1
|
Dinesh NEH, Rousseau J, Mosher DF, Strauss M, Mui J, Campeau PM, Reinhardt DP. Mutations in fibronectin dysregulate chondrogenesis in skeletal dysplasia. Cell Mol Life Sci 2024; 81:419. [PMID: 39367925 PMCID: PMC11456097 DOI: 10.1007/s00018-024-05444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFβ1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFβ1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Justine Rousseau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, WI, USA
| | - Mike Strauss
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada
| | - Jeannie Mui
- Facility for Electron Microscopy Research of McGill University, Montreal, QC, Canada
| | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Jovic TH, Thomson EJ, Jones N, Thornton CA, Doak SH, Whitaker IS. Nasoseptal chondroprogenitors isolated through fibronectin-adherence confer no biological advantage for cartilage tissue engineering compared to nasoseptal chondrocytes. Front Bioeng Biotechnol 2024; 12:1421111. [PMID: 39391600 PMCID: PMC11464323 DOI: 10.3389/fbioe.2024.1421111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The ability to bioprint facial cartilages could revolutionise reconstructive surgery, but identifying the optimum cell source remains one of the great challenges of tissue engineering. Tissue specific stem cells: chondroprogenitors, have been extracted previously using preferential adhesion to fibronectin based on the expression of CD49e: a perceived chondroprogenitor stem cell marker present on <1% of cartilage cells. This study sought to determine whether these fibronectin-adherent chondroprogenitor cells could be exploited for cartilage tissue engineering applications in isolation, or combined with differentiated chondrocytes. Methods Nasoseptal cartilage samples from 20 patients (10 male, 10 female) were digested to liberate cartilage-derived cells (CDCs) from extracellular matrix. Total cell number was counted using the Trypan Blue exclusion assay and added to fibronectin coated plates for 20 min, to determine the proportion of fibronectin-adherent (FAC) and non-adherent cells (NFACs). All populations underwent flow cytometry to detect mesenchymal stem/progenitor cell markers and were cultured in osteogenic, chondrogenic and adipogenic media to determine trilineage differentiation potential. Cell adherence and growth kinetics of the different populations were compared using iCELLigence growth assays. Chondrogenic gene expression was assessed using RT-qPCR for Type 2 collagen, aggrecan and SOX9 genes. Varying proportions of NFAC and FACs were cultured in alginate beads to assess tissue engineering potential. Results 52.6% of cells were fibronectin adherent in males and 57.7% in females, yet on flow cytometrical analysis, only 0.19% of cells expressed CD49e. Moreover, all cells (CDC, FAC and NFACs) demonstrated an affinity for trilineage differentiation by first passage and the expression of stem/progenitor cell markers increased significantly from digest to first passage (CD29, 44, 49e, 73 and 90, p < 0.0001). No significant differences were seen in adhesion or growth rates. Collagen and aggrecan gene expression was higher in FACs than CDCs (2-fold higher, p = 0.008 and 0.012 respectively), but no differences in chondrogenic potential were seen in any cell mixtures in 3D culture models. Conclusion The fibronectin adhesion assay does not appear to reliably isolate a chondroprogenitor cell population from nasoseptal cartilage, and these cells confer no advantageous properties for cartilage tissue engineering. Refinement of cell isolation methods and chondroprogenitor markers is warranted for future nasoseptal cartilage tissue engineering efforts.
Collapse
Affiliation(s)
- Thomas H. Jovic
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Emman J. Thomson
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| | - Nick Jones
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Catherine A. Thornton
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Shareen H. Doak
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Iain S. Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Centre, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom
| |
Collapse
|
3
|
Luo C, He J, Wang N, Zhu N, Zhang L, Wang Y, Qin M, Hui T. Enhanced reparatory effect of EI1 on dental pulp via extracellular matrix remodeling by miR-181b-2-3p inhibitor. J Dent Sci 2024; 19:177-185. [PMID: 38303812 PMCID: PMC10829547 DOI: 10.1016/j.jds.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Extracellular matrix (ECM) is crucial for dental pulp repair. The aim of this paper is to investigate the ECM remodeling effect of miR-181b-2-3p (a microRNA) and to verify the reparatory effect of EI1 (an epigenetic drug) and miR-181b-2-3p inhibitor on dental pulp. Materials and methods Levels of ECM-related factors in EI1-treated human dental pulp cells (hDPCs) were measured by qRT-PCR and Western blot. The anti-inflammation effect of EI1 was examined in Lipopolysaccharide-stimulated hDPCs. miR-181b-2-3p mimics or inhibitors were transfected into hDPCs and then the cells' functions were detected. A dual luciferase reporter assay was used to identify the targets of miR-181b-2-3p. Pulpotomy using miR-181b-2-3p antagomirs and EI1 as pulp capping materials was performed in male six-week-old Sprague-Dawley rats. Results EI1 upregulated ECM-related genes expression in hDPCs, but failed to upregulate the collagen1A1 (COL1A1) protein level. Pro-inflammatory factors were downregulated by EI1 in Lipopolysaccharide-stimulated hDPCs. Overexpression of miR-181b-2-3p downregulated the expression of transforming growth factor-β2 (TGF-β2) and fibronectin type III domain-containing protein 5 precursor (FNDC5), while the inhibition had the opposite effect. Dual luciferase reporter assays demonstrated that miR-181b-2-3p targets TGF-β2, FNDC5 and integrin alpha 4 protein (ITGA4). Compared to EI1 was used alone, EI1 combined with the inhibitor upregulated the protein levels of COL1A1, fibronectin (FN1) and TGF-β2 in hDPCs, promoted hDPCs migration, and exhibited reparatory effects on inflamed rat pulp tissue. Conclusion miR-181b-2-3p inhibitor could enhance the reparatory effect of EI1 via ECM remodeling in dental pulp both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiyi Luo
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Jie He
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
- Shenzhen Children's Hospital, Shenzhen, China
| | - Nan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Lixin Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Tianqian Hui
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| |
Collapse
|
4
|
Lin MH, Linares I, Ramirez C, Ramirez YC, Sarkar D. Mechanomorphological Guidance of Colloidal Gel Regulates Cell Morphogenesis. Macromol Biosci 2023; 23:e2300122. [PMID: 37143285 PMCID: PMC10524704 DOI: 10.1002/mabi.202300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Microstructural morphology of the extracellular matrix guides the organization of cells in 3D. However, current biomaterials-based matrices cannot provide distinct spatial cues through their microstructural morphology due to design constraints. To address this, colloidal gels are developed as 3D matrices with distinct microstructure by aggregating ionic polyurethane colloids via electrostatic screening. Due to the defined orientation of interconnected particles, positively charged colloids form extended strands resulting in a dense microstructure whereas negatively charged colloids form compact aggregates with localized large voids. Chondrogenesis of human mesenchymal stem cells (MSCs) and endothelial morphogenesis of human endothelial cells (ECs) are examined in these colloidal gels. MSCs show enhanced chondrogenic response in dense colloidal gel due to their spatial organization achieved by balancing the cell-cell and cell-matrix interactions compared to porous gels where cells are mainly clustered. ECs tend to form relatively elongated cellular networks in dense colloidal gel compared to porous gels. Additionally, the role of matrix stiffness and viscoelasticity in the morphogenesis of MSCs and ECs are analyzed with respect to microstructural morphology. Overall, these results demonstrate that colloidal gels can provide spatial cues through their microstructural morphology and in correlation with matrix mechanics for cell morphogenesis.
Collapse
Affiliation(s)
- Meng Hsuan Lin
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Isabelle Linares
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Cesar Ramirez
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yanni Correa Ramirez
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanjan Sarkar
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Tomer D, Arriagada C, Munshi S, Alexander BE, French B, Vedula P, Caorsi V, House A, Guvendiren M, Kashina A, Schwarzbauer JE, Astrof S. A new mechanism of fibronectin fibril assembly revealed by live imaging and super-resolution microscopy. J Cell Sci 2022; 135:jcs260120. [PMID: 35851804 PMCID: PMC9481930 DOI: 10.1242/jcs.260120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 08/27/2023] Open
Abstract
Fibronectin (Fn1) fibrils have long been viewed as continuous fibers composed of extended, periodically aligned Fn1 molecules. However, our live-imaging and single-molecule localization microscopy data are inconsistent with this traditional view and show that Fn1 fibrils are composed of roughly spherical nanodomains containing six to eleven Fn1 dimers. As they move toward the cell center, Fn1 nanodomains become organized into linear arrays, in which nanodomains are spaced with an average periodicity of 105±17 nm. Periodical Fn1 nanodomain arrays can be visualized between cells in culture and within tissues; they are resistant to deoxycholate treatment and retain nanodomain periodicity in the absence of cells. The nanodomain periodicity in fibrils remained constant when probed with antibodies recognizing distinct Fn1 epitopes or combinations of antibodies recognizing epitopes spanning the length of Fn1. Treatment with FUD, a peptide that binds the Fn1 N-terminus and disrupts Fn1 fibrillogenesis, blocked the organization of Fn1 nanodomains into periodical arrays. These studies establish a new paradigm of Fn1 fibrillogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Darshika Tomer
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
| | - Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
| | - Sudipto Munshi
- Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences. Cell Biology, Neuroscience and Physiology track, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Brenda French
- Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Andrew House
- Otto H. York Chemical and Materials Engineering, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Chemical and Materials Engineering, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical, and Health Sciences, 185 South Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Babaniamansour P, Salimi M, Dorkoosh F, Mohammadi M. Magnetic Hydrogel for Cartilage Tissue Regeneration as well as a Review on Advantages and Disadvantages of Different Cartilage Repair Strategies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7230354. [PMID: 35434125 PMCID: PMC9012656 DOI: 10.1155/2022/7230354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
There is a clear clinical need for efficient cartilage healing strategies for treating cartilage defects which burdens millions of patients physically and financially. Different strategies including microfracture technique, osteochondral transfer, and scaffold-based treatments have been suggested for curing cartilage injuries. Although some improvements have been achieved in several facets, current treatments are still less than satisfactory. Recently, different hydrogel-based biomaterials have been suggested as a therapeutic candidate for cartilage tissue regeneration due to their biocompatibility, high water content, and tunability. Specifically, magnetic hydrogels are becoming more attractive due to their smart response to magnetic fields remotely. We seek to outline the context-specific regenerative potential of magnetic hydrogels for cartilage tissue repair. In this review, first, we explained conventional techniques for cartilage repair and then compared them with new scaffold-based approaches. We illustrated various hydrogels used for cartilage regeneration by highlighting the magnetic hydrogels. Also, we gathered in vitro and in vivo studies of how magnetic hydrogels promote chondrogenesis as well as studied the biological mechanism which is responsible for cartilage repair due to the application of magnetic hydrogel.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Biomedical Engineering, AmirKabir University of Technology, Tehran, Iran
| | - Maryam Salimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Mahajan A, Singh A, Datta D, Katti DS. Bioinspired Injectable Hydrogels Dynamically Stiffen and Contract to Promote Mechanosensing-Mediated Chondrogenic Commitment of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7531-7550. [PMID: 35119254 DOI: 10.1021/acsami.1c11840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing stiff and resilient injectable hydrogels that can mechanically support load-bearing joints while enabling chondrogenic differentiation of stem cells is a major challenge in the field of cartilage tissue engineering. In the present work, a triple-network injectable hydrogel system was engineered using Bombyx mori silk fibroin, carboxymethyl cellulose (CMC), and gelatin. The developed hydrogel demonstrated a simultaneous increase in both stiffness and contraction over time, thereby imparting a four-dimensional (4D) evolving niche to the cells. While resilience was provided by CMC, the dynamic alterations in the hydrogel matrix were attributed to the formation of β-sheets in silk. The engineered contraction facilitated condensation of cells that mimicked an important step during cartilage development. Subsequently, this led to downregulation of YAP signaling and enhanced chondrogenic commitment of stem cells. More importantly, the in vivo study showed that the ectopically regenerated cartilage was mature and closely resembled native articular cartilage. Overall, this strategy of engineering mechanotransduction that promotes chondrogenesis by contraction-mediated condensation is a promising and translatable approach for cartilage repair.
Collapse
Affiliation(s)
- Aman Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Akhilesh Singh
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Dipak Datta
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology─Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
10
|
Sermeus Y, Vangheel J, Geris L, Smeets B, Tylzanowski P. Mechanical Regulation of Limb Bud Formation. Cells 2022; 11:420. [PMID: 35159230 PMCID: PMC8834596 DOI: 10.3390/cells11030420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/28/2022] Open
Abstract
Early limb bud development has been of considerable interest for the study of embryological development and especially morphogenesis. The focus has long been on biochemical signalling and less on cell biomechanics and mechanobiology. However, their importance cannot be understated since tissue shape changes are ultimately controlled by active forces and bulk tissue rheological properties that in turn depend on cell-cell interactions as well as extracellular matrix composition. Moreover, the feedback between gene regulation and the biomechanical environment is still poorly understood. In recent years, novel experimental techniques and computational models have reinvigorated research on this biomechanical and mechanobiological side of embryological development. In this review, we consider three stages of early limb development, namely: outgrowth, elongation, and condensation. For each of these stages, we summarize basic biological regulation and examine the role of cellular and tissue mechanics in the morphogenetic process.
Collapse
Affiliation(s)
- Yvenn Sermeus
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Jef Vangheel
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
- GIGA In Silico Medicine, Université de Liège, 4000 Liège, Belgium
- SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Smeets
- MeBioS, KU Leuven, 3000 Leuven, Belgium; (Y.S.); (J.V.); (B.S.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium;
| | - Przemko Tylzanowski
- SBE, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Pei YA, Pei M. Hypoxia Modulates Regenerative Potential of Fetal Stem Cells. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:363. [PMID: 36660242 PMCID: PMC9846719 DOI: 10.3390/app12010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adult mesenchymal stem cells (MSCs) are prone to senescence, which limits the scope of their use in tissue engineering and regeneration and increases the likelihood of post-implantation failure. As a robust alternative cell source, fetal stem cells can prevent an immune reaction and senescence. However, few studies use this cell type. In this study, we sought to characterize fetal cells' regenerative potential in hypoxic conditions. Specifically, we examined whether hypoxic exposure during the expansion and differentiation phases would affect human fetal nucleus pulposus cell (NPC) and fetal synovium-derived stem cell (SDSC) plasticity and three-lineage differentiation potential. We concluded that fetal NPCs represent the most promising cell source for chondrogenic differentiation, as they are more responsive and display stronger phenotypic stability, particularly when expanded and differentiated in hypoxic conditions. Fetal SDSCs have less potential for chondrogenic differentiation compared to their adult counterpart. This study also indicated that fetal SDSCs exhibit a discrepancy in adipogenic and osteogenic differentiation in response to hypoxia.
Collapse
Affiliation(s)
- Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
12
|
van Hoolwerff M, Rodríguez Ruiz A, Bouma M, Suchiman HED, Koning RI, Jost CR, Mulder AA, Freund C, Guilak F, Ramos YFM, Meulenbelt I. High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. SCIENCE ADVANCES 2021; 7:eabg8583. [PMID: 34739320 PMCID: PMC8570604 DOI: 10.1126/sciadv.abg8583] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Osteoarthritis is the most prevalent joint disease worldwide, yet progress in development of effective disease-modifying treatments is slow because of lack of insight into the underlying disease pathways. Therefore, we aimed to identify the causal pathogenic mutation in an early-onset osteoarthritis family, followed by functional studies in human induced pluripotent stem cells (hiPSCs) in an in vitro organoid cartilage model. We demonstrated that the identified causal missense mutation in the gelatin-binding domain of the extracellular matrix protein fibronectin resulted in significant decreased binding capacity to collagen type II. Further analyses of formed hiPSC-derived neo-cartilage tissue highlighted that mutated fibronectin affected chondrogenic capacity and propensity to a procatabolic osteoarthritic state. Together, we demonstrate that binding of fibronectin to collagen type II is crucial for fibronectin downstream gene expression of chondrocytes. We advocate that effective treatment development should focus on restoring or maintaining proper binding between fibronectin and collagen type II.
Collapse
Affiliation(s)
- Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marga Bouma
- LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - H. Eka D. Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Roman I. Koning
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Carolina R. Jost
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Aat A. Mulder
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Christian Freund
- LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University and Shriners Hospitals for Children, St. Louis, MO, USA
| | - Yolande F. M. Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Tripathi AK, Choudhary S, Singh V, Verma PK. Genetic Association and Role of Surgery for the Treatment of Lower Limb Deformities in Diastrophic Dysplasia: A Case Report. J Orthop Case Rep 2021; 11:81-85. [PMID: 34141677 PMCID: PMC8180322 DOI: 10.13107/jocr.2021.v11.i02.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction Diastrophic dysplasia (DTD) results from SCN26A2 gene mutation, with autosomal recessive inheritance and widely variable phenotype. The gene has been mapped to chromosome 5q32-q33.1. Case Report We present a case of a 4-year-old female with short stature, bilateral feet and knee deformity, and dysplastic facies. SCN26A2 mutations were seen in patient as well as parents. She underwent multiple orthopedic procedures involving metatarsals, gastrosoleus, and distal femur. Based on typical clinical features, DTD was suspected. Genetic studies of patient and parents provided the exact diagnosis in this case. Conclusion Genetic diagnosis and family counseling are important caveat of management. Key features like ear abnormalities help to suspect diagnosis which requires a high index of suspicion. Associated bony and soft-tissue abnormalities of lower limb may require surgical intervention for improvement of gait, functions, and cosmesis.
Collapse
Affiliation(s)
- Anchal Kumar Tripathi
- Department of Pediatrics, All India Institute of medical Sciences, Rishikesh, Uttarakhand, India
| | - Sunny Choudhary
- Department of Orthopedic Surgery, All India Institute of medical Sciences, Rishikesh, Uttarakhand, India
| | - Vivek Singh
- Department of Orthopedic Surgery, All India Institute of medical Sciences, Rishikesh, Uttarakhand, India
| | - Prashant Kumar Verma
- Department of Pediatrics, All India Institute of medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
14
|
Yao B, Wang C, Zhou Z, Zhang M, Zhao D, Bai X, Leng X. Comparative transcriptome analysis of the main beam and brow tine of sika deer antler provides insights into the molecular control of rapid antler growth. Cell Mol Biol Lett 2020; 25:42. [PMID: 32944020 PMCID: PMC7487962 DOI: 10.1186/s11658-020-00234-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Deer antlers have become a valuable model for biomedical research due to the capacities of regeneration and rapid growth. However, the molecular mechanism of rapid antler growth remains to be elucidated. The aim of the present study was to compare and explore the molecular control exerted by the main beam and brow tine during rapid antler growth. Methods The main beams and brow tines of sika deer antlers were collected from Chinese sika deer (Cervus nippon) at the rapid growth stage. Comparative transcriptome analysis was conducted using RNA-Seq technology. Differential expression was assessed using the DEGseq package. Functional Gene Ontology (GO) enrichment analysis was accomplished using a rigorous algorithm according to the GO Term Finder tool, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was accomplished with the R function phyper, followed by the hypergeometric test and Bonferroni correction. Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to verify the RNA levels for differentially expressed mRNAs. Results The expression levels of 16 differentially expressed genes (DEGs) involved in chondrogenesis and cartilage development were identified as significantly upregulated in the main beams, including transcription factor SOX-9 (Sox9), collagen alpha-1(II) chain (Col2a1), aggrecan core protein (Acan), etc. However, the expression levels of 17 DEGs involved in endochondral ossification and bone formation were identified as significantly upregulated in the brow tines, including collagen alpha-1(X) chain (Col10a1), osteopontin (Spp1) and bone sialoprotein 2 (Ibsp), etc. Conclusion These results suggest that the antler main beam has stronger growth capacity involved in chondrogenesis and cartilage development compared to the brow tine during rapid antler growth, which is mainly achieved through regulation of Sox9 and its target genes, whereas the antler brow tine has stronger capacities of endochondral bone formation and resorption compared to the main beam during rapid antler growth, which is mainly achieved through the genes involved in regulating osteoblast and osteoclast activities. Thus, the current research has deeply expanded our understanding of the intrinsic molecular regulation displayed by the main beam and brow tine during rapid antler growth.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Chaonan Wang
- College of traditional Chinese medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117 Jilin China
| |
Collapse
|
15
|
Duan X, Cai L, Schmidt EJ, Shen J, Tycksen ED, O’Keefe R, Cheverud JM, Farooq Rai M. RNA-seq analysis of chondrocyte transcriptome reveals genetic heterogeneity in LG/J and SM/J murine strains. Osteoarthritis Cartilage 2020; 28:516-527. [PMID: 31945456 PMCID: PMC7108965 DOI: 10.1016/j.joca.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the transcriptomic differences in chondrocytes obtained from LG/J (large, healer) and SM/J (small, non-healer) murine strains in an attempt to discern the molecular pathways implicated in cartilage regeneration and susceptibility to osteoarthritis (OA). DESIGN We performed RNA-sequencing on chondrocytes derived from LG/J (n = 16) and SM/J (n = 16) mice. We validated the expression of candidate genes and compared single nucleotide polymorphisms (SNPs) between the two mouse strains. We also examined gene expression of positional candidates for ear pinna regeneration and long bone length quantitative trait loci (QTLs) that display differences in cartilaginous expression. RESULTS We observed a distinct genetic heterogeneity between cells derived from LG/J and SM/J mouse strains. We found that gene ontologies representing cell development, cartilage condensation, and regulation of cell differentiation were enriched in LG/J chondrocytes. In contrast, gene ontologies enriched in the SM/J chondrocytes were mainly related to inflammation and degeneration. Moreover, SNP analysis revealed that multiple validated genes vary in sequence between LG/J and SM/J in coding and highly conserved noncoding regions. Finally, we showed that most QTLs have 20-30% of their positional candidates displaying differential expression between the two mouse strains. CONCLUSIONS While the enrichment of pathways related to cell differentiation, cartilage development and cartilage condensation infers superior healing potential of LG/J strain, the enrichment of pathways related to cytokine production, immune cell activation and inflammation entails greater susceptibility of SM/J strain to OA. These data provide novel insights into chondrocyte transcriptome and aid in identification of the quantitative trait genes and molecular differences underlying the phenotypic differences associated with individual QTLs.
Collapse
Affiliation(s)
- Xin Duan
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric J. Schmidt
- School of Physician Assistant Medicine, College of Health Sciences, University of Lynchburg, Lynchburg, VA, United States
| | - Jie Shen
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Regis O’Keefe
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - James M. Cheverud
- Department of Biology, Loyola University, Chicago, IL, United States
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Johnstone B, Stoddart MJ, Im GI. Multi-Disciplinary Approaches for Cell-Based Cartilage Regeneration. J Orthop Res 2020; 38:463-472. [PMID: 31478253 DOI: 10.1002/jor.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Articular cartilage does not regenerate in adults. A lot of time and resources have been dedicated to cartilage regeneration research. The current understanding suggests that multi-disciplinary approach including biologic, genetic, and mechanical stimulations may be needed for cell-based cartilage regeneration. This review summarizes contents of a workshop sponsored by International Combined Orthopaedic Societies during the 2019 annual meeting of the Orthopaedic Research Society held in Austin, Texas. Three approaches for cell-based cartilage regeneration were introduced, including cellular basis of chondrogenesis, gene-enhanced cartilage regeneration, and physical modulation to divert stem cells to chondrogenic cell fate. While the complicated nature of cartilage regeneration has not allowed us to achieve successful regeneration of hyaline articular cartilage so far, the utilization of multi-disciplinary approaches in various fields of biomedical engineering will provide means to achieve this goal faster. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:463-472, 2020.
Collapse
Affiliation(s)
- Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon
| | | | - Gun-Il Im
- Integrative Research Institute for Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
17
|
Casanova MR, Reis RL, Martins A, Neves NM. Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. Biomacromolecules 2020; 21:1368-1378. [DOI: 10.1021/acs.biomac.9b01546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marta R. Casanova
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
18
|
Wang Y, Fu Y, Yan Z, Zhang XB, Pei M. Impact of Fibronectin Knockout on Proliferation and Differentiation of Human Infrapatellar Fat Pad-Derived Stem Cells. Front Bioeng Biotechnol 2019; 7:321. [PMID: 31803729 PMCID: PMC6873900 DOI: 10.3389/fbioe.2019.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin plays an essential role in tissue development and regeneration. However, the effects of fibronectin knockout (FN1-KO) on stem cells' proliferation and differentiation remain unknown. In this study, CRISPR/Cas9 generated FN1-KO in human infrapatellar fat pad-derived stem cells (IPFSCs) was evaluated for proliferation ability including cell cycle and surface markers as well as stemness gene expression and for differentiation capacity including chondrogenic and adipogenic differentiation. High passage IPFSCs were also evaluated for proliferation and differentiation capacity after expansion on decellularized ECM (dECM) deposited by FN1-KO cells. Successful FN1-KO in IPFSCs was confirmed by Sanger sequencing and Inference of CRISPR Edits analysis (ICE) as well as immunostaining for fibronectin expression. Compared to the GFP control, FN1-KO cells showed an increase in cell growth, percentage of cells in the S and G2 phases, and CD105 and CD146 expression but a decrease in expression of stemness markers CD73, CD90, SSEA4, and mesenchymal condensation marker CDH2 gene. FN1-KO decreased both chondrogenic and adipogenic differentiation capacity. Interestingly, IPFSCs grown on dECMs deposited by FN1-KO cells exhibited a decrease in cell proliferation along with a decline in CDH2 expression. After induction, IPFSCs plated on dECMs deposited by FN1-KO cells also displayed decreased expression of both chondrogenic and adipogenic capacity. We concluded that FN1-KO increased human IPFSCs' proliferation capacity; however, this capacity was reversed after expansion on dECM deposited by FN1-KO cells. Significance of fibronectin in chondrogenic and adipogenic differentiation was demonstrated in both FN1-KO IPFSCs and FN(-) matrix microenvironment.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, United States
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawen Fu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China
- Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China
- Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, United States
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
19
|
Frahs S, Reeck JC, Yocham KM, Frederiksen A, Fujimoto K, Scott CM, Beard RS, Brown RJ, Lujan TJ, Solov’yov IA, Estrada D, Oxford JT. Prechondrogenic ATDC5 Cell Attachment and Differentiation on Graphene Foam; Modulation by Surface Functionalization with Fibronectin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41906-41924. [PMID: 31639302 PMCID: PMC6858527 DOI: 10.1021/acsami.9b14670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/22/2019] [Indexed: 05/25/2023]
Abstract
Graphene foam holds promise for tissue engineering applications. In this study, graphene foam was used as a three-dimension scaffold to evaluate cell attachment, cell morphology, and molecular markers of early differentiation. The aim of this study was to determine if cell attachment and elaboration of an extracellular matrix would be modulated by functionalization of graphene foam with fibronectin, an extracellular matrix protein that cells adhere well to, prior to the establishment of three-dimensional cell culture. The molecular dynamic simulation demonstrated that the fibronectin-graphene interaction was stabilized predominantly through interaction between the graphene and arginine side chains of the protein. Quasi-static and dynamic mechanical testing indicated that fibronectin functionalization of graphene altered the mechanical properties of graphene foam. The elastic strength of the scaffold increased due to fibronectin, but the viscoelastic mechanical behavior remained unchanged. An additive effect was observed in the mechanical stiffness when the graphene foam was both coated with fibronectin and cultured with cells for 28 days. Cytoskeletal organization assessed by fluorescence microscopy demonstrated a fibronectin-dependent reorganization of the actin cytoskeleton and an increase in actin stress fibers. Gene expression assessed by quantitative real-time polymerase chain reaction of 9 genes encoding cell attachment proteins (Cd44, Ctnna1, Ctnnb1, Itga3, Itga5, Itgav, Itgb1, Ncam1, Sgce), 16 genes encoding extracellular matrix proteins (Col1a1, Col2a1, Col3a1, Col5a1, Col6a1, Ecm1, Emilin1, Fn1, Hapln1, Lamb3, Postn, Sparc, Spp1, Thbs1, Thbs2, Tnc), and 9 genes encoding modulators of remodeling (Adamts1, Adamts2, Ctgf, Mmp14, Mmp2, Tgfbi, Timp1, Timp2, Timp3) indicated that graphene foam provided a microenvironment conducive to expression of genes that are important in early chondrogenesis. Functionalization of graphene foam with fibronectin modified the cellular response to graphene foam, demonstrated by decreases in relative gene expression levels. These findings illustrate the combinatorial factors of microscale materials properties and nanoscale molecular features to consider in the design of three-dimensional graphene scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Stephanie
M. Frahs
- Center
of Biomedical Research Excellence in Matrix Biology, Biomolecular
Research Center, Boise State University, Boise, Idaho 83725, United States
| | - Jonathon C. Reeck
- Center
of Biomedical Research Excellence in Matrix Biology, Biomolecular
Research Center, Boise State University, Boise, Idaho 83725, United States
| | - Katie M. Yocham
- Department
of Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho 83725, United States
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Anders Frederiksen
- University
of Southern Denmark, Department of Physics,
Chemistry and Pharmacy, Campusvej 55, 5230 Odense M, Denmark
| | - Kiyo Fujimoto
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Crystal M. Scott
- Center
of Biomedical Research Excellence in Matrix Biology, Biomolecular
Research Center, Boise State University, Boise, Idaho 83725, United States
| | - Richard S. Beard
- Center
of Biomedical Research Excellence in Matrix Biology, Biomolecular
Research Center, Boise State University, Boise, Idaho 83725, United States
| | - Raquel J. Brown
- Center
of Biomedical Research Excellence in Matrix Biology, Biomolecular
Research Center, Boise State University, Boise, Idaho 83725, United States
| | - Trevor J. Lujan
- Department
of Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ilia A. Solov’yov
- Department
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Straße
9-11, 26129 Oldenburg, Germany
| | - David Estrada
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Julia Thom Oxford
- Center
of Biomedical Research Excellence in Matrix Biology, Biomolecular
Research Center, Boise State University, Boise, Idaho 83725, United States
- Department
of Biological Sciences, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
20
|
Stage differential effects of verteporfin on the differentiation of chick embryo wing bud mesenchymal cells. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Li YY, Lam KL, Chen AD, Zhang W, Chan BP. Collagen microencapsulation recapitulates mesenchymal condensation and potentiates chondrogenesis of human mesenchymal stem cells – A matrix-driven in vitro model of early skeletogenesis. Biomaterials 2019; 213:119210. [DOI: 10.1016/j.biomaterials.2019.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
|
22
|
Liu Y, Kuang B, Rothrauff BB, Tuan RS, Lin H. Robust bone regeneration through endochondral ossification of human mesenchymal stem cells within their own extracellular matrix. Biomaterials 2019; 218:119336. [PMID: 31310952 DOI: 10.1016/j.biomaterials.2019.119336] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 01/23/2023]
Abstract
Mesenchymal stem cells (MSCs) embedded in their secreted extracellular matrix (mECM) constitute an exogenous scaffold-free construct capable of generating different types of tissues. Whether MSC-mECM constructs can recapitulate endochondral ossification (ECO), a developmental process during in vivo skeletogenesis, remains unknown. In this study, MSC-mECM constructs are shown to result in robust bone formation both in vitro and in vivo through the process of endochondral ossification when sequentially exposed to chondrogenic and osteogenic cues. Of interest, a novel trypsin pre-treatment was introduced to change cell morphology, which allowed MSC-mECM constructs to undergo the N-cadherin-mediated developmental condensation process and subsequent chondrogenesis. Furthermore, bone formation by MSC-mECM constructs were significantly enhanced by the ECO protocol, as compared to conventional in vitro culture in osteogenic medium alone. This was designed to promote direct bone formation as seen in intramembranous ossification (IMO). The developmentally informed method reported in this study represents a robust and efficacious approach for stem-cell based bone generation, which is superior to the conventional osteogenic induction procedure.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA
| | - Biao Kuang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA; Xiangya Third Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA; The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA.
| |
Collapse
|
23
|
Yao B, Zhang M, Liu M, Lu B, Leng X, Hu Y, Zhao D, Zhao YU. Identification of the miRNA-mRNA regulatory network of antler growth centers. J Biosci 2019; 44:11. [PMID: 30837362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antler growth is a unique event compared to other growth and development processes in mammals. Antlers grow extremely fast during the rapid growth stage when growth rate peaks at 2 cm per day. Antler growth is driven by a specific endochondral ossification process in the growth center that is in the distal region of the antler tip. In this study, we used state-of-art RNA-seq technology to analyze the expression profiles of mRNAs and miRNAs during antler growth. Our results indicated that the expression levels of multiple genes involved in chondrogenesis and endochondral ossification, including Fn1, Sox9, Col2a1, Acan, Col9a1, Col11a1, Hapln1, Wwp2, Fgfr3, Comp, Sp7 and Ihh, were significantly increased at the rapid growth stage. Our results also indicated that there were multiple differentially expressed miRNAs interacting with differentially expressed genes with opposite expression patterns. Furthermore, some of the miRNAs, including miR-3072-5p, miR-1600, miR-34-5p, miR-6889-5p and miR-6729-5p, simultaneously interacted with and controlled multiple genes involved in the process of chondrogenesis and endochondral ossification. Therefore, we established a miRNA-mRNA regulatory network by identifying miRNAs and their target genes that were differentially expressed in the antler growth centers by comparing the rapid growth stage and the initial growth stage.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Sarem M, Otto O, Tanaka S, Shastri VP. Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis. Stem Cell Res Ther 2019; 10:10. [PMID: 30630531 PMCID: PMC6329065 DOI: 10.1186/s13287-018-1103-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 01/09/2023] Open
Abstract
Background Although mesenchymal stem/stromal cell (MSC) chondrogenic differentiation has been thoroughly investigated, the rudiments for enhancing chondrogenesis have remained largely dependent on external cues. Focus to date has been on extrinsic variables such as soluble signals, culture conditions (bioreactors), and mechanical stimulation. However, the role of intrinsic mechanisms of MSC programming-based mechanobiology remains to be explored. Since aggregation of MSCs, a prerequisite for chondrogenesis, generates tension within the cell agglomerate, we inquired if the initial number of cells forming the aggregate (aggregate cell number (ACN)) can impact chondrogenesis. Methods Aggregates of varying ACN were formed using well-established centrifugation approach. Progression of chondrogenic differentiation in the aggregates was assessed over 3 weeks in presence and absence of transforming growth factor-beta 1 (TGF-β1). Mechanical properties of the cells were characterized using high-throughput real-time deformability cytometry (RT-DC), and gene expression was analyzed using Affymetrix gene array. Expression of molecular markers linked to chondrogenesis was assessed using western blot and immunofluorescence. Results Reducing ACN from 500 k to 70 k lead to activation and acceleration of the chondrogenic differentiation, independent of soluble chondro-inductive factors, which involves changes to β-catenin-dependent TCF/LEF transcriptional activity and expression of anti-apoptotic protein survivin. RT-DC analysis revealed that stiffness and size of cells within aggregates are modulated by ACN. A direct correlation between progression of chondrogenesis and emergence of stiffer cell phenotype was found. Affymetrix gene array analysis revealed a downregulation of genes associated with lipid synthesis and regulation, which could account for observed changes in cell stiffness. Immunofluorescence and western blot analysis revealed that increasing ACN upregulates the expression of lipid raft protein caveolin-1, a β-catenin binding partner, and downregulates the expression of N-cadherin. As a demonstration of the relevance of these findings in MSC-based strategies for skeletal repair, it is shown that implanting aggregates within collagenous matrix not only decreases the necessity for high cell numbers but also leads to marked improvement in the quality of the deposited tissue. Conclusions This study presents a simple and donor-independent strategy to enhance the efficiency of MSC chondrogenic differentiation and identifies changes in cell mechanics coincident with MSC chondrogenesis with potential translational applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-1103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melika Sarem
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier Str.31, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany.,Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Response in Cardiovascular Diseases, University of Greifswald, Fleischmannstr. 42-44, 17489, Greifswald, Germany
| | - Simon Tanaka
- Computational Biology Group, D-BSSE, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier Str.31, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany. .,Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513, Teltow, Germany.
| |
Collapse
|
26
|
Cadoff EB, Sheffer R, Wientroub S, Ovadia D, Meiner V, Schwarzbauer JE. Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia. Clin Genet 2018; 94:429-437. [PMID: 30051459 DOI: 10.1111/cge.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/30/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Spondylometaphyseal dysplasia (SMD) is characterized by developmental changes in long bones and vertebrae. It has large phenotypic diversity and multiple genetic causes, including a recent link to novel variants in the extracellular matrix (ECM) protein fibronectin (FN), a regulator of ECM assembly and key link between the ECM and proper cell function. We identified a patient with a unique SMD, similar to SMD with corner fractures. The patient has been followed over 19 years and presents with short stature, genu varum, kyphoscoliosis, and pectus carinatum. Radiography shows metaphyseal changes that resolved over time, vertebral changes, and capitular avascular necrosis. Whole exome sequencing identified a novel heterozygous FN1 variant (p.Cys97Trp). Using mass spectroscopy, mutant FN was detected in plasma and in culture medium of primary dermal fibroblasts isolated from the patient, but mutant protein was much less abundant than wild-type FN. Immunofluorescence and immunoblotting analyses show that mutant fibroblasts assemble significantly lower amounts of FN matrix than wild-type cells, and mutant FN was preferentially retained within the endoplasmic reticulum. This work highlights the importance of FN in skeletal development, and its potential role in the pathogenesis of a subtype of SMD.
Collapse
Affiliation(s)
- E B Cadoff
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - R Sheffer
- Department of Genetics and Metabolic Disorders, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Wientroub
- Department of Pediatric Orthopedics, Dana-Dwek Children's Hospital, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Ovadia
- Department of Pediatric Orthopedics, Dana-Dwek Children's Hospital, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - V Meiner
- Department of Genetics and Metabolic Disorders, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
27
|
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 2018; 1442:17-34. [PMID: 30008181 DOI: 10.1111/nyas.13930] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
Articular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities. Hypertrophy is a necessary, transient developmental stage in growth plate chondrocytes that culminates in bone formation; in OA, however, chondrocyte hypertrophy is catastrophic and it is believed to initiate and perpetuate a cascade of events that ultimately result in permanent cartilage damage. Emphasizing changes in DNA methylation status and alterations in NF-κB signaling in OA, this review summarizes the data from the literature highlighting the loss of phenotypic stability and the hypertrophic differentiation of OA chondrocytes as central contributing factors to OA pathogenesis.
Collapse
Affiliation(s)
- Purva Singh
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| |
Collapse
|
28
|
Sorrell JM, Somoza RA, Caplan AI. Human mesenchymal stem cells induced to differentiate as chondrocytes follow a biphasic pattern of extracellular matrix production. J Orthop Res 2018; 36:1757-1766. [PMID: 29194731 PMCID: PMC5976510 DOI: 10.1002/jor.23820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
Regenerative medicine and tissue engineering studies are actively developing novel means to repair adult articular cartilage defects using biological approaches. One such approach is the harnessing of adult human therapeutic cells such as those referred to as mesenchymal stem cells. Upon exposure to chondrogenic signals, these cells differentiate and initiate the production of a complex and voluminous cartilaginous matrix that is crucial to both the structure and function of cartilage. Furthermore, this complexity requires the time-sensitive activation of a large number of genes to produce the components of this matrix. The current study analyzed the kinetics of matrix production in an aggregate culture model where adult human mesenchymal stem cells were induced to differentiate as chondrocytes. The results indicate the existence of a biphasic mode of differentiation and maturation during which matrix genes and molecules are differentially activated and secreted. These results have important implications for developing novel approaches for the creation of tissue engineered articular cartilage. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1757-1766, 2018.
Collapse
Affiliation(s)
- J. Michael Sorrell
- Department of Biology, Skeletal Research Center; Case Western Reserve University; Cleveland Ohio 44106
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal Research Center; Case Western Reserve University; Cleveland Ohio 44106
| | - Arnold I. Caplan
- Department of Biology, Skeletal Research Center; Case Western Reserve University; Cleveland Ohio 44106
| |
Collapse
|
29
|
Anderson DE, Markway BD, Weekes KJ, McCarthy HE, Johnstone B. Physioxia Promotes the Articular Chondrocyte-Like Phenotype in Human Chondroprogenitor-Derived Self-Organized Tissue. Tissue Eng Part A 2017; 24:264-274. [PMID: 28474537 DOI: 10.1089/ten.tea.2016.0510] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Biomaterial-based tissue engineering has not successfully reproduced the structural architecture or functional mechanical properties of native articular cartilage. In scaffold-free tissue engineering systems, cells secrete and organize the entire extracellular matrix over time in response to environmental signals such as oxygen level. In this study, we investigated the effect of oxygen on the formation of neocartilage from human-derived chondrogenic cells. MATERIALS AND METHODS Articular chondrocytes (ACs) and articular cartilage progenitor cells (ACPs) derived from healthy human adults were guided toward cell condensation by centrifugation onto plate inserts that were uncoated or coated with either agarose or fibronectin. Neocartilage discs were cultured at hyperoxic (20%) or physioxic (5%) oxygen levels, and biochemical, biomechanical, and molecular analyses were used to compare the cartilage produced by ACs versus ACPs. RESULTS Fibronectin-coated inserts proved optimal for growing cartilaginous discs from both cell types. In comparison with culture in hyperoxia, AC neocartilage cultured at physioxia exhibited a significant increase in chondrogenic gene expression, proteoglycan production, and mechanical properties with a concomitant decrease in collagen content. At both oxygen levels, ACP-derived neocartilage produced tissue with significantly enhanced mechanical properties and collagen content relative to AC-derived neocartilage. Both ACs and ACPs produced substantial collagen II and reduced levels of collagens I and X in physioxia relative to hyperoxia. Neocartilage from ACPs exhibited anisotropic organization characteristic of native cartilage with respect to collagen VI of the pericellular matrix when compared with AC-derived neocartilage; however, only ACs produced abundant surface-localized lubricin. DISCUSSION AND CONCLUSIONS Guiding human-derived cells toward condensation and subsequent culture in physioxia promoted the articular cartilage tissue phenotype for ACs and ACPs. Unlike ACs, ACPs are clonable and highly expandable while retaining chondrogenicity. The ability to generate large tissues utilizing a scaffold-free approach from a single autologous progenitor cell may represent a promising source of neocartilage destined for cartilage repair.
Collapse
Affiliation(s)
- Devon E Anderson
- 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon
| | - Brandon D Markway
- 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon
| | - Kenneth J Weekes
- 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon
| | - Helen E McCarthy
- 2 School of Biosciences, Cardiff University , Cardiff, United Kingdom
| | - Brian Johnstone
- 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
30
|
Kara N, Wei C, Commanday AC, Patton JG. miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development. Dev Biol 2017. [PMID: 28625871 PMCID: PMC5582384 DOI: 10.1016/j.ydbio.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cranial neural crest cells are a multipotent cell population that generate all the elements of the pharyngeal cartilage with differentiation into chondrocytes tightly regulated by temporal intracellular and extracellular cues. Here, we demonstrate a novel role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive regulator of chondrogenesis. Knock down of miR-27 led to nearly complete loss of pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-chondrogenic cells. Focal adhesion kinase (FAK) is a key regulator in integrin-mediated extracellular matrix (ECM) adhesion and has been proposed to function as a negative regulator of chondrogenesis. We show that FAK is downregulated in the pharyngeal arches during chondrogenesis and is a direct target of miR-27. Suppressing the accumulation of FAK in miR-27 morphants partially rescued the severe pharyngeal cartilage defects observed upon knock down of miR-27. These data support a crucial role for miR-27 in promoting chondrogenic differentiation in the pharyngeal arches through regulation of FAK.
Collapse
Affiliation(s)
- Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chunyao Wei
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Alexander C Commanday
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
31
|
Varadaraj A, Jenkins LM, Singh P, Chanda A, Snider J, Lee NY, Amsalem-Zafran AR, Ehrlich M, Henis YI, Mythreye K. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell 2017; 28:1195-1207. [PMID: 28298487 PMCID: PMC5415016 DOI: 10.1091/mbc.e16-08-0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
There is increased recycling of soluble fibronectin from the cell surface for fibrillogenesis. This recycling is regulated by TGF-β in a transcription- and SMAD-independent manner via specific TβRII and integrin α5β1 interactions. The recycling of fibronectin is Rab11 dependent and is required for TGF-β–induced cell migration. Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β–induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface–internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Priyanka Singh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201
| | - John Snider
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - N Y Lee
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
32
|
Carrion B, Souzanchi MF, Wang VT, Tiruchinapally G, Shikanov A, Putnam AJ, Coleman RM. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment. Adv Healthc Mater 2016; 5:1192-202. [PMID: 26959641 DOI: 10.1002/adhm.201501017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/24/2016] [Indexed: 01/10/2023]
Abstract
Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.
Collapse
Affiliation(s)
- Bita Carrion
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | | | | | | | - Ariella Shikanov
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Andrew J. Putnam
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Rhima M. Coleman
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
- Mechanical Engineering; University of Michigan; Ann Arbor 48109 USA
| |
Collapse
|
33
|
Blandin AF, Noulet F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Vereb G, Lelong-Rebel I, Martin S, Dontenwill M, Lehmann M. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376:328-38. [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Fanny Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Guillaume Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Marie-Cécile Mercier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Laurence Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Philippe Ronde
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, France
| | - Nelly Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France; Department of Pharmacy, Centre Paul Strauss, Strasbourg, France
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Isabelle Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Sophie Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Monique Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Maxime Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
34
|
Vega ME, Schwarzbauer JE. Collaboration of fibronectin matrix with other extracellular signals in morphogenesis and differentiation. Curr Opin Cell Biol 2016; 42:1-6. [PMID: 27062478 DOI: 10.1016/j.ceb.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Tissue formation and cell differentiation depend on a properly assembled extracellular matrix (ECM). Fibronectin is a key constituent of the pericellular ECM, forming essential connections between cell surface integrin receptors and structural components of the ECM. Recent studies using vertebrate models, conditional gene knockouts, tissue explants, and cell culture systems have identified developmental processes that depend on fibronectin and its receptor α5β1 integrin. We describe requirements for fibronectin matrix in the cardiovascular system, somite and precartilage development, and epithelial-mesenchymal transition. Information about molecular mechanisms shows the importance of fibronectin and integrins during tissue morphogenesis and cell differentiation, as well as their cooperation with growth factors to mediate changes in cell behaviors.
Collapse
Affiliation(s)
- Maria E Vega
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States.
| |
Collapse
|
35
|
Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA. Osteoarthritis Cartilage 2016; 24:534-43. [PMID: 26497608 PMCID: PMC4769094 DOI: 10.1016/j.joca.2015.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. DESIGN A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3'-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. RESULTS We identified 990 known miRNAs and 1621 potential novel miRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate miRNAs were analysed further, of which six remained after northern blot analysis. Three novel miRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). CONCLUSION Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis (OA). Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man.
Collapse
|
36
|
Brennan JR, Hocking DC. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly. Acta Biomater 2016; 32:198-209. [PMID: 26712598 PMCID: PMC4754160 DOI: 10.1016/j.actbio.2015.12.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/24/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022]
Abstract
The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. STATEMENT OF SIGNIFICANCE Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to organize cells into modular building blocks for artificial tissue fabrication. Fibronectin is an ECM protein that plays a key role in tissue formation during embryonic development. Additionally, the cell-mediated process of converting soluble fibronectin into insoluble, ECM-associated fibrils has been shown to initiate cellular self-assembly in vitro. In this study, we examine the relationship between the strength of cell-substrate adhesions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Our results indicate that substrate composition and density play cooperative roles with cell-mediated fibronectin matrix assembly to control the transition of cells from 2D monolayers into 3D multicellular aggregates. Results of this study provide a quantitative approach to build predictive models of cellular self-assembly, as well as a simple cell-culture platform to produce biomimetic units for modular tissue engineering.
Collapse
Affiliation(s)
- James R Brennan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Denise C Hocking
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
37
|
Kim IG, Ko J, Lee HR, Do SH, Park K. Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Biomaterials 2016; 85:18-29. [PMID: 26854388 DOI: 10.1016/j.biomaterials.2016.01.048] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/16/2023]
Abstract
Mesenchymal cells condensation is crucial in chondrogenic development. However current tissue-engineered scaffolds for chondrogenesis pay little attention to this phenomenon. In this study, we fabricate poly(l-lactide-co-glycolide) (PLGA)/poly(l-lactide) (PLLA) microfiber scaffolds and coat them with human fibroblast-derived matrix (hFDM) that is a decellularized extracellular matrix (ECM) obtained from in vitro cultured human lung fibroblasts (WI-38). Those scaffolds were then conjugated with heparin via EDC chemistry and subsequently immobilized with transforming growth factor (TGF)-β1. The amount of TGF-β1 was quantitatively measured and the release profile showed a continuous release of TGF-β1 for 4 weeks. Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) were seeded in four different scaffolds; control, fibronectin (FN)-coated, hFDM-coated, hFDM/TGF-β1 and subjected to chondrogenic differentiation in vitro for up to 28 days. Both hFDM and hFDM/TGF-β1 groups exhibited significantly more synthesis of glycosaminoglycan (GAG) and much better upregulation of chondrogenic markers expression. Interestingly, MSCs condensation that led to cell aggregates was clearly observed with time in the two hFDM-coated groups and the quantitative difference was obvious compared to the control and FN group. A mechanistic study in gene and protein level indicated that focal adhesion kinase (FAK) was involved at the early stage of cell adhesion and cell-cell contact-related markers, N-cadherin and neural cell adhesion molecule (NCAM), were highly up-regulated at later time point. In addition histological analysis proved that hFDM/TGF-β1 group was the most effective in forming neocartilage tissue in a rabbit articular cartilage defect model. Taken together, this study demonstrates not only the positive effect of hFDM on chondrogenesis of MSCs and cartilage repair but also provides an important insight toward the significance of in vitro mesenchymal condensation on chondrogenic development of MSCs.
Collapse
Affiliation(s)
- In Gul Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jaehoon Ko
- Dept of Technical Application, Korea Institute of Industrial Technology, Gyeonggi 426-910, Republic of Korea
| | - Hye Rim Lee
- Dept of Veterinary Medicine, KonKuk University, Seoul 143-701, Republic of Korea
| | - Sun Hee Do
- Dept of Veterinary Medicine, KonKuk University, Seoul 143-701, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea; Dept of Biomedical Engineering, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
38
|
Talakoob S, Joghataei MT, Parivar K, Bananej M, Sanadgol N. Capability of Cartilage Extract to In Vitro Differentiation of Rat Mesenchymal Stem Cells (MSCs) to Chondrocyte Lineage. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:9-21. [PMID: 25815278 PMCID: PMC4359701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/02/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022]
Abstract
The importance of mesenchymal stem cells (MSCs), as adult stem cells (ASCs) able to divide into a variety of different cells is of utmost importance for stem cell researches. In this study, the ability of cartilage extract to induce differentiation of rat derived omentum tissue MSCs (rOT-MSCs) into chondrocyte cells (CCs) was investigated. After isolation of rOT-MSCs, they were co-cultured with different concentrations of hyaline cartilage extract and chondrocyte differentiation was monitored. Expression of MSCs markers was analyzed via flow cytometry. Moreover, expression of octamer- binding transcription factor-4 (Oct-4), Wilm's tumor suppressor gene-1 (WT-1), aggrecan (AG), collagen type-II (CT-II) and collagen type-X (CT-X) was analyzed using RT-PCR on 16, 18 and 21 days. Furthermore, immunocytochemistry and western blot were performed for CT-II production. Finally, proteoglycans (PGs) were examined using toluidine blue and alcian blue staining. The phenotypic characterization revealed the positive expression of CD90, CD44 and negative expression of CD45 in rOT-MSCs. These cells also expressed mRNA of Oct-4 and WT-1 as markers of omentum tissue. Differentiated rOT-MSCs in the presence of 20 µg/ ml cartilage extract expressed AG, CT-II, CT-X, and PGs as specific markers of CCs. These observations suggest that cartilage extract is potentially able to induce differentiation of MSCs into chondrocyte lineage and may be considered as an available source for imposing tissue healing on the damaged cartilage. More investigations are needed to prove in vivo cartilage repair via cartilage extract or its effective factors.
Collapse
Affiliation(s)
- Setareh Talakoob
- Department of Biology, Faculty of Biological Sciences, North branch of Islamic Azad University of Tehran, Tehran, Iran.
| | | | - Kazem Parivar
- Department of Biology, Faculty of Basic Sciences, Sciences and Researches branch of Islamic Azad University of Tehran, Tehran, Iran.
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North branch of Islamic Azad University of Tehran, Tehran, Iran.
| | - Nima Sanadgol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Corresponding author: Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran. E-mail:
| |
Collapse
|