this in vivo skin disease. Various skin substitutes were produced by tissue-engineering using biopsies from normal, healthy donors, or from lesional or non-lesional skin samples from patients with psoriasis, and their gene expression profiles were examined by DNA microarray. We demonstrated that more than 3540 and 1088 genes (two-fold change) were deregulated between healthy/lesional and lesional/non-lesional psoriatic substitutes, respectively. Moreover, several genes related to lipid metabolism, such as PLA2G4E and PLA2G4C, were identified as repressed in the lesional substitutes. In conclusion, gene profiling analyses identified a list of deregulated candidate genes associated with various metabolic pathways that may contribute to the progression of psoriasis.
Collapse
Affiliation(s)
- Geneviève Rioux
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Claudia Pouliot-Bérubé
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mélissa Simard
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Manel Benhassine
- Centre Universitaire d'Ophtalmologie-Recherche, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1S4L8, Canada.
- Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Jacques Soucy
- Département de Dermatologie, Hôpital de l'Enfant-Jésus, Québec, QC G1J 1Z4, Canada.
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1S4L8, Canada.
- Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
13
|
Fuchs R, Stracke A, Holzmann V, Luschin-Ebengreuth G, Meier-Allard N, Ebner N, Lassacher TM, Absenger-Novak M, Fröhlich E, Schittmayer M, Cano Crespo S, Palacin M, Rinner B, Birner-Gruenberger R. Prazosin induced lysosomal tubulation interferes with cytokinesis and the endocytic sorting of the tumour antigen CD98hc. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1211-1229. [PMID: 29909287 PMCID: PMC6070144 DOI: 10.1016/j.bbamcr.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
Abstract
The quinazoline based drug prazosin (PRZ) is a potent inducer of apoptosis in human cancer cells. We recently reported that PRZ enters cells via endocytosis and induces tubulation of the endolysosomal system. In a proteomics approach aimed at identifying potential membrane proteins with binding affinity to quinazolines, we detected the oncoprotein CD98hc. We confirmed shuttling of CD98hc towards lysosomes and upregulation of CD98hc expression in PRZ treated cells. Gene knockout (KO) experiments revealed that endocytosis of PRZ still occurs in the absence of CD98hc - suggesting that PRZ does not enter the cell via CD98hc but misroutes the protein towards tubular lysosomes. Lysosomal tubulation interfered with completion of cytokinesis and provoked endoreplication. CD98hc KO cells showed reduced endoreplication capacity and lower sensitivity towards PRZ induced apoptosis than wild type cells. Thus, loss of CD98hc does not affect endocytosis of PRZ and lysosomal tubulation, but the ability for endoreplication and survival of cells. Furthermore, we found that glutamine, lysomototropic agents - namely chloroquine and NH4Cl - as well as inhibition of v-ATPase, interfere with the intracellular transport of CD98hc. In summary, our study further emphasizes lysosomes as target organelles to inhibit proliferation and to induce cell death in cancer. Most importantly, we demonstrate for the first time that the intracellular trafficking of CD98hc can be modulated by small molecules. Since CD98hc is considered as a potential drug target in several types of human malignancies, our study possesses translational significance suggesting, that old drugs are able to act on a novel target.
Collapse
Affiliation(s)
- Robert Fuchs
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Anika Stracke
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Viktoria Holzmann
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria; FH JOANNEUM - University of Applied Sciences, Alte Poststraße 149, 8020 Graz, Austria
| | - Gerfried Luschin-Ebengreuth
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Nathalie Meier-Allard
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Nadine Ebner
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Teresa Maria Lassacher
- Chair of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Centre for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Centre for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Sara Cano Crespo
- Institute for Research in Biomedicine (IRB-Barcelona), Barcelona Institute of Science and Technology (BIST), Department of Biochemistry and Molecular Biomedicine, University of Barcelona, and CIBERER, Parc Científic de Barcelona. Baldiri I Reixac 10-12, 08028 Barcelona, Spain
| | - Manuel Palacin
- Institute for Research in Biomedicine (IRB-Barcelona), Barcelona Institute of Science and Technology (BIST), Department of Biochemistry and Molecular Biomedicine, University of Barcelona, and CIBERER, Parc Científic de Barcelona. Baldiri I Reixac 10-12, 08028 Barcelona, Spain
| | - Beate Rinner
- Biomedical Research, Medical University of Graz, Roseggerweg 48, 8036 Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| |
Collapse
|
14
|
Teng T, Dong L, Ridgley DM, Ghura S, Tobin MK, Sun GY, LaDu MJ, Lee JC. Cytosolic Phospholipase A 2 Facilitates Oligomeric Amyloid-β Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity. Mol Neurobiol 2018; 56:3222-3234. [PMID: 30112630 DOI: 10.1007/s12035-018-1304-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) mediates oligomeric amyloid-β peptide (oAβ)-induced oxidative and inflammatory responses in glial cells. Increased activity of cPLA2 has been implicated in the neuropathology of Alzheimer's disease (AD), suggesting that cPLA2 regulation of oAβ-induced microglial activation may play a role in the AD pathology. We demonstrate that LPS, IFNγ, and oAβ increased phosphorylated cPLA2 (p-cPLA2) in immortalized mouse microglia (BV2). Aβ association with primary rat microglia and BV2 cells, possibly via membrane-binding and/or intracellular deposition, presumably indicative of microglia-mediated clearance of the peptide, was reduced by inhibition of cPLA2. However, cPLA2 inhibition did not affect the depletion of this associated Aβ when cells were washed and incubated in a fresh medium after oAβ treatment. Since the depletion was abrogated by NH4Cl, a lysosomal inhibitor, these results suggested that cPLA2 was not involved in the degradation of the associated Aβ. To further dissect the effects of cPLA2 on microglia cell membranes, atomic force microscopy (AFM) was used to determine endocytic activity. The force for membrane tether formation (Fmtf) is a measure of membrane-cytoskeleton connectivity and represents a mechanical barrier to endocytic vesicle formation. Inhibition of cPLA2 increased Fmtf in both unstimulated BV2 cells and cells stimulated with LPS + IFNγ. Thus, increasing p-cPLA2 would decrease Fmtf, thereby increasing endocytosis. These results suggest a role of cPLA2 activation in facilitating oAβ endocytosis by microglial cells through regulation of the membrane-cytoskeleton connectivity.
Collapse
Affiliation(s)
- Tao Teng
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA
| | - Li Dong
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Devin M Ridgley
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA
| | - Shivesh Ghura
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Matthew K Tobin
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, 835 S Wolcott Ave, W100, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Hussain Z, Uyama T, Kawai K, Binte Mustafiz SS, Tsuboi K, Araki N, Ueda N. Phosphatidylserine-stimulated production of N-acyl-phosphatidylethanolamines by Ca 2+-dependent N-acyltransferase. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:493-502. [PMID: 29447909 DOI: 10.1016/j.bbalip.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
Abstract
N-acyl-phosphatidylethanolamine (NAPE) is known to be a precursor for various bioactive N-acylethanolamines including the endocannabinoid anandamide. NAPE is produced in mammals through the transfer of an acyl chain from certain glycerophospholipids to phosphatidylethanolamine (PE) by Ca2+-dependent or -independent N-acyltransferases. The ε isoform of mouse cytosolic phospholipase A2 (cPLA2ε) was recently identified as a Ca2+-dependent N-acyltransferase (Ca-NAT). In the present study, we first showed that two isoforms of human cPLA2ε function as Ca-NAT. We next purified both mouse recombinant cPLA2ε and its two human orthologues to examine their catalytic properties. The enzyme absolutely required Ca2+ for its activity and the activity was enhanced by phosphatidylserine (PS). PS enhanced the activity 25-fold in the presence of 1 mM CaCl2 and lowered the EC50 value of Ca2+ >8-fold. Using a PS probe, we showed that cPLA2ε largely co-localizes with PS in plasma membrane and organelles involved in the endocytic pathway, further supporting the interaction of cPLA2ε with PS in living cells. Finally, we found that the Ca2+-ionophore ionomycin increased [14C]NAPE levels >10-fold in [14C]ethanolamine-labeled cPLA2ε-expressing cells while phospholipase A/acyltransferase-1, acting as a Ca2+-independent N-acyltransferase, was insensitive to ionomycin for full activity. In conclusion, PS potently stimulated the Ca2+-dependent activity and human cPLA2ε isoforms also functioned as Ca-NAT.
Collapse
Affiliation(s)
- Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan; Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
16
|
Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1546-1561. [PMID: 28843504 DOI: 10.1016/j.bbalip.2017.08.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022]
Abstract
Bioactive N-acylethanolamines (NAEs) are ethanolamides of long-chain fatty acids, including palmitoylethanolamide, oleoylethanolamide and anandamide. In animal tissues, NAEs are biosynthesized from membrane phospholipids. The classical "transacylation-phosphodiesterase" pathway proceeds via N-acyl-phosphatidylethanolamine (NAPE), which involves the actions of two enzymes, NAPE-generating Ca2+-dependent N-acyltransferase (Ca-NAT) and NAPE-hydrolyzing phospholipase D (NAPE-PLD). Recent identification of Ca-NAT as Ɛ isoform of cytosolic phospholipase A2 enabled the further molecular biological approaches toward this enzyme. In addition, Ca2+-independent NAPE formation was shown to occur by N-acyltransferase activity of a group of proteins named phospholipase A/acyltransferases (PLAAT)-1-5. The analysis of NAPE-PLD-deficient mice confirmed that NAEs can be produced through multi-step pathways bypassing NAPE-PLD. The NAPE-PLD-independent pathways involved three members of the glycerophosphodiesterase (GDE) family (GDE1, GDE4 and GDE7) as well as α/β-hydrolase domain-containing protein (ABHD)4. In this review article, we will focus on recent progress made and latest insights in the enzymes involved in NAE synthesis and their further characterization.
Collapse
|
17
|
Abstract
The Golgi complex is the Grand Central Station of intracellular membrane trafficking in the secretory and endocytic pathways. Anterograde and retrograde export of cargo from the Golgi complex involves a complex interplay between the formation of coated vesicles and membrane tubules, although much less is known about tubule-mediated trafficking. Recent advances using in vitro assays have identified several cytoplasmic phospholipase A2 (PLA2) enzymes that are required for the biogenesis of membrane tubules and their roles in the functional organization of the Golgi complex. In this chapter we describe methods for the cell-free reconstitution of PLA2-dependent Golgi membrane tubule formation. These methods should facilitate the identification of other proteins that regulate this process.
Collapse
|
18
|
Methods for analyzing the role of phospholipase A₂ enzymes in endosome membrane tubule formation. Methods Cell Biol 2015. [PMID: 26360034 DOI: 10.1016/bs.mcb.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cargo export from mammalian endosomal compartments often involves membrane tubules, into which soluble and membrane-bound cargos are segregated for subsequent intracellular transport. These membrane tubules are highly dynamic and their formation is mediated by a variety of endosome-associated proteins. However, little is known about how these membrane tubules are temporally or spatially regulated, so other tubule-associated proteins are likely to be discovered and analyzed. Therefore, methods to examine the biogenesis and regulation of endosome membrane tubules will prove to be valuable for cell biologists. In this chapter, we describe methods for studying this process using both cell-free, in vitro reconstitution assays, and in vivo image analysis tools.
Collapse
|
19
|
Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:620-8. [PMID: 25633344 PMCID: PMC4540326 DOI: 10.1016/j.bbalip.2015.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 01/08/2023]
Abstract
The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458, USA.
| |
Collapse
|
20
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
21
|
Boutté Y, Moreau P. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:22-29. [PMID: 25233477 DOI: 10.1016/j.pbi.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 05/11/2023]
Abstract
Membrane lipids are crucial bricks for cell and organelle compartmentalization and their physical properties and interactions with other membrane partners (lipids or proteins) reveal lipids as key actors of the regulation of membrane morphodynamics in many cellular functions and especially in the secretory/retrograde pathways. Studies on membrane models have indicated diverse mechanisms by which membranes bend. Moreover, in vivo studies also indicate that membrane curvature can play crucial roles in the regulation of endomembrane morphodynamics, organelle morphology and transport vesicle formation. A role for enzymes of lipid metabolism and lipid-protein interactions will be discussed as crucial mechanisms in the regulation of membrane morphodynamics in the secretory/retrograde pathways.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France.
| |
Collapse
|
22
|
Xiong L, Edwards CK, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci 2014; 15:17411-41. [PMID: 25268615 PMCID: PMC4227170 DOI: 10.3390/ijms151017411] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs) and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC) and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies.
Collapse
Affiliation(s)
- Lijuan Xiong
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| | - Carl K Edwards
- National Key Laboratory of Biotherapy and Cancer Research (NKLB), West China Hospital and Medical School, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| |
Collapse
|