1
|
Geng Y, DeLay SL, Chen X, Miska J. It Is Not Just About Storing Energy: The Multifaceted Role of Creatine Metabolism on Cancer Biology and Immunology. Int J Mol Sci 2024; 25:13273. [PMID: 39769038 PMCID: PMC11678534 DOI: 10.3390/ijms252413273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Creatine, a naturally occurring compound in mammals, is crucial in energy metabolism, particularly within muscle and brain tissues. While creatine metabolism in cancer has been studied for several decades, emerging studies are beginning to clarify the sometimes-contradictory role creatine has in either the promotion or inhibition of cancer. On one hand, creatine can directly enhance anti-tumor CD8+ T-cell activity and induce tumor apoptosis, contributing to antitumor immunity. Conversely, other studies have shown that creatine can facilitate cancer cell growth and migration by providing an energy source and activating several signaling pathways. This review will examine what is known about creatine in cancer biology, with a focus on understanding its roles across different cellular compartments. Lastly, we discuss the emerging roles of creatine metabolism, providing exciting new insights into this often-overlooked pathway. This review highlights the complex role of creatine in cancer development and treatment, offering insights into its potential as both a therapeutic target and a risk factor in oncogenesis.
Collapse
Affiliation(s)
- Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Susan L. DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Xiaoyang Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N St. Clair, Suite 2210, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Rizo-Roca D, Guimarães DSPSF, Pendergrast LA, Di Leo N, Chibalin AV, Maqdasy S, Rydén M, Näslund E, Zierath JR, Krook A. Decreased mitochondrial creatine kinase 2 impairs skeletal muscle mitochondrial function independently of insulin in type 2 diabetes. Sci Transl Med 2024; 16:eado3022. [PMID: 39383244 DOI: 10.1126/scitranslmed.ado3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Increased plasma creatine concentrations are associated with the risk of type 2 diabetes, but whether this alteration is associated with or causal for impairments in metabolism remains unexplored. Because skeletal muscle is the main disposal site of both creatine and glucose, we investigated the role of intramuscular creatine metabolism in the pathophysiology of insulin resistance in type 2 diabetes. In men with type 2 diabetes, plasma creatine concentrations were increased, and intramuscular phosphocreatine content was reduced. These alterations were coupled to reduced expression of sarcomeric mitochondrial creatine kinase 2 (CKMT2). In C57BL/6 mice fed a high-fat diet, neither supplementation with creatine for 2 weeks nor treatment with the creatine analog β-GPA for 1 week induced changes in glucose tolerance, suggesting that increased circulating creatine was associated with insulin resistance rather than causing it. In C2C12 myotubes, silencing Ckmt2 using small interfering RNA reduced mitochondrial respiration, membrane potential, and glucose oxidation. Electroporation-mediated overexpression of Ckmt2 in skeletal muscle of high-fat diet-fed male mice increased mitochondrial respiration, independent of creatine availability. Given that overexpression of Ckmt2 improved mitochondrial function, we explored whether exercise regulates CKMT2 expression. Analysis of public data revealed that CKMT2 content was up-regulated by exercise training in both humans and mice. We reveal a previously underappreciated role of CKMT2 in mitochondrial homeostasis beyond its function for creatine phosphorylation, independent of insulin action. Collectively, our data provide functional evidence for how CKMT2 mediates mitochondrial dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Nicolas Di Leo
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, SE-182 57 Danderyd, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Ritz NL, Bastiaanssen TFS, Cowan CSM, Smith L, Theune N, Brocka M, Myers EM, Moloney RD, Moloney GM, Shkoporov AN, Draper LA, Hill C, Dinan TG, Slattery DA, Cryan JF. Social fear extinction susceptibility is associated with Microbiota-Gut-Brain axis alterations. Brain Behav Immun 2024; 120:315-326. [PMID: 38852762 DOI: 10.1016/j.bbi.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Caitlin S M Cowan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Nigel Theune
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Marta Brocka
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Eibhlís M Myers
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Rachel D Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; School of Microbiology, University College Cork, Cork, T12K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - David A Slattery
- Dept. of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt 60528, Germany
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12YT20, Ireland; Dept. of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
4
|
Ayyappan V, Jenkinson NM, Tressler CM, Tan Z, Cheng M, Shen XE, Guerrero A, Sonkar K, Cai R, Adelaja O, Roy S, Meeker A, Argani P, Glunde K. Context-dependent roles for ubiquitous mitochondrial creatine kinase CKMT1 in breast cancer progression. Cell Rep 2024; 43:114121. [PMID: 38615320 PMCID: PMC11100297 DOI: 10.1016/j.celrep.2024.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, enabling cancer cells to rapidly proliferate, invade, and metastasize. We show that creatine levels in metastatic breast cancer cell lines and secondary metastatic tumors are driven by the ubiquitous mitochondrial creatine kinase (CKMT1). We discover that, while CKMT1 is highly expressed in primary tumors and promotes cell viability, it is downregulated in metastasis. We further show that CKMT1 downregulation, as seen in breast cancer metastasis, drives up mitochondrial reactive oxygen species (ROS) levels. CKMT1 downregulation contributes to the migratory and invasive potential of cells by ROS-induced upregulation of adhesion and degradative factors, which can be reversed by antioxidant treatment. Our study thus reconciles conflicting evidence about the roles of metabolites in the creatine metabolic pathway in breast cancer progression and reveals that tight, context-dependent regulation of CKMT1 expression facilitates cell viability, cell migration, and cell invasion, which are hallmarks of metastatic spread.
Collapse
Affiliation(s)
- Vinay Ayyappan
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Jenkinson
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin M Tressler
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheqiong Tan
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglin Cheng
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyi Elaine Shen
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandro Guerrero
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanchan Sonkar
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoqing Cai
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Oluwatobi Adelaja
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sujayita Roy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Corsi GI, Gadekar VP, Haukedal H, Doncheva NT, Anthon C, Ambardar S, Palakodeti D, Hyttel P, Freude K, Seemann SE, Gorodkin J. The transcriptomic landscape of neurons carrying PSEN1 mutations reveals changes in extracellular matrix components and non-coding gene expression. Neurobiol Dis 2023; 178:105980. [PMID: 36572121 DOI: 10.1016/j.nbd.2022.105980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which can occur either sporadically, due to a complex combination of environmental, genetic, and epigenetic factors, or because of rare genetic variants in specific genes (familial AD, or fAD). A key hallmark of AD is the accumulation of amyloid beta (Aβ) and Tau hyperphosphorylated tangles in the brain, but the underlying pathomechanisms and interdependencies remain poorly understood. Here, we identify and characterise gene expression changes related to two fAD mutations (A79V and L150P) in the Presenilin-1 (PSEN1) gene. We do this by comparing the transcriptomes of glutamatergic forebrain neurons derived from fAD-mutant human induced pluripotent stem cells (hiPSCs) and their individual isogenic controls generated via precision CRISPR/Cas9 genome editing. Our analysis of Poly(A) RNA-seq data detects 1111 differentially expressed coding and non-coding genes significantly altered in fAD. Functional characterisation and pathway analysis of these genes reveal profound expression changes in constituents of the extracellular matrix, important to maintain the morphology, structural integrity, and plasticity of neurons, and in genes involved in calcium homeostasis and mitochondrial oxidative stress. Furthermore, by analysing total RNA-seq data we reveal that 30 out of 31 differentially expressed circular RNA genes are significantly upregulated in the fAD lines, and that these may contribute to the observed protein-coding gene expression changes. The results presented in this study contribute to a better understanding of the cellular mechanisms impacted in AD neurons, ultimately leading to neuronal damage and death.
Collapse
Affiliation(s)
- Giulia I Corsi
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Veerendra P Gadekar
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Nadezhda T Doncheva
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Sheetal Ambardar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India; School of Biotechnology, University of Jammu, Jammu and Kashmir 180001, India
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Stefan E Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg 1871, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
6
|
Fairley LH, Lai KO, Wong JH, Chong WJ, Vincent AS, D’Agostino G, Wu X, Naik RR, Jayaraman A, Langley SR, Ruedl C, Barron AM. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease. Proc Natl Acad Sci U S A 2023; 120:e2209177120. [PMID: 36787364 PMCID: PMC9974442 DOI: 10.1073/pnas.2209177120] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/17/2022] [Indexed: 02/15/2023] Open
Abstract
Microglial phagocytosis is an energetically demanding process that plays a critical role in the removal of toxic protein aggregates in Alzheimer's disease (AD). Recent evidence indicates that a switch in energy production from mitochondrial respiration to glycolysis disrupts this important protective microglial function and may provide therapeutic targets for AD. Here, we demonstrate that the translocator protein (TSPO) and a member of its mitochondrial complex, hexokinase-2 (HK), play critical roles in microglial respiratory-glycolytic metabolism and phagocytosis. Pharmacological and genetic loss-of-function experiments showed that TSPO is critical for microglial respiratory metabolism and energy supply for phagocytosis, and its expression is enriched in phagocytic microglia of AD mice. Meanwhile, HK controlled glycolytic metabolism and phagocytosis via mitochondrial binding or displacement. In cultured microglia, TSPO deletion impaired mitochondrial respiration and increased mitochondrial recruitment of HK, inducing a switch to glycolysis and reducing phagocytosis. To determine the functional significance of mitochondrial HK recruitment, we developed an optogenetic tool for reversible control of HK localization. Displacement of mitochondrial HK inhibited glycolysis and improved phagocytosis in TSPO-knockout microglia. Mitochondrial HK recruitment also coordinated the inflammatory switch to glycolysis that occurs in response to lipopolysaccharide in normal microglia. Interestingly, cytosolic HK increased phagocytosis independent of its metabolic activity, indicating an immune signaling function. Alzheimer's beta amyloid drastically stimulated mitochondrial HK recruitment in cultured microglia, which may contribute to microglial dysfunction in AD. Thus, targeting mitochondrial HK may offer an immunotherapeutic approach to promote phagocytic microglial function in AD.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Kei Onn Lai
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Wei Jing Chong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Anselm Salvatore Vincent
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Giuseppe D’Agostino
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Xiaoting Wu
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
| | - Roshan R. Naik
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Anusha Jayaraman
- Center for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Sarah R. Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
| | - Anna M. Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore
| |
Collapse
|
7
|
Fihurka O, Wang Y, Hong Y, Lin X, Shen N, Yang H, Brown B, Mommer M, Zieneldien T, Li Y, Kim J, Li M, Cai J, Zhou Q, Cao C. Multi-Targeting Intranasal Nanoformulation as a Therapeutic for Alzheimer's Disease. Biomolecules 2023; 13:232. [PMID: 36830601 PMCID: PMC9953380 DOI: 10.3390/biom13020232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Melatonin, insulin, and Δ9-tetrahydrocannabinol (THC) have been shown to reverse cognitive deficits and attenuate neuropathologies in transgenic mouse models of Alzheimer's disease (AD) when used individually. Here, we evaluated the therapeutic properties of long-term intranasal treatment with a novel nanoformulation containing melatonin, insulin, and THC in aged APPswe/PS1ΔE9 (APP/PS1) mice, a transgenic model of AD. Transgenic mice at the age of 12 months were intranasally administered with a new nanoformulation containing melatonin, insulin, and THC at doses of 0.04, 0.008, and 0.02 mg/kg, respectively, once daily for 3 months. The spatial memory of the mice was assessed using the radial arm water maze (RAWM) test before and after drug treatment. Brain tissues were collected at the end of the treatment period for the assessment of Aβ load, tauopathy state, and markers of mitochondrial function. The RAWM test revealed that the treatment with the melatonin-insulin-THC (MIT) nasal spray improved the spatial learning memory of APP/PS1 mice significantly. Results of protein analyses of brain homogenates indicated that MIT treatment significantly decreased the tau phosphorylation implicated in tau toxicity (p < 0.05) and the expression of CKMT1 associated with mitochondrial dysfunction. Moreover, MIT significantly decreased the expression of two mitochondrial fusion-related proteins, Mfn2 and Opa1 (p < 0.01 for both), while increasing the expression of a mitophagy regulator, Parkin, suggesting a compensatory enhancement of mitophagy due to MIT-promoted mitochondrial fusion. In conclusion, this study was the first to demonstrate the ability of an MIT nanoformulation to improve spatial memory in AD mice through its multi-targeting effects on Aβ production, tau phosphorylation, and mitochondrial dynamics. Thus, MIT may be a safe and effective therapeutic for AD.
Collapse
Affiliation(s)
- Oksana Fihurka
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yuzhu Hong
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Ning Shen
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Breanna Brown
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Marcus Mommer
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yitong Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, College of Arts & Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemistry, College of Arts & Sciences, University of South Florida, Tampa, FL 33612, USA
- USF-health Byrd Alzheimer Institute, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022; 23:266-285. [PMID: 34880425 DOI: 10.1038/s41580-021-00433-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial permeability transition (mPT) is a phenomenon that abruptly causes the flux of low molecular weight solutes (molecular weight up to 1,500) across the generally impermeable inner mitochondrial membrane. The mPT is mediated by the so-called mitochondrial permeability transition pore (mPTP), a supramolecular entity assembled at the interface of the inner and outer mitochondrial membranes. In contrast to mitochondrial outer membrane permeabilization, which mostly activates apoptosis, mPT can trigger different cellular responses, from the physiological regulation of mitophagy to the activation of apoptosis or necrosis. Although there are several molecular candidates for the mPTP, its molecular nature remains contentious. This lack of molecular data was a significant setback that prevented mechanistic insight into the mPTP, pharmacological targeting and the generation of informative animal models. In recent years, experimental evidence has highlighted mitochondrial F1Fo ATP synthase as a participant in mPTP formation, although a molecular model for its transition to the mPTP is still lacking. Recently, the resolution of the F1Fo ATP synthase structure by cryogenic electron microscopy led to a model for mPTP gating. The elusive molecular nature of the mPTP is now being clarified, marking a turning point for understanding mitochondrial biology and its pathophysiological ramifications. This Review provides an up-to-date reference for the understanding of the mammalian mPTP and its cellular functions. We review current insights into the molecular mechanisms of mPT and validated observations - from studies in vivo or in artificial membranes - on mPTP activity and functions. We end with a discussion of the contribution of the mPTP to human disease. Throughout the Review, we highlight the multiple unanswered questions and, when applicable, we also provide alternative interpretations of the recent discoveries.
Collapse
|
9
|
Scott HL, Buckner N, Fernandez-Albert F, Pedone E, Postiglione L, Shi G, Allen N, Wong LF, Magini L, Marucci L, O'Sullivan GA, Cole S, Powell J, Maycox P, Uney JB. A dual druggable genome-wide siRNA and compound library screening approach identifies modulators of parkin recruitment to mitochondria. J Biol Chem 2020; 295:3285-3300. [PMID: 31911436 PMCID: PMC7062187 DOI: 10.1074/jbc.ra119.009699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/20/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic and biochemical evidence points to an association between mitochondrial dysfunction and Parkinson's disease (PD). PD-associated mutations in several genes have been identified and include those encoding PTEN-induced putative kinase 1 (PINK1) and parkin. To identify genes, pathways, and pharmacological targets that modulate the clearance of damaged or old mitochondria (mitophagy), here we developed a high-content imaging-based assay of parkin recruitment to mitochondria and screened both a druggable genome-wide siRNA library and a small neuroactive compound library. We used a multiparameter principal component analysis and an unbiased parameter-agnostic machine-learning approach to analyze the siRNA-based screening data. The hits identified in this analysis included specific genes of the ubiquitin proteasome system, and inhibition of ubiquitin-conjugating enzyme 2 N (UBE2N) with a specific antagonist, Bay 11-7082, indicated that UBE2N modulates parkin recruitment and downstream events in the mitophagy pathway. Screening of the compound library identified kenpaullone, an inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3, as a modulator of parkin recruitment. Validation studies revealed that kenpaullone augments the mitochondrial network and protects against the complex I inhibitor MPP+. Finally, we used a microfluidics platform to assess the timing of parkin recruitment to depolarized mitochondria and its modulation by kenpaullone in real time and with single-cell resolution. We demonstrate that the high-content imaging-based assay presented here is suitable for both genetic and pharmacological screening approaches, and we also provide evidence that pharmacological compounds modulate PINK1-dependent parkin recruitment.
Collapse
Affiliation(s)
- Helen L Scott
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nicola Buckner
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | - Elisa Pedone
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lorena Postiglione
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Gongyu Shi
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Liang-Fong Wong
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lorenzo Magini
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Lucia Marucci
- Department of Engineering and Mathematics, University of Bristol, Bristol BS8 1TD, United Kingdom; BrisSynBio, Bristol BS8 1QU, United Kingdom
| | - Gregory A O'Sullivan
- Takeda Cambridge Ltd., Cambridge Science Park, Cambridge CB4 0PZ, United Kingdom
| | - Sarah Cole
- Takeda Ventures, Inc., 61 Aldwych, London WC2B 4A, United Kingdom
| | - Justin Powell
- Takeda Cambridge Ltd., Cambridge Science Park, Cambridge CB4 0PZ, United Kingdom
| | - Peter Maycox
- Takeda Ventures, Inc., 61 Aldwych, London WC2B 4A, United Kingdom
| | - James B Uney
- Bristol Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
10
|
Liu P, Verhaar AP, Peppelenbosch MP. Signaling Size: Ankyrin and SOCS Box-Containing ASB E3 Ligases in Action. Trends Biochem Sci 2018; 44:64-74. [PMID: 30446376 DOI: 10.1016/j.tibs.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Ankyrin repeat and suppressor of cytokine signaling (SOCS) box (Asb) proteins are ubiquitin E3 ligases. The subfamily of six-ankyrin repeat domain-containing Asb proteins (Asb5, Asb9, Asb11, and Asb13) is of specific interest because they display unusual strong evolutionary conservation (e.g., urochordate and human ASB11 are >49% similar at the amino acid level) and mediate compartment size expansion, regulating, for instance, the size of the brain and muscle compartment. Thus, they may be involved in the explanation of the differences in brain size between humans and apes. Mechanistically, many questions remain, but it has become clear that regulation of canonical Notch signaling and also mitochondrial function are important effectors. Here, we review the action and function of six ankyrin repeat domain-containing Asb proteins in physiology and pathophysiology.
Collapse
Affiliation(s)
- Pengyu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Auke P Verhaar
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
12
|
Li B, Chen X, Yang W, He J, He K, Xia Z, Zhang J, Xiang G. Single-walled carbon nanohorn aggregates promotes mitochondrial dysfunction-induced apoptosis in hepatoblastoma cells by targeting SIRT3. Int J Oncol 2018; 53:1129-1137. [PMID: 29956732 PMCID: PMC6065448 DOI: 10.3892/ijo.2018.4459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/11/2018] [Indexed: 01/10/2023] Open
Abstract
Single-walled carbon nanohorns (SWNHs) can accumulate in a variety of cell types or tissues and exert biological effects, which have been demonstrated to induce apoptosis in hepatoblastoma cells. However, the role and molecular mechanisms of SWNHs remain unclear. The mitochondrion is an important subcellular structure and may contribute to apoptosis that is induced by SWNHs in hepatoblastoma cells. To address this question, the mitochondrial function of HepG2 or L02 cells that were treated with SWNHs was examined. The results indicated that SWNHs were able to decrease the mitochondrial membrane potential and suppress the activity of the Na+/K+-ATPase. Secondly, HepG2 cells and L02 cells were treated with SWNHs in vivo and in vitro. The expression of mitochondrial-associated proteins [acyl-CoA synthetase short chain family member 1, Bax, cytochrome C (CYT-C), sodium channel epithelial 1α subunit, sirtuin 3 (SIRT3) and voltage-dependent anion channel 1] was analyzed by western blotting and immunohistochemical staining. The results revealed that SWNH treatment was able to alter the expression of multiple mitochondrial apoptotic pathway-associated proteins in HepG2 cells. SWNH treatment was able upregulate the expression of SIRT3, CYT-C and VDAC1 and downregulate the expression of AceCS2, but it had a more stable effect on SIRT3. However, similar findings were not observed in L02 cells. Therefore, the data from the present study indicated that SWNHs might be used as a safe anticancer agent, where it is able to trigger mitochondrial dysfunction-induced apoptosis by upregulating SIRT3 expression in HepG2 cells.
Collapse
Affiliation(s)
- Bowei Li
- Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoxun Chen
- Department of Gastrointestinal Surgery, The Guigang City People's Hospital, Guigang, Guangxi 537100, P.R. China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jingliang He
- Department of General Surgery, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, P.R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhenglin Xia
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Jinqian Zhang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
Shemarova IV, Nesterov VP, Korotkov SM, Sylkin YA. Evolutionary Aspects of Cardioprotection. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Shemarova IV, Nesterov VP, Korotkov SM, Sobol’ KV. Involvement of Ca2+ in the development of ischemic disorders of myocardial contractile function. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017050027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
Mitochondrial ATP generation by oxidative phosphorylation combines the stepwise oxidation by the electron transport chain (ETC) of the reducing equivalents NADH and FADH2 with the generation of ATP by the ATP synthase. Recent studies show that the ATP synthase is not only essential for the generation of ATP but may also contribute to the formation of the mitochondrial permeability transition pore (PTP). We present a model, in which the PTP is located within the c-subunit ring in the Fo subunit of the ATP synthase. Opening of the PTP was long associated with uncoupling of the ETC and the initiation of programmed cell death. More recently, it was shown that PTP opening may serve a physiologic role: it can transiently open to regulate mitochondrial signaling in mature cells, and it is open in the embryonic mouse heart. This review will discuss how the ATP synthase paradoxically lies at the center of both ATP generation and cell death.
Collapse
|
16
|
Zhang T, Meng J, Liu X, Zhang X, Peng X, Cheng Z, Zhang F. ING5 differentially regulates protein lysine acetylation and promotes p300 autoacetylation. Oncotarget 2017; 9:1617-1629. [PMID: 29416718 PMCID: PMC5788586 DOI: 10.18632/oncotarget.22176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
ING5 belongs to the Inhibitor of Growth (ING) candidate tumor suppressor family. Previously, we have shown that ING5 inhibits invasiveness of lung cancer cells by downregulating EMT-inducing genes. However, the underlying mechanisms remain unclear. The aim of the study was to use integrated approach involving SILAC labeling and mass spectrometry-based quantitative proteomics to quantify dynamic changes of acetylation regulated by ING5 in lung cancer cells. Here, we have found that ING5 has a profound influence on protein lysine acetylation with 163 acetylation peptides on 122 proteins significantly upregulated and 100 acetylation peptides on 72 proteins downregulated by ING5 overexpression. Bioinfomatic analysis revealed that the acetylated proteins upregulated by ING5 located preferentially in nucleus to cytoplasm and were significantly enriched in transcription cofactor activity, chromatin binding and DNA binding functions; while those downregulated by ING5 located preferentially in cytoplasm rather than nucleus and were functionally enriched in metabolism, suggesting diverse functions of ING5 through differentially regulating protein acetylation. Interestingly, we found ING5 overexpression promotes p300 autoacetylation at K1555, K1558 and K1560 within p300 HAT domain, and two novel sites K1647 and K1794, leading to activation of p300 HAT activity, which was confirmed by accelerated acetylation of p300 target proteins, p53 at k382 and histone H3 at K18. A specific p300 HAT inhibitor C646 impaired ING5-increased acetylation of H3K18 and p53K382, and subsequent expression of p21 and Bax. In conclusion, our results reveal the lysine acetylome regulated by ING5 and provide new insights into mechanisms of ING5 in the regulation of gene expression, metabolism and other cellular functions.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jin Meng
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Department of Pharmacy, No. 309 Hospital of PLA, Beijing 100091, China
| | - Xinli Liu
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xutao Zhang
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Zhongyi Cheng
- Department of Bioinformatics, Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, China
| | - Feng Zhang
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
Bakthavachalam P, Shanmugam PST. Mitochondrial dysfunction - Silent killer in cerebral ischemia. J Neurol Sci 2017; 375:417-423. [PMID: 28320180 DOI: 10.1016/j.jns.2017.02.043] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Mitochondrial dysfunction aggravates ischemic neuronal injury through activation of various pathophysiological and molecular mechanisms. Ischemic neuronal injury is particularly intensified during reperfusion due to impairment of mitochondrial function. Mitochondrial mutilation instigates alterations in calcium homeostasis in neurons, which plays a pivotal role in the maintenance of normal neuronal function. Increase in intracellular calcium level in mitochondria triggers the opening of mitochondrial transition pore and over production of reactive oxygen species (ROS). Several investigations have concluded that ROS not only contribute to lipids and proteins damage, but also transduce apoptotic signals leading to neuronal death. In addition to the above mentioned reasons, endoplasmic reticulum (ER) stress due to excitotoxicity also leads to neuronal death. Recently, some newer proteins have been claimed to induce "mitophagy" by triggering the receptors on autophagic membranes leading to neurodegeneration. This review summarizes the mechanisms underlying neuronal death involving mitochondrial dysfunction and mitophagy.
Collapse
Affiliation(s)
- Pramila Bakthavachalam
- Sri Ramachandra University, No. 1, Ramachandra Nagar, Porur, Chennai, Tamil Nadu, India.
| | | |
Collapse
|
18
|
Cheniour M, Brewer J, Bagatolli L, Marcillat O, Granjon T. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model. Biochim Biophys Acta Gen Subj 2017; 1861:969-976. [PMID: 28185927 DOI: 10.1016/j.bbagen.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds to the specific cardiolipin (CL) phospholipid. If mtCK was initially thought to be exclusively implicated in energy transfer between mitochondria and cytosol through a mechanism referred to as the phosphocreatine shuttle, several recent studies suggested an additional role in maintaining mitochondria membrane structure. METHODS To further characterized mtCK binding process we used multiphoton excitation fluorescence microscopy coupled with Giant Unilamellar Vesicles (GUV) and laurdan as fluorescence probe. RESULTS We gathered structural and dynamical information on the molecular events occurring during the binding of mtCK to the mitochondria inner membrane. We present the first visualization of mtCK-induced CL segregation on a bilayer model forming micrometer-size proteolipid domains at the surface of the GUV. Those microdomains, which only occurred when CL is included in the lipid mixture, were accompanied by the formation of protein multimolecular assembly, vesicle clamping, and changes in both vesicle curvature and membrane fluidity CONCLUSION: Those results highlighted the importance of the highly abundant mtCK in the lateral organization of the mitochondrial inner membrane. GENERAL SIGNIFICANCE Microdomains were induced in mitochondria-mimicking membranes composed of natural phospholipids without cholesterol and/or sphingolipids differing from the proposed cytoplasmic membrane rafts. Those findings as well as membrane curvature modification were discussed in relation with protein-membrane interaction and protein cluster involvement in membrane morphology.
Collapse
Affiliation(s)
- Mouhedine Cheniour
- Univ Lyon, Université Claude Bernard Lyon 1, ICBMS - UMR CNRS 5246, MEM2, F-69622 Villeurbanne, France
| | - Jonathan Brewer
- Membrane Biophysics and Biophotonics group/MEMPHYS Dept. Biochemistry and Molecular Biology, University of Southern, Denmark
| | - Luis Bagatolli
- Membrane Biophysics and Biophotonics group/MEMPHYS Dept. Biochemistry and Molecular Biology, University of Southern, Denmark
| | - Olivier Marcillat
- Univ Lyon, Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, F- 69373 Lyon, France
| | - Thierry Granjon
- Univ Lyon, Université Claude Bernard Lyon 1, ICBMS - UMR CNRS 5246, MEM2, F-69622 Villeurbanne, France.
| |
Collapse
|
19
|
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends Cell Biol 2016; 26:655-667. [PMID: 27161573 DOI: 10.1016/j.tcb.2016.04.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Several insults cause the inner mitochondrial membrane to abruptly lose osmotic homeostasis, hence initiating a regulated variant of cell death known as 'mitochondrial permeability transition' (MPT)-driven necrosis. MPT provides an etiological contribution to several human disorders characterized by the acute loss of post-mitotic cells, including cardiac and cerebral ischemia. Nevertheless, the precise molecular determinants of MPT remain elusive, which considerably hampers the development of clinically implementable cardio- or neuroprotective strategies targeting this process. We summarize recent findings shedding new light on the supramolecular entity that mediates MPT, the so-called 'permeability transition pore complex' (PTPC). Moreover, we discuss hitherto unresolved controversies on MPT and analyze the major obstacles that still preclude the complete understanding and therapeutic targeting of this process.
Collapse
Affiliation(s)
- Valentina Izzo
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - Valentina Sica
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Faculté de Medicine, Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.
| |
Collapse
|
20
|
Alam MR, Baetz D, Ovize M. Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 2015; 78:80-9. [PMID: 25281838 DOI: 10.1016/j.yjmcc.2014.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 01/06/2023]
Abstract
Reperfusion is characterized by a deregulation of ion homeostasis and generation of reactive oxygen species that enhance the ischemia-related tissue damage culminating in cell death. The mitochondrial permeability transition pore (mPTP) has been established as an important mediator of ischemia-reperfusion (IR)-induced necrotic cell death. Although a handful of proteins have been proposed to contribute in mPTP induction, cyclophilin D (CypD) remains its only bona fide regulatory component. In this review we summarize existing knowledge on the involvement of CypD in mPTP formation in general and its relevance to cardiac IR injury in specific. Moreover, we provide insights of recent advancements on additional functions of CypD depending on its interaction partners and post-translational modifications. Finally we emphasize the therapeutic strategies targeting CypD in myocardial IR injury. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Muhammad Rizwan Alam
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - Delphine Baetz
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Claude Bernard Lyon 1 University, F-69373 Lyon, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Service d'Explorations Fonctionnelles Cardiovasculaires & CIC de Lyon, F-69394 Lyon, France.
| |
Collapse
|
21
|
Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 2014; 78:129-41. [PMID: 25179911 DOI: 10.1016/j.yjmcc.2014.08.018] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/21/2014] [Accepted: 08/24/2014] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (MPTP) is a non-specific pore that opens in the inner mitochondrial membrane (IMM) when matrix [Ca(2+)] is high, especially when accompanied by oxidative stress, high [Pi] and adenine nucleotide depletion. Such conditions occur during ischaemia and subsequent reperfusion, when MPTP opening is known to occur and cause irreversible damage to the heart. Matrix cyclophilin D facilitates MPTP opening and is the target of its inhibition by cyclosporin A that is cardioprotective. Less certainty exists over the composition of the pore itself, with structural and/or regulatory roles proposed for the adenine nucleotide translocase, the phosphate carrier and the FoF1 ATP synthase. Here we critically review the supporting data for the role of each and suggest that they may interact with each other through their bound cardiolipin to form the ATP synthasome. We propose that under conditions favouring MPTP opening, calcium-triggered conformational changes in these proteins may perturb the interface between them generating the pore. Proteins associated with the outer mitochondrial membrane (OMM), such as members of the Bcl-2 family and hexokinase (HK), whilst not directly involved in pore formation, may regulate MPTP opening through interactions between OMM and IMM proteins at "contact sites". Recent evidence suggests that cardioprotective protocols such as preconditioning inhibit MPTP opening at reperfusion by preventing the loss of mitochondrial bound HK2 that stabilises these contact sites. Contact site breakage both sensitises the MPTP to [Ca(2+)] and facilitates cytochrome c loss from the intermembrane space leading to greater ROS production and further MPTP opening. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Andrew P Halestrap
- School of Biochemistry and Bristol CardioVascular, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | - Andrew P Richardson
- School of Biochemistry and Bristol CardioVascular, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|