1
|
Li Y, Li C, Sun Q, Liu X, Chen F, Cheung Y, Zhao Y, Xie T, Chazaud B, Sun H, Wang H. Skeletal muscle stem cells modulate niche function in Duchenne muscular dystrophy mouse through YY1-CCL5 axis. Nat Commun 2025; 16:1324. [PMID: 39900599 PMCID: PMC11790879 DOI: 10.1038/s41467-025-56474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Adult skeletal muscle stem cells (MuSCs) are indispensable for muscle regeneration and tightly regulated by macrophages (MPs) and fibro-adipogenic progenitors (FAPs) in their niche. Deregulated MuSC/MP/FAP interactions and the ensuing inflammation and fibrosis are hallmarks of dystrophic muscle. Here we demonstrate intrinsic deletion of transcription factor Yin Yang 1 (YY1) in MuSCs exacerbates dystrophic pathologies by altering composition and heterogeneity of MPs and FAPs. Further analysis reveals YY1 loss induces expression of immune genes in MuSCs, including C-C motif chemokine ligand 5 (Ccl5). Augmented CCL5 secretion promotes MP recruitment via CCL5/C-C chemokine receptor 5 (CCR5) crosstalk, which subsequently hinders FAP clearance through elevated Transforming growth factor-β1 (TGFβ1). Maraviroc-mediated pharmacological blockade of the CCL5/CCR5 axis effectively mitigates muscle dystrophy and improves muscle performance. Lastly, we demonstrate YY1 represses Ccl5 transcription by binding to its enhancer thus facilitating promoter-enhancer looping. Altogether, our study demonstrates the critical role of MuSCs in actively shaping their niche and provides novel insight into the therapeutic intervention of muscle dystrophy.
Collapse
MESH Headings
- YY1 Transcription Factor/metabolism
- YY1 Transcription Factor/genetics
- Animals
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/cytology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Chemokine CCL5/metabolism
- Chemokine CCL5/genetics
- Mice
- Stem Cell Niche
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Macrophages/metabolism
- Stem Cells/metabolism
- Mice, Inbred C57BL
- Transforming Growth Factor beta1/metabolism
- Male
- Mice, Inbred mdx
- Mice, Knockout
- Signal Transduction
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 14115319, 14100620, 14106521, 14105823, 14120420, 14103522, 14105123 Research Grants Council, University Grants Committee (RGC, UGC)
- T13-602/21-N Research Grants Council, University Grants Committee (RGC, UGC)
- C6018-19GF Research Grants Council, University Grants Committee (RGC, UGC)
- 10210906, 08190626 Research Grants Council, University Grants Committee (RGC, UGC)
- AoE/M-402/20 Research Grants Council, University Grants Committee (RGC, UGC)
- STG1/E-403/24-N Research Grants Council, University Grants Committee (RGC, UGC)
- National Key R&D Program of China to H.W. (2022YFA0806003) Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China to H.W. (10210906 and 08190626)
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Chuhan Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China
| | - Xingyuan Liu
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengyuan Chen
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeelo Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ting Xie
- Center for Tissue Regeneration and Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bénédicte Chazaud
- Unité Physiopathologie et Génétique du Neurone et du Muscle, UMR CNRS 5261, Inserm U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Hao Sun
- Warshel Institute for Computational Biology, Faculty of Medicine, Chinese University of Hong Kong (Shenzhen), Guangdong, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
2
|
Blackburn DM, Sahinyan K, Hernández-Corchado A, Lazure F, Richard V, Raco L, Perron G, Zahedi RP, Borchers CH, Lepper C, Kawabe H, Jahani-Asl A, Najafabadi HS, Soleimani VD. The E3 ubiquitin ligase Nedd4L preserves skeletal muscle stem cell quiescence by inhibiting their activation. iScience 2024; 27:110241. [PMID: 39015146 PMCID: PMC11250905 DOI: 10.1016/j.isci.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
Adult stem cells play a critical role in tissue repair and maintenance. In tissues with slow turnover, including skeletal muscle, these cells are maintained in a mitotically quiescent state yet remain poised to re-enter the cell cycle to replenish themselves and regenerate the tissue. Using a panomics approach we show that the PAX7/NEDD4L axis acts against muscle stem cell activation in homeostatic skeletal muscle. Our findings suggest that PAX7 transcriptionally activates the E3 ubiquitin ligase Nedd4L and that the conditional genetic deletion of Nedd4L impairs muscle stem cell quiescence, with an upregulation of cell cycle and myogenic differentiation genes. Loss of Nedd4L in muscle stem cells results in the expression of doublecortin (DCX), which is exclusively expressed during their in vivo activation. Together, these data establish that the ubiquitin proteasome system, mediated by Nedd4L, is a key contributor to the muscle stem cell quiescent state in adult mice.
Collapse
Affiliation(s)
- Darren M. Blackburn
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Aldo Hernández-Corchado
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Laura Raco
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Gabrielle Perron
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Pathology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine 37075 Göttingen, Germany
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hamed S. Najafabadi
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
| | - Vahab D. Soleimani
- Department of Human Genetics, McGill University, 3640 rue University, Montréal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte- Sainte-Catherine, Montréal, QC H3T 1E2, Canada
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
4
|
Haase M, Comlekoglu T, Petrucciani A, Peirce SM, Blemker SS. Agent-based model demonstrates the impact of nonlinear, complex interactions between cytokinces on muscle regeneration. eLife 2024; 13:RP91924. [PMID: 38828844 PMCID: PMC11147512 DOI: 10.7554/elife.91924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.
Collapse
Affiliation(s)
- Megan Haase
- University of VirginiaCharlottesvilleUnited States
| | | | | | | | | |
Collapse
|
5
|
Haase M, Comlekoglu T, Petrucciani A, Peirce SM, Blemker SS. Agent-based model demonstrates the impact of nonlinear, complex interactions between cytokines on muscle regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.14.553247. [PMID: 37645968 PMCID: PMC10462020 DOI: 10.1101/2023.08.14.553247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSC), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple time points following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting ECM-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.
Collapse
|
6
|
Kloc M, Uosef A, Ubelaker HV, Kubiak JZ, Ghobrial RM. Macrophages and stem/progenitor cells interplay in adipose tissue and skeletal muscle: a review. Stem Cell Investig 2023; 10:9. [PMID: 37077316 PMCID: PMC10107080 DOI: 10.21037/sci-2023-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Like all immune cells, macrophages do not act autonomously but in unison with other immune cells, surrounding tissues, and the niche they occupy. Constant exchange of information between cellular and noncellular participants within a tissue allows for preserving homeostasis and defining responses in a pathologic environment. Although molecular mechanisms and pathways involved in reciprocal signaling between macrophages and other immune cells have been known for decades, much less is known about interactions between macrophages and stem/progenitor cells. Based on the time when stem cells form, there are two stem cell types: embryonic stem cells existing only in an early embryo, which are pluripotent and can differentiate into any cell type present in an adult, and somatic (adult) stem cells formed in fetus and persisting for whole adult life. Tissues and organs have their own (tissue-specific and organ-specific) adult stem cells, which serve as a reserve for tissue homeostasis and regeneration after injury. It is still uncertain whether organ- and tissue-specific stem cells are actual stem cells or just progenitor cells. The important question is how stem/progenitor cells can sculpt macrophage phenotype and functions. Even less is known if or how macrophages can shape stem/progenitor cell functions, their divisions, and fate. We describe here examples from recent studies of how stem/progenitor cells can affect macrophages and how macrophages can influence stem/progenitor cell properties, functions, and destiny.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Henry V. Ubelaker
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute (WIM-PIB), Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR6290, Rennes, France
| | - Rafik M. Ghobrial
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Ryu M, Kim M, Jung HY, Kim CH, Jo C. Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat. Anim Biosci 2023; 36:295-306. [PMID: 36108703 PMCID: PMC9834727 DOI: 10.5713/ab.22.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway delays differentiation and increases proliferation of muscle stem cells in most species. Here, we aimed to investigate the effect of p38 inhibitor (p38i) treatment on the proliferation and differentiation of chicken muscle stem cells. METHODS Chicken muscle stem cells were collected from the muscle tissues of Hy-line Brown chicken embryos at embryonic day 18, then isolated by the preplating method. Cells were cultured for 4 days in growth medium supplemented with dimethyl sulfoxide or 1, 10, 20 μM of p38i, then subcultured for up to 4 passages. Differentiation was induced for 3 days with differentiation medium. Each treatment was replicated 3 times. RESULTS The proliferation and mRNA expression of paired box 7 gene and myogenic factor 5 gene, as well as the mRNA expression of myogenic differentiation marker gene myogenin were significantly higher in p38i-treated cultures than in control (p<0.05), but immunofluorescence staining and mRNA expression of myosin heavy chain (MHC) were not significantly different between the two groups. Oil red O staining of accumulated lipid droplets in differentiated cell cultures revealed a higher lipid density in p38i-treated cultures than in control; however, the expression of the adipogenic marker gene peroxisome proliferator activated receptor gamma was not significantly different between the two groups. CONCLUSION p38 inhibition in chicken muscle stem cells improves cell proliferation, but the effects on myogenic differentiation and lipid accumulation require additional analysis. Further studies are needed on the chicken p38-MAPK pathway to understand the muscle and fat development mechanism.
Collapse
Affiliation(s)
- Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea,Corresponding Author: Cheorun Jo, Tel: +82-2-880-4804, Fax: +82-2-873-2271, E-mail:
| |
Collapse
|
8
|
Castelli F, Valero-Breton M, Hernandez M, Guarda F, Cornejo J, Cabello-Verrugio C, Cabrera D. Regulatory Mechanisms of Muscle Mass: The Critical Role of Resistance Training in Children and Adolescent. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:21-34. [PMID: 36280657 DOI: 10.1007/5584_2022_743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Muscle mass and strength are subjected to several regulations. We found endocrine signals such as growth hormone, insulin-like growth factor 1, testosterone, thyroid hormones, and glucocorticoids among them. Neural inputs also influence muscle development, modulating mass and strength. Among the external stimuli that modulate these muscular features is physical training such as resistance and endurance training. Specifically, resistance training can mediate an increase in muscle mass by hypertrophy in adults, but the effects in children and adolescents are full of myths for most of the population. However, the evidence shows that the impact of resistance training on children and adolescents is clear and provides a wide range of benefits. However, qualified professionals must be available since exercise prescription and subsequent supervision must follow this population's abilities, needs, and interests.
Collapse
Affiliation(s)
- F Castelli
- Experimental Hepatology Laboratory, Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - M Hernandez
- Experimental Hepatology Laboratory, Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Guarda
- Departmento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Cornejo
- Experimental Hepatology Laboratory, Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| | - D Cabrera
- Experimental Hepatology Laboratory, Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- School of Medicine, Faculty of Medical Sciences, Universidad Bernardo O Higgins, Santiago, Chile.
| |
Collapse
|
9
|
Sesillo FB, Rajesh V, Wong M, Duran P, Rudell JB, Rundio CP, Baynes BB, Laurent LC, Sacco A, Christman KL, Alperin M. Muscle stem cells and fibro-adipogenic progenitors in female pelvic floor muscle regeneration following birth injury. NPJ Regen Med 2022; 7:72. [PMID: 36526635 PMCID: PMC9758192 DOI: 10.1038/s41536-022-00264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Pelvic floor muscle (PFM) injury during childbirth is a key risk factor for pelvic floor disorders that affect millions of women worldwide. Muscle stem cells (MuSCs), supported by the fibro-adipogenic progenitors (FAPs) and immune cells, are indispensable for the regeneration of injured appendicular skeletal muscles. However, almost nothing is known about their role in PFM regeneration following birth injury. To elucidate the role of MuSCs, FAPs, and immune infiltrate in this context, we used radiation to perturb cell function and followed PFM recovery in a validated simulated birth injury (SBI) rat model. Non-irradiated and irradiated rats were euthanized at 3,7,10, and 28 days post-SBI (dpi). Twenty-eight dpi, PFM fiber cross-sectional area (CSA) was significantly lower and the extracellular space occupied by immune infiltrate was larger in irradiated relative to nonirradiated injured animals. Following SBI in non-irradiated animals, MuSCs and FAPs expanded significantly at 7 and 3 dpi, respectively; this expansion did not occur in irradiated animals at the same time points. At 7 and 10 dpi, we observed persistent immune response in PFMs subjected to irradiation compared to non-irradiated injured PFMs. CSA of newly regenerated fibers was also significantly smaller following SBI in irradiated compared to non-irradiated injured PFMs. Our results demonstrate that the loss of function and decreased expansion of MuSCs and FAPs after birth injury lead to impaired PFM recovery. These findings form the basis for further studies focused on the identification of novel therapeutic targets to counteract postpartum PFM dysfunction and the associated pelvic floor disorders.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Varsha Rajesh
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92161, USA
| | - Michelle Wong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
| | - Pamela Duran
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - John B Rudell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Courtney P Rundio
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
| | - Brittni B Baynes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA
| | - Louise C Laurent
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of San Diego, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Karen L Christman
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Marianna Alperin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California, San Diego, San Diego, CA, 92037, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
So KKH, Huang Y, Zhang S, Qiao Y, He L, Li Y, Chen X, Sham MH, Sun H, Wang H. seRNA PAM controls skeletal muscle satellite cell proliferation and aging through trans regulation of Timp2 expression synergistically with Ddx5. Aging Cell 2022; 21:e13673. [PMID: 35851988 PMCID: PMC9381903 DOI: 10.1111/acel.13673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 12/11/2022] Open
Abstract
Muscle satellite cells (SCs) are responsible for muscle homeostasis and regeneration and lncRNAs play important roles in regulating SC activities. Here, in this study, we identify PAM (Pax7 Associated Muscle lncRNA) that is induced in activated/proliferating SCs upon injury to promote SC proliferation as myoblast cells. PAM is generated from a myoblast-specific super-enhancer (SE); as a seRNA it binds with a number of target genomic loci predominantly in trans. Further studies demonstrate that it interacts with Ddx5 to tether PAM SE to its inter-chromosomal targets Timp2 and Vim to activate the gene expression. Lastly, we show that PAM expression is increased in aging SCs, which leads to enhanced inter-chromosomal interaction and target genes upregulation. Altogether, our findings identify PAM as a previously unknown lncRNA that regulates both SC proliferation and aging through its trans gene regulatory activity.
Collapse
Affiliation(s)
- Karl Kam Hei So
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Yulong Qiao
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Mai Har Sham
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| |
Collapse
|
11
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes (Basel) 2022; 13:genes13061033. [PMID: 35741795 PMCID: PMC9222894 DOI: 10.3390/genes13061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.
Collapse
|
13
|
Calabrese EJ, Calabrese V. Enhancing health span: muscle stem cells and hormesis. Biogerontology 2022; 23:151-167. [PMID: 35254570 DOI: 10.1007/s10522-022-09949-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a significant public health and medical concern confronting the elderly. Considerable research is being directed to identify ways in which the onset and severity of sarcopenia may be delayed/minimized. This paper provides a detailed identification and assessment of hormetic dose responses in animal model muscle stem cells, with particular emphasis on cell proliferation, differentiation, and enhancing resilience to inflammatory stresses and how this information may be useful in preventing sarcopenia. Hormetic dose responses were observed following administration of a broad range of agents, including dietary supplements (e.g., resveratrol), pharmaceuticals (e.g., dexamethasone), endogenous ligands (e.g., tumor necrosis factor α), environmental contaminants (e.g., cadmium) and physical agents (e.g., low level laser). The paper assesses both putative mechanisms of hormetic responses in muscle stem cells, and potential therapeutic implications and application(s) of hormetic frameworks for slowing muscle loss and reduced functionality during the aging process.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, MA, 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Via Santa Sofia, 97, 95125, Catania, Italy
| |
Collapse
|
14
|
CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nat Commun 2022; 13:947. [PMID: 35177647 PMCID: PMC8854658 DOI: 10.1038/s41467-022-28612-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle stem cells, also called Satellite Cells (SCs), are actively maintained in quiescence but can activate quickly upon extrinsic stimuli. However, the mechanisms of how quiescent SCs (QSCs) activate swiftly remain elusive. Here, using a whole mouse perfusion fixation approach to obtain bona fide QSCs, we identify massive proteomic changes during the quiescence-to-activation transition in pathways such as chromatin maintenance, metabolism, transcription, and translation. Discordant correlation of transcriptomic and proteomic changes reveals potential translational regulation upon SC activation. Importantly, we show Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1), post-transcriptionally affects protein translation during SC activation by binding to the 3' UTRs of different transcripts. We demonstrate phosphorylation-dependent CPEB1 promoted Myod1 protein synthesis by binding to the cytoplasmic polyadenylation elements (CPEs) within its 3' UTRs to regulate SC activation and muscle regeneration. Our study characterizes CPEB1 as a key regulator to reprogram the translational landscape directing SC activation and subsequent proliferation.
Collapse
|
15
|
Sandiarini-Kamayana J. The use of adipose-derived stem cells in cell assisted lipotransfer as potential regenerative therapy in breast reconstruction. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Breast reconstruction for breast cancer patients is performed as a standard of care to improve patients' quality of life, physical and psychosocial well-being. Stem cell therapy holds a promise in regenerative medicine, including in breast reconstruction. This review explores the potential use of adipose-derived stem cells (ADSCs) in cell assisted lipotransfer (CAL) for reconstruction of the breast. The review of literature was done using electronic databases using appropriate keywords, including "adipose-derived stem cell", "stem cell therapy", "adipose-derived stem cell", "cell-assisted lipotransfer", "regenerative therapy", "breast cancer" and "breast reconstruction", with literatures limited to ten years post publication. Adipose-derived stem cells are multipotent cells with angiogenic and immunomodulatory potential. Several studies reveal ADSCs use in CAL results in long-term breast volume retention suggesting improved fat graft survival. Some conflicting outcomes are also discussed, potentially related to numbers of cells enriched and factors affecting the cells' microenvironment. The use of ADSCs in CAL may be beneficial for therapy of breast reconstruction in breast cancer patients after surgical management. Further investigation would be needed to improve the confidence of its clinical use.
Collapse
|
16
|
Tributyrin, a Butyrate Pro-Drug, Primes Satellite Cells for Differentiation by Altering the Epigenetic Landscape. Cells 2021; 10:cells10123475. [PMID: 34943981 PMCID: PMC8700657 DOI: 10.3390/cells10123475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023] Open
Abstract
Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.
Collapse
|
17
|
Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B. A Simple Method for the Isolation and in vitro Expansion of Highly Pure Mouse and Human Satellite Cells. Bio Protoc 2021; 11:e4238. [PMID: 35005083 PMCID: PMC8678546 DOI: 10.21769/bioprotoc.4238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs, which retain myogenic properties after serial passages in vitro. Here, we describe a protocol for the isolation and in vitro expansion of highly pure mouse and human SCs based on ice-cold treatment (ICT). The ICT is carried out by briefly incubating the dish containing a heterogeneous mix of adherent muscle mononuclear cells on ice for 15-30 min, which leads to the detachment only of the SCs, and gives rise to SC cultures with 95-100% purity. This approach can also be used to passage the cells, allowing SC expansion over extended periods of time without compromising their proliferation or differentiation potential. Overall, the ICT method is cost-effective, accessible, technically simple, reproducible, and highly efficient. Graphic abstract: Figure 1.Satellite cell isolation using the ice-cold treatment method.
Collapse
Affiliation(s)
- Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Cera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Daniele De Meo
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Schmidt M, Weidemann A, Poser C, Bigot A, von Maltzahn J. Stimulation of Non-canonical NF-κB Through Lymphotoxin-β-Receptor Impairs Myogenic Differentiation and Regeneration of Skeletal Muscle. Front Cell Dev Biol 2021; 9:721543. [PMID: 34676210 PMCID: PMC8523804 DOI: 10.3389/fcell.2021.721543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Myogenic differentiation, muscle stem cell functionality, and regeneration of skeletal muscle are cellular processes under tight control of various signaling pathways. Here, we investigated the role of non-canonical NF-κB signaling in myogenic differentiation, muscle stem cell functionality, and regeneration of skeletal muscle. We stimulated non-canonical NF-κB signaling with an agonistically acting antibody of the lymphotoxin beta receptor (LTβR). Interestingly, we found that stimulation of non-canonical NF-κB signaling through the LTβR agonist impairs myogenic differentiation, muscle stem cell function, and regeneration of skeletal muscle. Furthermore, we show that stimulation of non-canonical NF-κB signaling by the LTβR agonist coincides with activation of canonical NF-κB signaling. We suggest a direct crosstalk between canonical and non-canonical NF-κB signaling during myogenic differentiation which is required for proper myogenic differentiation and thereby regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Manuel Schmidt
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Anja Weidemann
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Christine Poser
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Anne Bigot
- Center of Research in Myology-UMRS 974, Institute of Myology, INSERM, Sorbonne Université, Paris, France
| | | |
Collapse
|
19
|
Gupta R, Rao R, Johnston TR, Uong J, Yang DS, Lee TQ. Muscle stem cells and rotator cuff injury. JSES REVIEWS, REPORTS, AND TECHNIQUES 2021; 1:186-193. [PMID: 37588948 PMCID: PMC10426486 DOI: 10.1016/j.xrrt.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The incidence of reinjury after treatment of rotator cuff tears (RCTs) remains very high despite the variety of nonoperative treatments and the high volume of surgical interventions performed. Muscle stem cells (MuSCs), also known as satellite cells, have risen to the forefront of rotator cuff tear research as a potential adjuvant therapy to aid unsatisfactory surgical outcomes. MuSCs are adult stem cells exhibiting the capacity to proliferate and self-renew, both symmetrically and asymmetrically. As part of this niche, they have been shown to adopt an activated phenotype in response to musculoskeletal injury and decrease their cellular populations during aging, implicating them as key players in both pathologic and normal physiological processes. While commonly connected to the regenerative phase of muscle healing, MuSCs also have the potential to differentiate into adverse morphologies. For instance, if MuSCs differentiate into adipocytes, the ensuing fatty infiltration serves as an obstacle to proper muscle healing and has been associated with the failure of surgical management of RCTs. With the potential to both harm and heal, we have identified MuSCs as a key player in RCT repair. To better understand this dichotomy, the following review will identify key studies regarding the morphology, function, and behavior of MuSCs with respect to RCTs and healing.
Collapse
Affiliation(s)
- Ranjan Gupta
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Rohan Rao
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Tyler R. Johnston
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Jennifer Uong
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Daniel S. Yang
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Thay Q. Lee
- Congress Medical Foundation, Pasadena, CA, USA
| |
Collapse
|
20
|
Ciriza J, Rodríguez-Romano A, Nogueroles I, Gallego-Ferrer G, Cabezuelo RM, Pedraz JL, Rico P. Borax-loaded injectable alginate hydrogels promote muscle regeneration in vivo after an injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112003. [PMID: 33812623 PMCID: PMC8085734 DOI: 10.1016/j.msec.2021.112003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Muscle tissue possess an innate regenerative potential that involves an extremely complicated and synchronized process on which resident muscle stem cells play a major role: activate after an injury, differentiate and fuse originating new myofibers for muscle repair. Considerable efforts have been made to design new approaches based on material systems to potentiate muscle repair by engineering muscle extracellular matrix and/or including soluble factors/cells in the media, trying to recapitulate the key biophysical and biochemical cues present in the muscle niche. This work proposes a different and simple approach to potentiate muscle regeneration exploiting the interplay between specific cell membrane receptors. The simultaneous stimulation of borate transporter, NaBC1 (encoded by SLC4A11gene), and fibronectin-binding integrins induced higher number and size of focal adhesions, major cell spreading and actin stress fibers, strengthening myoblast attachment and providing an enhanced response in terms of myotube fusion and maturation. The stimulated NaBC1 generated an adhesion-driven state through a mechanism that involves simultaneous NaBC1/α5β1/αvβ3 co-localization. We engineered and characterized borax-loaded alginate hydrogels for an effective activation of NaBC1 in vivo. After inducing an acute injury with cardiotoxin in mice, active-NaBC1 accelerated the muscle regeneration process. Our results put forward a new biomaterial approach for muscle repair.
Collapse
Affiliation(s)
- Jesús Ciriza
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, C/ Miguel de Unamuno, 3, 01006 Vitoria Gasteiz, Spain.
| | - Ana Rodríguez-Romano
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ignacio Nogueroles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Gloria Gallego-Ferrer
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Rubén Martín Cabezuelo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - José Luis Pedraz
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, C/ Miguel de Unamuno, 3, 01006 Vitoria Gasteiz, Spain.
| | - Patricia Rico
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Kapoor S, Subba P, Shenoy P S, Bose B. Sca1 + Progenitor Cells (Ex vivo) Exhibits Differential Proteomic Signatures From the Culture Adapted Sca1 + Cells (In vitro), Both Isolated From Murine Skeletal Muscle Tissue. Stem Cell Rev Rep 2021; 17:1754-1767. [PMID: 33742350 DOI: 10.1007/s12015-021-10134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Stem cell antigen-1 (Sca-1) is a glycosyl-phosphatidylinositol-anchored membrane protein that is expressed in a sub-population of muscle stem and progenitor cell types. Reportedly, Sca-1 regulates the myogenic property of myoblasts and Sca-1-/- mice exhibited defective muscle regeneration. Although the role of Sca-1 in muscle development and maintenance is well-acknowledged, molecular composition of muscle derived Sca-1+ cells is not characterized. Here, we applied a high-resolution mass spectrometry-based workflow to characterize the proteomic landscape of mouse hindlimb skeletal muscle derived Sca-1+ cells. Furthermore, we characterized the impact of the cellular microenvironments on the proteomes of Sca-1+ cells. The proteome component of freshly isolated Sca-1+ cells (ex vivo) was compared with that of Sca-1+ cells expanded in cell culture (in vitro). The analysis revealed significant differences in the protein abundances in the two conditions reflective of their functional variations. The identified proteins were enriched in various biological pathways. Notably, we identified proteins related to myotube differentiation, myotube cell development and myoblast fusion. We also identified a panel of cell surface marker proteins that can be leveraged in future to enrich Sca-1+ cells using combinatorial strategies. Comparative analysis implicated the activation of various pathways leading to increased protein synthesis under in vitro condition. We report here the most comprehensive proteome map of Sca-1+ cells that provides insights into the molecular networks operative in Sca-1+ cells. Importantly, through our work we generated the proteomic blueprint of protein abundances significantly altered in Sca-1+ cells under ex vivo and in vitro conditions. The curated data can also be visualized at https://yenepoya.res.in/database/Sca-1-Proteomics .
Collapse
Affiliation(s)
- Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
22
|
Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B. A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment. Skelet Muscle 2021; 11:7. [PMID: 33731194 PMCID: PMC7968259 DOI: 10.1186/s13395-021-00261-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 01/07/2023] Open
Abstract
Satellite cells (SCs) are muscle stem cells capable of regenerating injured muscle. The study of their functional potential depends on the availability of methods for the isolation and expansion of pure SCs with preserved myogenic properties after serial passages in vitro. Here, we describe the ice-cold treatment (ICT) method, which is a simple, economical, and efficient method for the isolation and in vitro expansion of highly pure mouse and human SCs. It involves a brief (15-30 min) incubation on ice (0 °C) of a dish containing a heterogeneous mix of adherent muscle mononuclear cells, which leads to the detachment of only the SCs, and gives rise to cultures of superior purity compared to other commonly used isolation methods. The ICT method doubles up as a gentle passaging technique, allowing SC expansion over extended periods of time without compromising their proliferation and differentiation potential. Moreover, SCs isolated and expanded using the ICT method are capable of regenerating injured muscle in vivo. The ICT method involves minimal cell manipulation, does not require any expertise or expensive reagents, it is fast, and highly reproducible, and greatly reduces the number of animals or human biopsies required in order to obtain sufficient number of SCs. The cost-effectiveness, accessibility, and technical simplicity of this method, as well as its remarkable efficiency, will no doubt accelerate SC basic and translational research bringing their therapeutic use closer to the clinic.
Collapse
Affiliation(s)
- Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Cera
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Daniele De Meo
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Ciro Villani
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Orthopedics, Sapienza University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, Policlinico Umberto I, Rome, Italy
| | - Marina Bouche
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Messner F, Thurner M, Müller J, Blumer M, Hofmann J, Marksteiner R, Couillard-Despres S, Troppmair J, Öfner D, Schneeberger S, Hautz T. Myogenic progenitor cell transplantation for muscle regeneration following hindlimb ischemia and reperfusion. Stem Cell Res Ther 2021; 12:146. [PMID: 33627196 PMCID: PMC7905585 DOI: 10.1186/s13287-021-02208-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Muscle is severely affected by ischemia/reperfusion injury (IRI). Quiescent satellite cells differentiating into myogenic progenitor cells (MPC) possess a remarkable regenerative potential. We herein established a model of local application of MPC in murine hindlimb ischemia/reperfusion to study cell engraftment and differentiation required for muscle regeneration. Methods A clamping model of murine (C57b/6 J) hindlimb ischemia was established to induce IRI in skeletal muscle. After 2 h (h) warm ischemic time (WIT) and reperfusion, reporter protein expressing MPC (TdTomato or Luci-GFP, 1 × 106 cells) obtained from isolated satellite cells were injected intramuscularly. Surface marker expression and differentiation potential of MPC were analyzed in vitro by flow cytometry and differentiation assay. In vivo bioluminescence imaging and histopathologic evaluation of biopsies were performed to quantify cell fate, engraftment and regeneration. Results 2h WIT induced severe IRI on muscle, and muscle fiber regeneration as per histopathology within 14 days after injury. Bioluminescence in vivo imaging demonstrated reporter protein signals of MPC in 2h WIT animals and controls over the study period (75 days). Bioluminescence signals were detected at the injection site and increased over time. TdTomato expressing MPC and myofibers were visible in host tissue on postoperative days 2 and 14, respectively, suggesting that injected MPC differentiated into muscle fibers. Higher reporter protein signals were found after 2h WIT compared to controls without ischemia, indicative for enhanced growth and/or engraftment of MPC injected into IRI-affected muscle antagonizing muscle damage caused by IRI. Conclusion WIT-induced IRI in muscle requests increased numbers of injected MPC to engraft and persist, suggesting a possible rational for cell therapy to antagonize IRI. Further investigations are needed to evaluate the regenerative capacity and therapeutic advantage of MPC in the setting of ischemic limb injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02208-w.
Collapse
Affiliation(s)
- Franka Messner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Marco Thurner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria.,Innovacell Biotechnologie AG, Innsbruck, Austria
| | - Jule Müller
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Michael Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | | | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration, Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Dietmar Öfner
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria
| | - Stefan Schneeberger
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria. .,Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Theresa Hautz
- Daniel Swarovski Research Laboratory (DSL), Department of Visceral, Transplant and Thoracic Surgery (VTT), Center of Operative Medicine, Medical University of Innsbruck (MUI), Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
25
|
Choi KH, Yoon JW, Kim M, Lee HJ, Jeong J, Ryu M, Jo C, Lee CK. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr Rev Food Sci Food Saf 2021; 20:429-457. [PMID: 33443788 DOI: 10.1111/1541-4337.12661] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Cultured muscle tissue-based protein products, also known as cultured meat, are produced through in vitro myogenesis involving muscle stem cell culture and differentiation, and mature muscle cell processing for flavor and texture. This review focuses on the in vitro myogenesis for cultured meat production. The muscle stem cell-based in vitro muscle tissue production consists of a sequential process: (1) muscle sampling for stem cell collection, (2) muscle tissue dissociation and muscle stem cell isolation, (3) primary cell culture, (4) upscaled cell culture, (5) muscle differentiation and maturation, and (6) muscle tissue harvest. Although muscle stem cell research is a well-established field, the majority of these steps remain to be underoptimized to enable the in vitro creation of edible muscle-derived meat products. The profound understanding of the process would help not only cultured meat production but also business sectors that have been seeking new biomaterials for the food industry. In this review, we discuss comprehensively and in detail each step of cutting-edge methods for cultured meat production. This would be meaningful for both academia and industry to prepare for the new era of cellular agriculture.
Collapse
Affiliation(s)
- Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Yoon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
26
|
Markers of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Stem Cells an Overview. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Chowdhury S, Ghosh S. Sources, Isolation and culture of stem cells? Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
An insight on Drosophila myogenesis and its assessment techniques. Mol Biol Rep 2020; 47:9849-9863. [PMID: 33263930 DOI: 10.1007/s11033-020-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Movement assisted by muscles forms the basis of various behavioural traits seen in Drosophila. Myogenesis involves developmental processes like cellular specification, differentiation, migration, fusion, adherence to tendons and neuronal innervation in a series of coordinated event well defined in body space and time. Gene regulatory networks are switched on-off, fine tuning at the right developmental stage to assist each cellular event. Drosophila is a holometabolous organism that undergoes myogenesis waves at two developmental stages, and is ideal for comparative analysis of the role of genes and genetic pathways conserved across phyla. In this review we have summarized myogenic events from the embryo to adult focussing on the somatic muscle development during the early embryonic stage and then on indirect flight muscles (IFM) formation required for adult life, emphasizing on recent trends of analysing muscle mutants and advances in Drosophila muscle biology.
Collapse
|
30
|
Jayarajan J, Milsom MD. The role of the stem cell epigenome in normal aging and rejuvenative therapy. Hum Mol Genet 2020; 29:R236-R247. [PMID: 32744315 DOI: 10.1093/hmg/ddaa167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are ultimately responsible for the lifelong maintenance of regenerating of tissues during both homeostasis and following injury. Hence, the functional attrition of adult stem cells is thought to be an important driving factor behind the progressive functional decline of tissues and organs that is observed during aging. The mechanistic cause underlying this age-associated exhaustion of functional stem cells is likely to be complex and multifactorial. However, it is clear that progressive remodeling of the epigenome and the resulting deregulation of gene expression programs can be considered a hallmark of aging, and is likely a key factor in mediating altered biological function of aged stem cells. In this review, we outline cell intrinsic and extrinsic mediators of epigenome remodeling during aging; discuss how such changes can impact on stem cell function; and describe how resetting the aged epigenome may rejuvenate some of the biological characteristics of stem cells.
Collapse
Affiliation(s)
- Jeyan Jayarajan
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM).,DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
31
|
LRTM1 promotes the differentiation of myoblast cells by negatively regulating the FGFR1 signaling pathway. Exp Cell Res 2020; 396:112237. [PMID: 32841643 DOI: 10.1016/j.yexcr.2020.112237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022]
Abstract
The proliferation and differentiation of myoblast cells are regulated by the fibroblast growth factor receptor (FGFR) signaling pathway. Although the regulation of FGFR signaling cascades has been widely investigated, the inhibitory mechanism that particularly function in skeletal muscle myogenesis remains obscure. In this study, we determined that LRTM1, an inhibitory regulator of the FGFR signaling pathway, negatively modulates the activation of ERK and promotes the differentiation of myoblast cells. LRTM1 is dynamically expressed during myoblast differentiation and skeletal muscle regeneration after injury. In mouse myoblast C2C12 cells, knockout (KO) of Lrtm1 significantly prevents the differentiation of myoblast cells; this effect is associated with the reduction of MyoD transcriptional activity and the overactivation of ERK kinase. Notably, further studies demonstrated that LRTM1 associates with p52Shc and inhibits the recruitment of p52Shc to FGFR1. Taken together, our findings identify a novel negative regulator of FGFR1, which plays an important role in regulating the differentiation of myoblast cells.
Collapse
|
32
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic Profile of Primary Culture of Skeletal Muscle Cells Isolated from Semitendinosus Muscle of Beef and Dairy Bulls. Int J Mol Sci 2020; 21:E4794. [PMID: 32645861 PMCID: PMC7369917 DOI: 10.3390/ijms21134794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the study was to identify differences in the transcriptomic profiles of primary muscle cell cultures derived from the semitendinosus muscle of bulls of beef breeds (Limousin (LIM) and Hereford (HER)) and a dairy breed (Holstein-Friesian (HF)) (n = 4 for each breed). Finding a common expression pattern for proliferating cells may point to such an early orientation of the cattle beef phenotype at the transcriptome level of unfused myogenic cells. To check this hypothesis, microarray analyses were performed. The analysis revealed 825 upregulated and 1300 downregulated transcripts similar in both beef breeds (LIM and HER) and significantly different when compared with the dairy breed (HF) used as a reference. Ontological analyses showed that the largest group of genes were involved in muscle organ development. Muscle cells of beef breeds showed higher expression of genes involved in myogenesis (including erbb-3, myf5, myog, des, igf-1, tgfb2) and those encoding proteins comprising the contractile apparatus (acta1, actc1, myh3, myh11, myl1, myl2, myl4, tpm1, tnnt2, tnnc1). The obtained results confirmed our hypothesis that the expression profile of several groups of genes is common in beef breeds at the level of proliferating satellite cells but differs from that observed in typical dairy breeds.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland;
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| |
Collapse
|
33
|
Somasundaram L, Levy S, Hussein AM, Ehnes DD, Mathieu J, Ruohola-Baker H. Epigenetic metabolites license stem cell states. Curr Top Dev Biol 2020; 138:209-240. [PMID: 32220298 DOI: 10.1016/bs.ctdb.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has become clear during recent years that stem cells undergo metabolic remodeling during their activation process. While these metabolic switches take place in pluripotency as well as adult stem cell populations, the rules that govern the switch are not clear. In this review, we summarize some of the transitions in adult and pluripotent cell types and will propose that the key function in this process is the generation of epigenetic metabolites that govern critical epigenetic modifications, and therefore stem cell states.
Collapse
Affiliation(s)
- Logeshwaran Somasundaram
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Shiri Levy
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States; Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.
| |
Collapse
|
34
|
|
35
|
Ekblad-Nordberg Å, Walther-Jallow L, Westgren M, Götherström C. Prenatal stem cell therapy for inherited diseases: Past, present, and future treatment strategies. Stem Cells Transl Med 2019; 9:148-157. [PMID: 31647195 PMCID: PMC6988764 DOI: 10.1002/sctm.19-0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
Imagine the profits in quality of life that can be made by treating inherited diseases early in life, maybe even before birth! Immense cost savings can also be made by treating diseases promptly. Hence, prenatal stem cell therapy holds great promise for developing new and early‐stage treatment strategies for several diseases. Successful prenatal stem cell therapy would represent a major step forward in the management of patients with hematological, metabolic, or immunological disorders. However, treatment before birth has several limitations, including ethical issues. In this review, we summarize the past, the present, and the future of prenatal stem cell therapy, which includes an overview of different stem cell types, preclinical studies, and clinical attempts treating various diseases. We also discuss the current challenges and future strategies for prenatal stem cell therapy and also new approaches, which may lead to advancement in the management of patients with severe incurable diseases.
Collapse
Affiliation(s)
- Åsa Ekblad-Nordberg
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Lilian Walther-Jallow
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Westgren
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Wang J, Liu S, Li J, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des 2019; 94:1740-1749. [PMID: 31260189 DOI: 10.1111/cbdd.13588] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor (FGF) family members are important regulators of cell growth, proliferation, differentiation, and regeneration. The abnormal expression of certain FGF family members can cause skeletal diseases, including achondroplasia, craniosynostosis syndrome, osteoarthritis, and Kashin-Beck disease. Accumulating evidence shows that FGFs play a crucial role in the growth and proliferation of bone and in the pathogenesis of certain bone-related diseases. Here, we review the involvement of FGFs in bone-related processes and diseases; FGF1 in the differentiation of human bone marrow mesenchymal stem cells and fracture repair; FGF2, FGF9, and FGF18 in osteoarthritis; FGF6 in bone and muscle injury; FGF8 in osteoarthritis and Kashin-Beck disease; and FGF21 and FGF23 on bone regulation. These findings indicate that FGFs are targets for novel therapeutic interventions for bone-related diseases.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhi Yi
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
37
|
Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci 2019; 76:2559-2570. [PMID: 30976839 PMCID: PMC6586695 DOI: 10.1007/s00018-019-03093-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration is a finely tuned process involving the activation of various cellular and molecular processes. Satellite cells, the stem cells of skeletal muscle, are indispensable for skeletal muscle regeneration. Their functionality is critically modulated by intrinsic signaling pathways as well as by interactions with the stem cell niche. Here, we discuss the properties of satellite cells, including heterogeneity regarding gene expression and/or their phenotypic traits and the contribution of satellite cells to skeletal muscle regeneration. We also summarize the process of regeneration with a specific emphasis on signaling pathways, cytoskeletal rearrangements, the importance of miRNAs, and the contribution of non-satellite cells such as immune cells, fibro-adipogenic progenitor cells, and PW1-positive/Pax7-negative interstitial cells.
Collapse
Affiliation(s)
- Manuel Schmidt
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
38
|
H3K27me3 Depletion during Differentiation Promotes Myogenic Transcription in Porcine Satellite Cells. Genes (Basel) 2019; 10:genes10030231. [PMID: 30893875 PMCID: PMC6471710 DOI: 10.3390/genes10030231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Porcine skeletal muscle satellite cells play important roles in myogenesis and muscle regeneration. Integrated analysis of transcriptome and histone modifications would reveal epigenomic roles in promoting myogenic differentiation in swine. METHODS Porcine satellite cells (PSCs) were isolated and in-vitro cultured from newborn piglets. RNA Sequencing (RNA-Seq) and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) experiments were performed using proliferating cells and terminal myotubes in order to interrogate the transcriptomic profiles, as well as the distribution of histone markers-H3K4me3, H3K27me3, and H3K27ac-and RNA polymerase II. RESULTS The study identified 917 differentially expressed genes during cell differentiation. The landscape of epigenetic marks was displayed on a genome-wide scale, which had globally shrunken. H3K27me3 reinforcement participated in obstructing the transcription of proliferation-related genes, while its depletion was closely related to the up-regulation of myogenic genes. Furthermore, the degree of H3K27me3 modification was dramatically reduced by 50%, and 139 myogenic genes were upregulated to promote cell differentiation. CONCLUSIONS The depletion of H3K27me3 was shown to promote porcine satellite cell differentiation through upregulating the transcription level of myogenic genes. Our findings in this study provide new insights of the epigenomic mechanisms occurring during myogenic differentiation, and shed light on chromatin states and the dynamics underlying myogenesis.
Collapse
|
39
|
Abstract
Modern stem cell research has mainly focused on protein expression and transcriptional networks. However, transmembrane voltage gradients generated by ion channels and transporters have demonstrated to be powerful regulators of cellular processes. These physiological cues exert influence on cell behaviors ranging from differentiation and proliferation to migration and polarity. Bioelectric signaling is a fundamental element of living systems and an untapped reservoir for new discoveries. Dissecting these mechanisms will allow for novel methods of controlling cell fate and open up new opportunities in biomedicine. This review focuses on the role of ion channels and the resting membrane potential in the proliferation and differentiation of skeletal muscle progenitor cells. In addition, findings relevant to this topic are presented and potential implications for tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Colin Fennelly
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
40
|
Tocotrienol-Rich Fraction (TRF) Treatment Promotes Proliferation Capacity of Stress-Induced Premature Senescence Myoblasts and Modulates the Renewal of Satellite Cells: Microarray Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9141343. [PMID: 30774750 PMCID: PMC6350575 DOI: 10.1155/2019/9141343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Human skeletal muscle is a vital organ involved in movement and force generation. It suffers from deterioration in mass, strength, and regenerative capacity in sarcopenia. Skeletal muscle satellite cells are involved in the regeneration process in response to muscle loss. Tocotrienol, an isomer of vitamin E, was reported to have a protective effect on cellular aging. This research is aimed at determining the modulation of tocotrienol-rich fraction (TRF) on the gene expressions of stress-induced premature senescence (SIPS) human skeletal muscle myoblasts (CHQ5B). CHQ5B cells were divided into three groups, i.e., untreated young control, SIPS control (treated with 1 mM hydrogen peroxide), and TRF-posttreated groups (24 hours of 50 μg/mL TRF treatment after SIPS induction). The differential gene expressions were assessed using microarray, GSEA, and KEGG pathway analysis. Results showed that TRF treatment significantly regulated the gene expressions, i.e., p53 (RRM2B, SESN1), ErbB (EREG, SHC1, and SHC3), and FoxO (MSTN, SMAD3) signalling pathways in the SIPS myoblasts compared to the SIPS control group (p < 0.05). TRF treatment modulated the proliferation capacity of SIPS myoblasts through regulation of ErbB (upregulation of expression of EREG, SHC1, and SHC3) and FoxO (downregulation of expression of MSTN and SMAD3) and maintaining the renewal of satellite cells through p53 signalling (upregulation of RRM2B and SESN1), MRF, cell cycle, and Wnt signalling pathways.
Collapse
|
41
|
Cho DS, Doles JD. Skeletal Muscle Progenitor Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:179-193. [PMID: 31487024 DOI: 10.1007/978-3-030-24108-7_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue-specific stem cells contribute to adult tissue maintenance, repair, and regeneration. In skeletal muscle, many different mononuclear cell types are capable of giving rise to differentiated muscle. Of these tissue stem-like cells, satellite cells (SCs) are the most studied muscle stem cell population and are widely considered the main cellular source driving muscle repair and regeneration in adult tissue. Within the satellite cell pool, many distinct subpopulations exist, each exhibiting differential abilities to exit quiescence, expand, differentiate, and self-renew. In this chapter, we discuss the different stem cell types that can give rise to skeletal muscle tissue and then focus on satellite cell heterogeneity during the process of myogenesis/muscle regeneration. Finally, we highlight emerging opportunities to better characterize muscle stem cell heterogeneity, which will ultimately deepen our appreciation of stem cells in muscle development, repair/regeneration, aging, and disease.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Mademtzoglou D, Asakura Y, Borok MJ, Alonso-Martin S, Mourikis P, Kodaka Y, Mohan A, Asakura A, Relaix F. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. eLife 2018; 7:33337. [PMID: 30284969 PMCID: PMC6172026 DOI: 10.7554/elife.33337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.
Collapse
Affiliation(s)
- Despoina Mademtzoglou
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yoko Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Matthew J Borok
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Sonia Alonso-Martin
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Philippos Mourikis
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yusaku Kodaka
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Frederic Relaix
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France.,Etablissement Français du Sang, Créteil, France.,APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, Créteil, France
| |
Collapse
|
43
|
Virgilio KM, Martin KS, Peirce SM, Blemker SS. Agent-based model illustrates the role of the microenvironment in regeneration in healthy and mdx skeletal muscle. J Appl Physiol (1985) 2018; 125:1424-1439. [PMID: 30070607 DOI: 10.1152/japplphysiol.00379.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease with no effective treatment. Multiple mechanisms are thought to contribute to muscle wasting, including increased susceptibility to contraction-induced damage, chronic inflammation, fibrosis, altered satellite stem cell (SSC) dynamics, and impaired regenerative capacity. The goals of this project were to 1) develop an agent-based model of skeletal muscle that predicts the dynamic regenerative response of muscle cells, fibroblasts, SSCs, and inflammatory cells as a result of contraction-induced injury, 2) calibrate and validate the model parameters based on comparisons with published experimental measurements, and 3) use the model to investigate how changing isolated and combined factors known to be associated with DMD (e.g., altered fibroblast or SSC behaviors) influence muscle regeneration. Our predictions revealed that the percent of injured muscle that recovered 28 days after injury was dependent on the peak SSC counts following injury. In simulations with near-full cross-sectional area recovery (healthy, 4-wk mdx, 3-mo mdx), the SSC counts correlated with the extent of initial injury; however, in simulations with impaired regeneration (9-mo mdx), the peak SSC counts were suppressed relative to initial injury. The differences in SSC counts between these groups were emergent predictions dependent on altered microenvironment factors known to be associated with DMD. Multiple cell types influenced the peak number of SSCs, but no individual parameter predicted the differences in SSC counts. This finding suggests that interventions to target the microenvironment rather than SSCs directly could be an effective method for improving regeneration in impaired muscle. NEW & NOTEWORTHY A computational model predicted that satellite stem cell (SSC) counts are correlated with muscle cross-sectional area (CSA) recovery following injury. In simulations with impaired CSA recovery, SSC counts are suppressed relative to healthy muscle. The suppressed SSC counts were an emergent model prediction, because all simulations had equal initial SSC counts. Fibroblast and anti-inflammatory macrophage counts influenced SSC counts, but no single factor was able to predict the pathological differences in SSC counts that lead to impaired regeneration.
Collapse
Affiliation(s)
- Kelley M Virgilio
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Kyle S Martin
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia.,Department of Orthopaedic Surgery, University of Virginia , Charlottesville, Virginia.,Department of Mechanical and Aerospace Engineering, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
44
|
Squillaro T, Galano G, De Rosa R, Peluso G, Galderisi U. Concise Review: The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk. Stem Cells 2018; 36:1146-1153. [PMID: 29664142 DOI: 10.1002/stem.2836] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023]
Abstract
Exposure to high levels of ionizing radiation (IR) (>0.5 Gy) negatively affects health, but less is known about the effects of low-dose ionizing radiation (LDIR). Recent evidence suggests that it may have profound effects on cellular functions. People are commonly exposed to LDIR over natural background levels from numerous sources, including LDIR from medical diagnosis and therapy, air travel, illegal IR waste dumpsites, and occupational exposures in the nuclear and medical sectors. Stem cells reside for long periods of time in our bodies, and this increases the possibility that they may accumulate genotoxic damage derived from extrinsic LDIR or intrinsic sources (such as DNA replication). In this review, we provide an overview of LDIR effects on the biology of stem cell compartments. The principal findings and issues reported in the scientific literature are discussed in order to present the current understanding of the LDIR exposure risk and assess whether it may impact human health. We first consider the general biological consequences of LDIR exposure. Following this, we discuss the effects of LDIR on stem cells as discovered through in vitro and in vivo studies. Stem Cells 2018;36:1146-1153.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli,", Naples, Italy
| | - Giovanni Galano
- ASL Napoli 1 Centro P.S.I. Napoli Est - Barra, Naples, Italy
| | - Roberto De Rosa
- ASL Napoli 1 Centro P.S.I. Napoli Est - Barra, Naples, Italy
| | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli,", Naples, Italy
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Das S, Morvan F, Morozzi G, Jourde B, Minetti GC, Kahle P, Rivet H, Brebbia P, Toussaint G, Glass DJ, Fornaro M. ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation. Cell Rep 2018; 21:3003-3011. [PMID: 29241530 DOI: 10.1016/j.celrep.2017.11.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/07/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
ATP citrate lyase (ACL) plays a key role in regulating mitochondrial function, as well as glucose and lipid metabolism in skeletal muscle. We report here that ACL silencing impairs myoblast and satellite cell (SC) differentiation, and it is accompanied by a decrease in fast myosin heavy chain isoforms and MYOD. Conversely, overexpression of ACL enhances MYOD levels and promotes myogenesis. Myogenesis is dependent on transcriptional but also other mechanisms. We show that ACL regulates the net amount of acetyl groups available, leading to alterations in acetylation of H3(K9/14) and H3(K27) at the MYOD locus, thus increasing MYOD expression. ACL overexpression in murine skeletal muscle leads to improved regeneration after cardiotoxin-mediated damage. Thus, our findings suggest a mechanism for regulating SC differentiation and enhancing regeneration, which might be exploited for devising therapeutic approaches for treating skeletal muscle disease.
Collapse
Affiliation(s)
- Suman Das
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Frederic Morvan
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Giulio Morozzi
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Benjamin Jourde
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Giulia C Minetti
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Peter Kahle
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Helene Rivet
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Pascale Brebbia
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - Gauthier Toussaint
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland
| | - David J Glass
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mara Fornaro
- Novartis Institutes for Biomedical Research, Forum 1, Novartis Campus, 4056 Basel, Switzerland.
| |
Collapse
|
46
|
SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis 2018; 9:643. [PMID: 29844345 PMCID: PMC5974324 DOI: 10.1038/s41419-018-0693-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal tumor of soft tissue in children that originates from a myogenic differentiation defect. Expression of SNAIL transcription factor is elevated in the alveolar subtype of RMS (ARMS), characterized by a low myogenic differentiation status and high aggressiveness. In RMS patients SNAIL level increases with higher stage. Moreover, SNAIL level negatively correlates with MYF5 expression. The differentiation of human ARMS cells diminishes SNAIL level. SNAIL silencing in ARMS cells inhibits proliferation and induces differentiation in vitro, and thereby completely abolishes the growth of human ARMS xenotransplants in vivo. SNAIL silencing induces myogenic differentiation by upregulation of myogenic factors and muscle-specific microRNAs, such as miR-206. SNAIL binds to the MYF5 promoter suppressing its expression. SNAIL displaces MYOD from E-box sequences (CANNTG) that are associated with genes expressed during differentiation and G/C rich in their central dinucleotides. SNAIL silencing allows the re-expression of MYF5 and canonical MYOD binding, promoting ARMS cell myogenic differentiation. In differentiating ARMS cells SNAIL forms repressive complex with histone deacetylates 1 and 2 (HDAC1/2) and regulates their expression. Accordingly, in human myoblasts SNAIL silencing induces differentiation by upregulation of myogenic factors. Our data clearly point to SNAIL as a key regulator of myogenic differentiation and a new promising target for future ARMS therapies.
Collapse
|
47
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
48
|
Szymkowicz DB, Schwendinger KL, Tatnall CM, Swetenburg JR, Bain LJ. Embryonic-only arsenic exposure alters skeletal muscle satellite cell function in killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:276-286. [PMID: 29574248 PMCID: PMC5889967 DOI: 10.1016/j.aquatox.2018.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 05/06/2023]
Abstract
Arsenic is a contaminant found worldwide in drinking water and food. Epidemiological studies have correlated arsenic exposure with reduced weight gain and improper muscular development, while in vitro studies show that arsenic exposure impairs myogenic differentiation. The purpose of this study was to use Fundulus heteroclitus or killifish as a model organism to determine if embryonic-only arsenic exposure permanently reduces the number or function of muscle satellite cells. Killifish embryos were exposed to 0, 50, 200, or 800 ppb arsenite (AsIII) until hatching, and then juvenile fish were raised in clean water. At 28, 40, and 52 weeks after hatching, skeletal muscle injuries were induced by injecting cardiotoxin into the trunk of the fish just posterior to the dorsal fin. Muscle sections were collected at 0, 3 and 10 days post-injury. Collagen levels were used to assess muscle tissue damage and recovery, while levels of proliferating cell nuclear antigen (PCNA) and myogenin were quantified to compare proliferating cells and newly formed myoblasts. At 28 weeks of age, baseline collagen levels were 105% and 112% greater in 200 and 800 ppb groups, respectively, and at 52 weeks of age, were 58% higher than controls in the 200 ppb fish. After cardiotoxin injury, collagen levels tend to increase to a greater extent and take longer to resolve in the arsenic exposed fish. The number of baseline PCNA(+) cells were 48-216% greater in 800 ppb exposed fish compared to controls, depending on the week examined. However, following cardiotoxin injury, PCNA is reduced at 28 weeks in 200 and 800 ppb fish at day 3 during the recovery period. By 52 weeks, there are significant reductions in PCNA in all exposure groups at day 3 of the recovery period. Based on these results, embryonic arsenic exposure increases baseline collagen levels and PCNA(+) cells in skeletal muscle. However, when these fish are challenged with a muscle injury, the proliferation and differentiation of satellite cells into myogenic precursors is impaired and instead, the fish appear to be favoring a fibrotic resolution to the injury.
Collapse
Affiliation(s)
- Dana B Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States
| | - Katey L Schwendinger
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Caroline M Tatnall
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - John R Swetenburg
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
49
|
Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell Reports 2018; 10:568-582. [PMID: 29337118 PMCID: PMC5830886 DOI: 10.1016/j.stemcr.2017.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Satellite cells function as precursor cells in mature skeletal muscle homeostasis and regeneration. In healthy tissue, these cells are maintained in a state of quiescence by a microenvironment formed by myofibers and basement membrane in which LAMININs (LMs) form a major component. In the present study, we evaluated the satellite cell microenvironment in vivo and found that these cells are encapsulated by LMα2–5. We sought to recapitulate this satellite cell niche in vitro by culturing satellite cells in the presence of recombinant LM-E8 fragments. We show that treatment with LM-E8 promotes proliferation of satellite cells in an undifferentiated state, through reduced phosphorylation of JNK and p38. On transplantation into injured muscle tissue, satellite cells cultured with LM-E8 promoted the regeneration of skeletal muscle. These findings represent an efficient method of culturing satellite cells for use in transplantation through the recapitulation of the satellite cell niche using recombinant LM-E8 fragments. Satellite cells are encapsulated by LMα2–5 LM-E8 promotes proliferation of satellite cells in an undifferentiated state Satellite cells cultured with LM-E8 enhanced the regeneration of skeletal muscle
Collapse
|
50
|
Lee EJ, Jan AT, Baig MH, Ahmad K, Malik A, Rabbani G, Kim T, Lee IK, Lee YH, Park SY, Choi I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells. FASEB J 2018; 32:768-781. [PMID: 28974563 DOI: 10.1096/fj.201700665r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interactions between myoblasts and the surrounding microenvironment led us to explore the role of fibromodulin (FMOD), an extracellular matrix protein, in the maintenance of myoblast stemness and function. Microarray analysis of FMODkd myoblasts and in silico studies were used to identify the top most differentially expressed genes in FMODkd, and helped establish that FMOD-based regulations of integral membrane protein 2a and clusterin are essential components of the myogenic program. Studies in knockout, obese, and diabetic mouse models helped characterize the operation of a novel FMOD-based regulatory circuit that controls myoblast switching from a myogenic to a lipid accumulation fate. FMOD regulation of myoblasts is an essential part of the myogenic program, and it offers opportunities for the development of therapeutics for the treatment of different muscle diseases.-Lee, E. J., Jan, A. T., Baig, M. H., Ahmad, K., Malik, A., Rabbani, G., Kim, T., Lee, I.-K., Lee, Y. H., Park, S.-Y., Choi, I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mohammad Hassan Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Adeel Malik
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Gulam Rabbani
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Taeyeon Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yong Ho Lee
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan, South Korea; and
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|