1
|
Wei B, Wang S, Li S, Gu Q, Yue Q, Tang Z, Zhang J, Liu W. Unveiling Cuproptosis-Driven Molecular Clusters and Immune Dysregulation in Ankylosing Spondylitis. J Inflamm Res 2025; 18:863-882. [PMID: 39867949 PMCID: PMC11760765 DOI: 10.2147/jir.s502520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
Background Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering. Methods By analyzing the peripheral blood gene expression datasets obtained from GSE73754, GSE25101, and GSE11886, we identified the expression patterns of cellular factors and immune infiltration cell related to cuproptosis. Subsequently, we employed weighted gene co-expression network analysis (WGCNA) to identify differentially expressed genes (DEGs) within each cluster and utilized the "GSVA" and "GSEABase" software packages to examine variations in gene sets enriched across various CRG clusters. Finally, we selected the best-performing machine learning model to predict genes associated with AS. Datasets (GSE25101 and GSE73754) and ELISA to assess the expression levels of the five genes and their corresponding proteins. Results Seven cuproptosis-related DEGs and four immune cell types were identified, revealing significant immune heterogeneity in the immune cell infiltration between the two cuproptosis-related molecular clusters in AS. The eXtreme Gradient Boosting (XGB) model showed the highest predictive accuracy, achieving an area under the receiver operating characteristic curve (AUC) of 0.725, and 5-gene prediction models were established. It showed satisfactory performance in the GSE25101 dataset (AUC = 0.812). According to the blood serum samples of AS patients and controls, PELI1 had a higher expression level (AUC = 0.703, p = 0.07), while ICAM2 and RANGAP1 had lower expression levels (AUC = 0.724, 0.745, and p = 0.011, 0.000, respectively) in AS patients. Conclusion We explored the correlation of cuproptosis in AS, and developed the optimal machine learning model to identify high-risk genes associated with AS. We also explored the pathogenesis and treatment strategies of AS, targeting PELI1, ICAM2, and RANGAP1.
Collapse
Affiliation(s)
- Bowen Wei
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Siwei Wang
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Suiran Li
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Qingxiang Gu
- Center of Preventive Treatment of Disease, Cangzhou Hospital of Integrated Traditional Chinese and Western of Hebei Province, Cangzhou, Hebei, People’s Republic of China
| | - Qingyun Yue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhuo Tang
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Jiamin Zhang
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Wei Liu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Xu H, Jiang Y, Wen Y, Liu Q, Du HG, Jin X. Identification of copper death-associated molecular clusters and immunological profiles for lumbar disc herniation based on the machine learning. Sci Rep 2024; 14:19294. [PMID: 39164344 PMCID: PMC11336120 DOI: 10.1038/s41598-024-69700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Lumbar disc herniation (LDH) is a common clinical spinal disorder, yet its etiology remains unclear. We aimed to explore the role of cuproptosis-related genes (CRGs) and identify potential diagnostic biomarkers. Our analysis involved interrogating the GSE124272 and GSE150408 datasets for differential gene expression profiles associated with CRGs and immune characteristics. Molecular clustering was performed on LDH samples, followed by expression and immune infiltration analyses. Using the WGCNA algorithm, specific genes within CRG clusters were identified. After selecting the most predictive genes from the optimal model, four machine learning models were constructed and validated. This study identified nine CRGs associated with copper-regulated cell death. Two copper-containing molecular clusters linked to death were detected in LDH samples. Elevated expression and immune infiltration levels were found in LDH patients, particularly in CRG cluster C2. Utilizing XGB, five genes were identified for constructing a diagnostic model, achieving an area under the curve values of 0.715. In conclusion, this research provides valuable insights into the association between LDH and copper-regulated cell death, alongside proposing a promising predictive model.
Collapse
Affiliation(s)
- Haipeng Xu
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China
| | - Yaheng Jiang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China
| | - Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China
| | - Qianqian Liu
- Respiratory Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Hong-Gen Du
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China.
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, China.
| |
Collapse
|
3
|
Wang Y, Qiu X, Liu J, Liu X, Pan J, Cai J, Liu X, Qu S. Cuproptosis-Related Biomarkers and Characterization of Immune Infiltration in Sepsis. J Inflamm Res 2024; 17:2459-2478. [PMID: 38681070 PMCID: PMC11048236 DOI: 10.2147/jir.s452980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Sepsis is a worldwide epidemic, with high morbidity and mortality. Cuproptosis is a form of cell death that is associated with a wide range of diseases. This study aimed to explore genes associated with cuproptosis in sepsis, construct predictive models and screen for potential targets. Methods The LASSO algorithm and SVM-RFE model has been analysed the expression of cuproptosis-related genes in sepsis and immune infiltration characteristics and identified the marker genes under a diagnostic model. Gene-drug networks, mRNA-miRNA networks and PPI networks were constructed to screen for potential biological targets. The expression of marker genes was validated based on the GSE57065 dataset. Consensus clustering method was used to classify sepsis samples. Results We found 381 genes associated with the development of sepsis and discovered significantly differentially expressed cuproptosis-related genes of 16 cell types in sepsis and immune infiltration with CD8/CD4 T cells being lower. NFE2L2, NLRP3, SLC31A1, DLD, DLAT, PDHB, MTF1, CDKN2A and DLST were identified as marker genes by the LASSO algorithm and the SVM-RFE model. AUC > 0.9 was constructed for PDHB and MTF1 alone respectively. The validation group data for PDHB (P=0.00099) and MTF1 (P=7.2e-14) were statistically significant. Consistent clustering analysis confirmed two subtypes. The C1 subtype may be more relevant to cellular metabolism and the C2 subtype has some relevance to immune molecules.The results of animal experiments showed that the gene expression was consistent with the bioinformatics analysis. Discussion Our study systematically explored the relationship between sepsis and cuproptosis and constructed a diagnostic model. And, several cuproptosis-related genes may interfere with the progression of sepsis through immune cell infiltration.
Collapse
Affiliation(s)
- Yuanfeng Wang
- College of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu Qiu
- College of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jiao Liu
- College of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xuanyi Liu
- College of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jialu Pan
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jiayi Cai
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaodong Liu
- College of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, People’s Republic of China
| | - Shugen Qu
- College of Public Health and Management, Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou, People’s Republic of China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, People’s Republic of China
| |
Collapse
|
4
|
Liu C, Fang Z, Yang K, Ji Y, Yu X, Guo Z, Dong Z, Zhu T, Liu C. Identification and validation of cuproptosis-related molecular clusters in non-alcoholic fatty liver disease. J Cell Mol Med 2024; 28:e18091. [PMID: 38169083 PMCID: PMC10844703 DOI: 10.1111/jcmm.18091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide. Cuproptosis has recently been reported as a form of cell death that appears to drive the progression of a variety of diseases. This study aimed to explore cuproptosis-related molecular clusters and construct a prediction model. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The associations between molecular clusters of cuproptosis-related genes and immune cell infiltration were investigated using 50 NAFLD samples. Furthermore, cluster-specific differentially expressed genes were identified by the WGCNA algorithm. External datasets were used to verify and screen feature genes, and nomograms, calibration curves and decision curve analysis (DCA) were performed to verify the performance of the prediction model. Finally, a NAFLD-diet mouse model was constructed to further verify the predictive analysis, thus providing new insights into the prediction of NAFLD clusters and risks. The role of cuproptosis in the development of non-alcoholic fatty liver disease and immune cell infiltration was explored. Non-alcoholic fatty liver disease was divided into two cuproptosis-related molecular clusters by unsupervised clustering. Three characteristic genes (ENO3, SLC16A1 and LEPR) were selected by machine learning and external data set validation. In addition, the accuracy of the nomogram, calibration curve and decision curve analysis in predicting NAFLD clusters was also verified. Further animal and cell experiments confirmed the difference in their expression in the NAFLD mouse model and Mouse hepatocyte cell line. The present study explored the relationship between non-alcoholic fatty liver disease and cuproptosis, providing new ideas and targets for individual treatment of the disease.
Collapse
Affiliation(s)
- Changxu Liu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhihao Fang
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Kai Yang
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yanchao Ji
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaoxiao Yu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - ZiHao Guo
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhichao Dong
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tong Zhu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Beijing Chaoyang Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Chang Liu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
5
|
Box JM, Anderson JM, Stuart RA. Mutation of the PEBP-like domain of the mitoribosomal MrpL35/mL38 protein results in production of nascent chains with impaired capacity to assemble into OXPHOS complexes. Mol Biol Cell 2023; 34:ar131. [PMID: 37792492 PMCID: PMC10848944 DOI: 10.1091/mbc.e23-04-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Located in the central protuberance region of the mitoribosome and mitospecific mL38 proteins display homology to PEBP (Phosphatidylethanolamine Binding Protein) proteins, a diverse family of proteins reported to bind anionic substrates/ligands and implicated in cellular signaling and differentiation pathways. In this study, we have performed a mutational analysis of the yeast mitoribosomal protein MrpL35/mL38 and demonstrate that mutation of the PEBP-invariant ligand binding residues Asp(D)232 and Arg(R)288 impacted MrpL35/mL38's ability to support OXPHOS-based growth of the cell. Furthermore, our data indicate these residues exist in a functionally important charged microenvironment, which also includes Asp(D)167 of MrpL35/mL38 and Arg(R)127 of the neighboring Mrp7/bL27m protein. We report that mutation of each of these charged residues resulted in a strong reduction in OXPHOS complex levels that was not attributed to a corresponding inhibition of the mitochondrial translation process. Rather, our findings indicate that a disconnect exists in these mutants between the processes of mitochondrial protein translation and the events required to ensure the competency and/or availability of the newly synthesized proteins to assemble into OXPHOS enzymes. Based on our findings, we postulate that the PEBP-homology domain of MrpL35/mL38, together with its partner Mrp7/bL27m, form a key regulatory region of the mitoribosome.
Collapse
Affiliation(s)
- Jodie M. Box
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Jessica M. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Rosemary A. Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
6
|
Kamradt ML, Makarewich CA. Mitochondrial microproteins: critical regulators of protein import, energy production, stress response pathways, and programmed cell death. Am J Physiol Cell Physiol 2023; 325:C807-C816. [PMID: 37642234 PMCID: PMC11540166 DOI: 10.1152/ajpcell.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mitochondria rely upon the coordination of protein import, protein translation, and proper functioning of oxidative phosphorylation (OXPHOS) complexes I-V to sustain the activities of life for an organism. Each process is dependent upon the function of profoundly large protein complexes found in the mitochondria [translocase of the outer mitochondrial membrane (TOMM) complex, translocase of the inner mitochondrial membrane (TIMM) complex, OXPHOS complexes, mitoribosomes]. These massive protein complexes, in some instances more than one megadalton, are built up from numerous protein subunits of varying sizes, including many proteins that are ≤100-150 amino acids. However, these small proteins, termed microproteins, not only act as cogs in large molecular machines but also have important steps in inhibiting or promoting the intrinsic pathway of apoptosis, coordinate responses to cellular stress, and even act as hormones. This review focuses on microproteins that occupy the mitochondria and are critical for its function. Although the microprotein field is relatively new, researchers have long recognized the existence of these mitochondrial proteins as critical components of virtually all aspects of mitochondrial biology. Thus, recent studies estimating that hundreds of new microproteins of unknown function exist and are missing from current genome annotations suggests that the mitochondrial "microproteome" is a rich area for future biological investigation.
Collapse
Affiliation(s)
- Michael L Kamradt
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
7
|
Saurer M, Leibundgut M, Nadimpalli HP, Scaiola A, Schönhut T, Lee RG, Siira SJ, Rackham O, Dreos R, Lenarčič T, Kummer E, Gatfield D, Filipovska A, Ban N. Molecular basis of translation termination at noncanonical stop codons in human mitochondria. Science 2023; 380:531-536. [PMID: 37141370 DOI: 10.1126/science.adf9890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.
Collapse
Affiliation(s)
- Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Program, Blegdamsvej 3B, 2200 København N, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Liang Y, Pan Z, Zhu M, Gao R, Wang Y, Cheng Y, Zhang N. Exposure to essential and non-essential trace elements and risks of congenital heart defects: A narrative review. Front Nutr 2023; 10:1121826. [PMID: 36998909 PMCID: PMC10043220 DOI: 10.3389/fnut.2023.1121826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Congenital heart defects (CHDs) are congenital abnormalities involving the gross structures of the heart and large blood vessels. Environmental factors, genetic factors and their interactions may contribute to the pathogenesis of CHDs. Generally, trace elements can be classified into essential trace elements and non-essential trace elements. Essential trace elements such as copper (Cu), zinc (Zn), iron (Fe), selenium (Se), and manganese (Mn) play important roles in human biological functions such as metabolic function, oxidative stress regulation, and embryonic development. Non-essential trace elements such as cadmium (Cd), arsenic (As), lead (Pb), nickle (Ni), barium (Ba), chromium (Cr) and mercury (Hg) are harmful to health even at low concentrations. Recent studies have revealed the potential involvement of these trace elements in the pathogenesis of CHDs. In this review, we summarized current studies exploring exposure to essential and non-essential trace elements and risks of CHDs, in order to provide further insights for the pathogenesis and prevention of CHDs.
Collapse
Affiliation(s)
- Yipu Liang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zijian Pan
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingzheng Zhu
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Gao
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yijue Wang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yijuan Cheng
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Nannan Zhang,
| |
Collapse
|
9
|
Zhou Y, Li X, Ng L, Zhao Q, Guo W, Hu J, Zhong J, Su W, Liu C, Su S. Identification of copper death-associated molecular clusters and immunological profiles in rheumatoid arthritis. Front Immunol 2023; 14:1103509. [PMID: 36891318 PMCID: PMC9986609 DOI: 10.3389/fimmu.2023.1103509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Objective An analysis of the relationship between rheumatoid arthritis (RA) and copper death-related genes (CRG) was explored based on the GEO dataset. Methods Based on the differential gene expression profiles in the GSE93272 dataset, their relationship to CRG and immune signature were analysed. Using 232 RA samples, molecular clusters with CRG were delineated and analysed for expression and immune infiltration. Genes specific to the CRGcluster were identified by the WGCNA algorithm. Four machine learning models were then built and validated after selecting the optimal model to obtain the significant predicted genes, and validated by constructing RA rat models. Results The location of the 13 CRGs on the chromosome was determined and, except for GCSH. LIPT1, FDX1, DLD, DBT, LIAS and ATP7A were expressed at significantly higher levels in RA samples than in non-RA, and DLST was significantly lower. RA samples were significantly expressed in immune cells such as B cells memory and differentially expressed genes such as LIPT1 were also strongly associated with the presence of immune infiltration. Two copper death-related molecular clusters were identified in RA samples. A higher level of immune infiltration and expression of CRGcluster C2 was found in the RA population. There were 314 crossover genes between the 2 molecular clusters, which were further divided into two molecular clusters. A significant difference in immune infiltration and expression levels was found between the two. Based on the five genes obtained from the RF model (AUC = 0.843), the Nomogram model, calibration curve and DCA also demonstrated their accuracy in predicting RA subtypes. The expression levels of the five genes were significantly higher in RA samples than in non-RA, and the ROC curves demonstrated their better predictive effect. Identification of predictive genes by RA animal model experiments was also confirmed. Conclusion This study provides some insight into the correlation between rheumatoid arthritis and copper mortality, as well as a predictive model that is expected to support the development of targeted treatment options in the future.
Collapse
Affiliation(s)
- Yu Zhou
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Foot & Ankle Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xin Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liqi Ng
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Qing Zhao
- School of Health Management, Tianjin University of Chinese Medicine, Tianjin, China
| | - Wentao Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinhua Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenlong Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Songchuan Su
- Foot & Ankle Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
10
|
Lai Y, Lin C, Lin X, Wu L, Zhao Y, Lin F. Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer's disease. Front Aging Neurosci 2022; 14:932676. [PMID: 35966780 PMCID: PMC9366224 DOI: 10.3389/fnagi.2022.932676] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Alzheimer's disease is the most common dementia with clinical and pathological heterogeneity. Cuproptosis is a recently reported form of cell death, which appears to result in the progression of various diseases. Therefore, our study aimed to explore cuproptosis-related molecular clusters in Alzheimer's disease and construct a prediction model. Methods Based on the GSE33000 dataset, we analyzed the expression profiles of cuproptosis regulators and immune characteristics in Alzheimer's disease. Using 310 Alzheimer's disease samples, we explored the molecular clusters based on cuproptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were identified using the WGCNA algorithm. Subsequently, the optimal machine model was chosen by comparing the performance of the random forest model, support vector machine model, generalized linear model, and eXtreme Gradient Boosting. Nomogram, calibration curve, decision curve analysis, and three external datasets were applied for validating the predictive efficiency. Results The dysregulated cuproptosis-related genes and activated immune responses were determined between Alzheimer's disease and non-Alzheimer's disease controls. Two cuproptosis-related molecular clusters were defined in Alzheimer's disease. Analysis of immune infiltration suggested the significant heterogeneity of immunity between distinct clusters. Cluster2 was characterized by elevated immune scores and relatively higher levels of immune infiltration. Functional analysis showed that cluster-specific differentially expressed genes in Cluster2 were closely related to various immune responses. The Random forest machine model presented the best discriminative performance with relatively lower residual and root mean square error, and a higher area under the curve (AUC = 0.9829). A final 5-gene-based random forest model was constructed, exhibiting satisfactory performance in two external validation datasets (AUC = 0.8529 and 0.8333). The nomogram, calibration curve, and decision curve analysis also demonstrated the accuracy to predict Alzheimer's disease subtypes. Further analysis revealed that these five model-related genes were significantly associated with the Aβ-42 levels and β-secretase activity. Conclusion Our study systematically illustrated the complicated relationship between cuproptosis and Alzheimer's disease, and developed a promising prediction model to evaluate the risk of cuproptosis subtypes and the pathological outcome of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Xing Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Lijuan Wu
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Yinan Zhao
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Fan Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Fan Lin
| |
Collapse
|
11
|
Verma Y, Mehra U, Pandey DK, Kar J, Pérez-Martinez X, Jana SS, Datta K. MRX8, the conserved mitochondrial YihA GTPase family member, is required for de novo Cox1 synthesis at suboptimal temperatures in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:ar16. [PMID: 34432493 PMCID: PMC8693954 DOI: 10.1091/mbc.e20-07-0457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The synthesis of Cox1, the conserved catalytic-core subunit of Complex IV, a multisubunit machinery of the mitochondrial oxidative phosphorylation (OXPHOS) system under environmental stress, has not been sufficiently addressed. In this study, we show that the putative YihA superfamily GTPase, Mrx8, is a bona fide mitochondrial protein required for Cox1 translation initiation and elongation during suboptimal growth condition at 16°C. Mrx8 was found in a complex with mitochondrial ribosomes, consistent with a role in protein synthesis. Cells expressing mutant Mrx8 predicted to be defective in guanine nucleotide binding and hydrolysis were compromised for robust cellular respiration. We show that the requirement of Pet309 and Mss51 for cellular respiration is not bypassed by overexpression of Mrx8 and vice versa. Consistently the ribosomal association of Mss51 is independent of Mrx8. Significantly, we find that GTPBP8, the human orthologue, complements the loss of cellular respiration in Δmrx8 cells and GTPBP8 localizes to the mitochondria in mammalian cells. This strongly suggests a universal role of the MRX8 family of proteins in regulating mitochondrial function.
Collapse
Affiliation(s)
- Yash Verma
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Upasana Mehra
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Joy Kar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Xochitl Pérez-Martinez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kaustuv Datta
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
12
|
Smith SA, Ogawa SA, Chau L, Whelan KA, Hamilton KE, Chen J, Tan L, Chen EZ, Keilbaugh S, Fogt F, Bewtra M, Braun J, Xavier RJ, Clish CB, Slaff B, Weljie AM, Bushman FD, Lewis JD, Li H, Master SR, Bennett MJ, Nakagawa H, Wu GD. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J Clin Invest 2021; 131:133371. [PMID: 33141762 DOI: 10.1172/jci133371] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/09/2020] [Indexed: 12/26/2022] Open
Abstract
As the interface between the gut microbiota and the mucosal immune system, there has been great interest in the maintenance of colonic epithelial integrity through mitochondrial oxidation of butyrate, a short-chain fatty acid produced by the gut microbiota. Herein, we showed that the intestinal epithelium could also oxidize long-chain fatty acids, and that luminally delivered acylcarnitines in bile could be consumed via apical absorption by the intestinal epithelium, resulting in mitochondrial oxidation. Finally, intestinal inflammation led to mitochondrial dysfunction in the apical domain of the surface epithelium that may reduce the consumption of fatty acids, contributing to higher concentrations of fecal acylcarnitines in murine Citrobacter rodentium-induced colitis and human inflammatory bowel disease. These results emphasized the importance of both the gut microbiota and the liver in the delivery of energy substrates for mitochondrial metabolism by the intestinal epithelium.
Collapse
Affiliation(s)
- Sarah A Smith
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sayaka A Ogawa
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lillian Chau
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly A Whelan
- Fels Institute for Cancer Research and Molecular Biology, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jie Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lu Tan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eric Z Chen
- Department of Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sue Keilbaugh
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Franz Fogt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ramnik J Xavier
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, Massachusetts, USA.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, Massachusetts, USA
| | - Barry Slaff
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James D Lewis
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael J Bennett
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Gary D Wu
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes (Basel) 2021; 12:genes12071031. [PMID: 34356047 PMCID: PMC8305315 DOI: 10.3390/genes12071031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.
Collapse
|
14
|
Wu GJ, Cherng YG, Chen JT, Chang CC, Liu SH, Chen RM. Genistein Triggers Translocation of Estrogen Receptor-Alpha in Mitochondria to Induce Expressions of ATP Synthesis-Associated Genes and Improves Energy Production and Osteoblast Maturation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:901-923. [PMID: 33853499 DOI: 10.1142/s0192415x21500439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our previous study showed that estrogen can induce mitochondrial adenosine triphosphate (ATP) synthesis-associated gene expressions and osteoblast maturation. Genistein, a phytoestrogenic isoflavone that is widely found in various foods and traditional herb products, is beneficial for osteogenesis by selectively triggering estrogen receptor alpha (ER[Formula: see text] expression. In this study, we further investigated the mechanisms of genistein-induced energy production and osteoblast activation. Exposure of rat calvarial osteoblasts and human U-2 OS cells to genistein triggered osteoblast activation without affecting cell survival. Treatment with genistein time-dependently induced ER[Formula: see text] mRNA and protein expressions in rat calvarial osteoblasts. Analyses by confocal microscopy and immunoblotting showed that genistein stimulated translocation of ER[Formula: see text] from the cytoplasm to mitochondria. Subsequently, expressions of mitochondrial cytochrome c oxidase (COX) I and II mRNAs and proteins in primary rat osteoblasts were induced after exposure to genistein. Knocking-down ER[Formula: see text] concurrently inhibited genistein-induced COX I and II mRNA expressions. In addition, mitochondrial complex enzyme activities, the mitochondrial membrane potential, and cellular ATP levels in rat calvarial osteoblasts were time-dependently augmented by genistein. Suppressing ER[Formula: see text] expression instantaneously lowered genistein-induced enhancements of mitochondrial energy production and osteoblast activation. Effects of genistein on ER[Formula: see text] translocation, COX I and II mRNA expressions, ATP synthesis, and osteoblast activation were further confirmed in human U-2 OS cells. This study showed that genistein can stimulate energy production and consequent osteoblast activation via inducing ER[Formula: see text]-mediated mitochondrial ATP synthesis-linked gene expressions.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Chau Chang
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Institute of Toxicology, College of Medicine National Taiwan University Taipei, Taiwan
| | - Ruei-Ming Chen
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan
| |
Collapse
|
15
|
The road to the structure of the mitochondrial respiratory chain supercomplex. Biochem Soc Trans 2021; 48:621-629. [PMID: 32311046 PMCID: PMC7200630 DOI: 10.1042/bst20190930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.
Collapse
|
16
|
Čunátová K, Reguera DP, Vrbacký M, Fernández-Vizarra E, Ding S, Fearnley IM, Zeviani M, Houštěk J, Mráček T, Pecina P. Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis. Cells 2021; 10:369. [PMID: 33578848 PMCID: PMC7916595 DOI: 10.3390/cells10020369] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance. However, the true nature of interdependency between cI and cIV is not fully understood yet. We used a HEK293 cellular model where the COX4 subunit was completely knocked out, serving as an ideal system to study interdependency of cI and cIV, as early phases of cIV assembly process were disrupted. Total absence of cIV was accompanied by profound deficiency of cI, documented by decrease in the levels of cI subunits and significantly reduced amount of assembled cI. Supercomplexes assembled from cI, cIII, and cIV were missing in COX4I1 knock-out (KO) due to loss of cIV and decrease in cI amount. Pulse-chase metabolic labeling of mitochondrial DNA (mtDNA)-encoded proteins uncovered a decrease in the translation of cIV and cI subunits. Moreover, partial impairment of mitochondrial protein synthesis correlated with decreased content of mitochondrial ribosomal proteins. In addition, complexome profiling revealed accumulation of cI assembly intermediates, indicating that cI biogenesis, rather than stability, was affected. We propose that attenuation of mitochondrial protein synthesis caused by cIV deficiency represents one of the mechanisms, which may impair biogenesis of cI.
Collapse
Affiliation(s)
- Kristýna Čunátová
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - David Pajuelo Reguera
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Marek Vrbacký
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Erika Fernández-Vizarra
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Ian M. Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; (E.F.-V.); (S.D.); (I.M.F.); (M.Z.)
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; (K.Č.); (D.P.R.); (M.V.); (J.H.)
| |
Collapse
|
17
|
Szczepanowska K, Trifunovic A. Tune instead of destroy: How proteolysis keeps OXPHOS in shape. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148365. [PMID: 33417924 DOI: 10.1016/j.bbabio.2020.148365] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are highly dynamic and stress-responsive organelles that are renewed, maintained and removed by a number of different mechanisms. Recent findings bring more evidence for the focused, defined, and regulatory function of the intramitochondrial proteases extending far beyond the traditional concepts of damage control and stress responses. Until recently, the macrodegradation processes, such as mitophagy, were promoted as the major regulator of OXPHOS remodelling and turnover. However, the spatiotemporal dynamics of the OXPHOS system can be greatly modulated by the intrinsic mitochondrial mechanisms acting apart from changes in the global mitochondrial dynamics. This, in turn, may substantially contribute to the shaping of the metabolic status of the cell.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne D-50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany.
| |
Collapse
|
18
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Čunátová K, Reguera DP, Houštěk J, Mráček T, Pecina P. Role of cytochrome c oxidase nuclear-encoded subunits in health and disease. Physiol Res 2020; 69:947-965. [PMID: 33129245 DOI: 10.33549/physiolres.934446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of mitochondrial electron transport chain, couples electron transport to oxygen with generation of proton gradient indispensable for the production of vast majority of ATP molecules in mammalian cells. The review summarizes current knowledge of COX structure and function of nuclear-encoded COX subunits, which may modulate enzyme activity according to various conditions. Moreover, some nuclear-encoded subunits posess tissue-specific and development-specific isoforms, possibly enabling fine-tuning of COX function in individual tissues. The importance of nuclear-encoded subunits is emphasized by recently discovered pathogenic mutations in patients with severe mitopathies. In addition, proteins substoichiometrically associated with COX were found to contribute to COX activity regulation and stabilization of the respiratory supercomplexes. Based on the summarized data, a model of three levels of quaternary COX structure is postulated. Individual structural levels correspond to subunits of the i) catalytic center, ii) nuclear-encoded stoichiometric subunits and iii) associated proteins, which may constitute several forms of COX with varying composition and differentially regulated function.
Collapse
Affiliation(s)
- K Čunátová
- Department of Bioenergetics, Institute of Physiology CAS, Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
20
|
Cobine PA, Moore SA, Leary SC. Getting out what you put in: Copper in mitochondria and its impacts on human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118867. [PMID: 32979421 DOI: 10.1016/j.bbamcr.2020.118867] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.
Collapse
Affiliation(s)
- Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
21
|
Grevel A, Pfanner N, Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem 2020; 401:117-129. [PMID: 31513529 DOI: 10.1515/hsz-2019-0310] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
22
|
Wu GJ, Chen JT, Lin PI, Cherng YG, Yang ST, Chen RM. Inhibition of the estrogen receptor alpha signaling delays bone regeneration and alters osteoblast maturation, energy metabolism, and angiogenesis. Life Sci 2020; 258:118195. [PMID: 32781073 DOI: 10.1016/j.lfs.2020.118195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023]
Abstract
AIMS The estrogen-ERα axis participates in osteoblast maturation. This study was designed to further evaluated the roles of the estrogen-ERα axis in bone healing and the possible mechanisms. MAIN METHODS Female ICR mice were created a metaphyseal bone defect in the left femurs and administered with methylpiperidinopyrazole (MPP), an inhibitor of ERα. Bone healing was evaluated using micro-computed tomography. Colocalization of ERα with alkaline phosphatase (ALP) and ERα translocation to mitochondria were determined. Levels of ERα, ERβ, PECAM-1, VEGF, and β-actin were immunodetected. Expression of chromosomal Runx2, ALP, and osteocalcin mRNAs and mitochondrial cytochrome c oxidase (COX) I and COXII mRNAs were quantified. Angiogenesis was measured with immunohistochemistry. KEY FINDINGS Following surgery, the bone mass was time-dependently augmented in the bone-defect area. Simultaneously, levels of ERα were specifically upregulated and positively correlated with bone healing. Administration of MPP to mice consistently decreased levels of ERα and bone healing. As to the mechanisms, osteogenesis was enhanced in bone healing, but MPP attenuated osteoblast maturation. In parallel, expressions of osteogenesis-related ALP, Runx2, and osteocalcin mRNAs were induced in the injured zone. Treatment with MPP led to significant inhibition of the alp, runx2, and osteocalcin gene expressions. Remarkably, administration of MPP lessened translocation of ERα to mitochondria and expressions of mitochondrial energy production-related coxI and coxII genes. Furthermore, exposure to MPP decreased levels of PECAM-1 and VEGF in the bone-defect area. SIGNIFICANCE The present study showed the contributions of the estrogen-ERα axis to bone healing through stimulation of energy production, osteoblast maturation, and angiogenesis.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-I Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shun-Tai Yang
- Department of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
23
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
24
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
25
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
26
|
EGFL9 promotes breast cancer metastasis by inducing cMET activation and metabolic reprogramming. Nat Commun 2019; 10:5033. [PMID: 31695034 PMCID: PMC6834558 DOI: 10.1038/s41467-019-13034-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms driving metastatic progression in triple-negative breast cancer (TNBC) patients are poorly understood. In this study, we demonstrate that epidermal growth factor-like 9 (EGFL9) is significantly upregulated in basal-like breast cancer cells and associated with metastatic progression in breast tumor samples. Functionally, EGFL9 is both necessary and sufficient to enhance cancer cell migration and invasion, as well as distant metastasis. Mechanistically, we demonstrate that EGFL9 binds cMET, activating cMET-mediated downstream signaling. EGFL9 and cMET co-localize at both the cell membrane and within the mitochondria. We further identify an interaction between EGFL9 and the cytochrome c oxidase (COX) assembly factor COA3. Consequently, EGFL9 regulates COX activity and modulates cell metabolism, promoting a Warburg-like metabolic phenotype. Finally, we show that combined pharmacological inhibition of cMET and glycolysis reverses EGFL9-driven stemness. Our results identify EGFL9 as a therapeutic target for combating metastatic progression in TNBC. Triple-negative breast cancer is an aggressive form of the disease. Here, the authors identify EGFL9 as a mediator of metastasis in TNBC through interactions with cMET.
Collapse
|
27
|
Khalaf B, Roncador A, Pischedda F, Casini A, Thomas S, Piccoli G, Kiebler M, Macchi P. Ankyrin-G induces nucleoporin Nup358 to associate with the axon initial segment of neurons. J Cell Sci 2019; 132:jcs.222802. [PMID: 31427429 DOI: 10.1242/jcs.222802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Nup358 (also known as RanBP2) is a member of the large nucleoporin family that constitutes the nuclear pore complex. Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons, mediated by the AIS scaffold protein ankyrin-G (AnkG, also known as Ank3). The N-terminus of Nup358 is demonstrated to be sufficient for its localization at the AIS. Further, we show that Nup358 is expressed as two isoforms, one full-length and another shorter form of Nup358. These isoforms differ in their subcellular distribution in neurons and expression level during neuronal development. Overall, the present study highlights an unprecedented localization of Nup358 within the AIS and suggests its involvement in neuronal function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bouchra Khalaf
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Alessandro Roncador
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Francesca Pischedda
- Dulbecco Telethon Laboratory of Biology of Synapses, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Antonio Casini
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Sabine Thomas
- Department for Cell Biology, Biomedical Center, Medical Faculty, Ludwig-Maximilian University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Giovanni Piccoli
- Dulbecco Telethon Laboratory of Biology of Synapses, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Michael Kiebler
- Department for Cell Biology, Biomedical Center, Medical Faculty, Ludwig-Maximilian University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
28
|
Afkhami E, Heidari MM, Khatami M, Ghadamyari F, Dianatpour S. Detection of novel mitochondrial mutations in cytochrome C oxidase subunit 1 (COX1) in patients with familial adenomatous polyposis (FAP). Clin Transl Oncol 2019; 22:908-918. [PMID: 31552592 DOI: 10.1007/s12094-019-02208-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) is an Autosomal dominant inherited disorder and a rare form of colorectal cancer (CRC) that is characterized by the development of hundreds to thousands of adenomas in the rectum and colon. Mostly, cancers develop after the advent of the polyps. It appears in both sexes evenly, and the occurrence of the disease is in the second decade of life. Mitochondrial genome mutations have been reported with a variety of Tumors, but the precise role of these mutations in the pathogenicity and tumor progression is not exactly clear. Cytochrome c oxidase subunit I (COX1) is the terminal enzyme of the mitochondrial respiratory chain. The present study aims at assessing the occurrence of mtDNA mutations in COX1 gene in FAP patients and attempts to find out the cause and effect relationship between mitochondrial mutations and tumor progression. METHODS In this study, 56 FAP patients were investigated for the presence of the mutations in mitochondrial COX1 coding gene by PCR and sequencing analysis. All sequences that differed from the revised Cambridge Reference Sequence (rCRS) were classified as missense/ nonsense or silent mutations. Functional genomic studies using Bio-informatics tools were performed on the founded mutations to understand the downstream alterations in structure and function of protein. RESULTS We identified 38 changes in the COX1 gene in patients with FAP symptoms. Most of them were heteroplasmic changes of missense type (25/38). Tree of the changes (G6145A, C6988A, and T7306G) were nonsense mutations and had not been reported in the literature before. Our results of bioinformatics predictions showed that the identified mutations can affect mitochondrial functions, especially if the conservative domain of the protein is concerned. CONCLUSION Our findings indicate a high frequency of mtDNA mutations in all of the FAP cases compared to matched controls. These data significantly enhance our understanding of how such mutations contribute to cancer pathologies and develop the cancer treatment methods by new diagnostic biomarkers, and new drugs for gene therapy.
Collapse
Affiliation(s)
- E Afkhami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - M M Heidari
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran.
| | - M Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - F Ghadamyari
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - S Dianatpour
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
29
|
Li Y, Chen J, Li Z, Li C. Mitochondrial OXPHOS is involved in the protective effects of L-arginine against heat-induced low sperm motility of boar. J Therm Biol 2019; 84:236-244. [DOI: 10.1016/j.jtherbio.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
30
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
31
|
Ma Y, Ma M, Sun J, Li W, Li Y, Guo X, Zhang H. CHIR-99021 regulates mitochondrial remodelling via β-catenin signalling and miRNA expression during endodermal differentiation. J Cell Sci 2019; 132:jcs.229948. [PMID: 31289194 DOI: 10.1242/jcs.229948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial remodelling is a central feature of stem cell differentiation. However, little is known about the regulatory mechanisms during these processes. Previously, we found that a pharmacological inhibitor of glycogen synthase kinase-3α and -3β, CHIR-99021, initiates human adipose stem cell differentiation into human definitive endodermal progenitor cells (hEPCs), which were directed to differentiate synchronously into hepatocyte-like cells after further treatment with combinations of soluble factors. In this study, we show that CHIR-99021 promotes mitochondrial biogenesis, the expression of PGC-1α (also known as PPARGC1A), TFAM and NRF1 (also known as NFE2L1), oxidative phosphorylation capacities, and the production of reactive oxygen species in hEPCs. Blocking mitochondrial dynamics using siRNA targeting DRP1 (also known as DNM1L) impaired definitive endodermal differentiation. Downregulation of β-catenin (CTNNB1) expression weakened the effect of CHIR-99021 on the induction of mitochondrial remodelling and the expression of transcription factors for mitochondrial biogenesis. Moreover, CHIR-99021 decreased the expression of miR-19b-2-5p, miR-23a-3p, miR-23c, miR-130a-3p and miR-130a-5p in hEPCs, which target transcription factors for mitochondrial biogenesis. These data demonstrate that CHIR-99021 plays a role in mitochondrial structure and function remodelling via activation of the β-catenin signalling pathway and inhibits the expression of miRNAs during definitive endodermal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuejiao Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Minghui Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Jie Sun
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Weihong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Xinyue Guo
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| |
Collapse
|
32
|
Chasapis CT, Makridakis M, Damdimopoulos AE, Zoidakis J, Lygirou V, Mavroidis M, Vlahou A, Miranda-Vizuete A, Spyrou G, Vlamis-Gardikas A. Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Free Radic Biol Med 2019; 137:59-73. [PMID: 31018154 DOI: 10.1016/j.freeradbiomed.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Multiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA. 48 of these proteins were classified as mitochondrial (MitoCarta2.0 human inventory). In a second step, the mouse interactome was combined with the current four-membered mitochondrial sub-network of human Trx2 (BioGRID) to give a 53-membered human Trx2 mitochondrial interactome (52 interactor proteins plus the mitochondrial 16S RNA). Although thioredoxins are thiol-employing disulfide oxidoreductases, approximately half of the detected interactions were not due to covalent disulfide bonds. This finding reinstates the extended role of thioredoxins as moderators of protein function by specific non-covalent, protein-protein interactions. Analysis of the mitochondrial interactome suggested that human Trx2 was involved potentially in mitochondrial integrity, formation of iron sulfur clusters, detoxification of aldehydes, mitoribosome assembly and protein synthesis, protein folding, ADP ribosylation, amino acid and lipid metabolism, glycolysis, the TCA cycle and the electron transport chain. The oxidoreductase functions of Trx2 were verified by its detected interactions with mitochondrial peroxiredoxins and methionine sulfoxide reductase. Parkinson's disease, triosephosphate isomerase deficiency, combined oxidative phosphorylation deficiency, and lactate dehydrogenase b deficiency are some of the diseases where the proposed mitochondrial network of Trx2 may be implicated.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Platani 26504, Greece
| | | | - Anastassios E Damdimopoulos
- Department of Biosciences and Nutrition, Center for Innovative Medicine (CIMED), Karolinska Institutet, Huddinge, Sweden
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Manolis Mavroidis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
33
|
Observation of novel COX20 mutations related to autosomal recessive axonal neuropathy and static encephalopathy. Hum Genet 2019; 138:749-756. [DOI: 10.1007/s00439-019-02026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
34
|
Mansour H, Sabbagh S, Bizzari S, El-Hayek S, Chouery E, Gambarini A, Gencik M, Mégarbané A. The Lebanese Allele in the PET100 Gene: Report on Two New Families with Cytochrome c Oxidase Deficiency. J Pediatr Genet 2019; 8:172-178. [PMID: 31406627 DOI: 10.1055/s-0039-1685172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Cytochrome c oxidase deficiency is caused by mutations in any of at least 30 mitochondrial and nuclear genes involved in mitochondrial complex IV biogenesis and structure, including the recently identified PET100 gene. Here, we report two families, of which one is consanguineous, with two affected siblings each. In one family, the siblings presented with developmental delay, seizures, lactic acidosis, abnormal brain magnetic resonance imaging, and low muscle mitochondrial complex IV activity at 30%. In the other family, the two siblings, now deceased, had a history of global developmental delay, failure to thrive, muscular hypotonia, seizures, developmental regression, respiratory insufficiency, and lactic acidosis. By whole exome sequencing, a missense mutation in exon 1 of the PET100 gene (c.3G > C; [p.Met1?]) was identified in both families. A review of the clinical description and literature is discussed, highlighting the importance of this variant in the Lebanese population.
Collapse
Affiliation(s)
- Hicham Mansour
- Department of Pediatrics, Saint George Hospital, Beirut, Lebanon
| | - Sandra Sabbagh
- Department Pediatrics, Hotel-Dieu de France, Beirut, Lebanon
| | - Sami Bizzari
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | | | - Eliane Chouery
- Unité de Génétique Médicale, Université Saint Joseph, Beirut, Lebanon
| | | | | | - André Mégarbané
- INOVIE-MENA, Beirut, Lebanon.,Institut Jérôme Lejeune, CRB BioJeL, Paris, France
| |
Collapse
|
35
|
Rawat S, Anusha V, Jha M, Sreedurgalakshmi K, Raychaudhuri S. Aggregation of Respiratory Complex Subunits Marks the Onset of Proteotoxicity in Proteasome Inhibited Cells. J Mol Biol 2019; 431:996-1015. [DOI: 10.1016/j.jmb.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
|
36
|
Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ, Swaney DL, Mahley RW. Neuronal Apolipoprotein E4 Expression Results in Proteome-Wide Alterations and Compromises Bioenergetic Capacity by Disrupting Mitochondrial Function. J Alzheimers Dis 2019; 68:991-1011. [PMID: 30883359 PMCID: PMC6481541 DOI: 10.3233/jad-181184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Apolipoprotein (apo) E4, the major genetic risk factor for Alzheimer's disease (AD), alters mitochondrial function and metabolism early in AD pathogenesis. When injured or stressed, neurons increase apoE synthesis. Because of its structural difference from apoE3, apoE4 undergoes neuron-specific proteolysis, generating fragments that enter the cytosol, interact with mitochondria, and cause neurotoxicity. However, apoE4's effect on mitochondrial respiration and metabolism is not understood in detail. Here we used biochemical assays and proteomic profiling to more completely characterize the effects of apoE4 on mitochondrial function and cellular metabolism in Neuro-2a neuronal cells stably expressing apoE4 or apoE3. Under basal conditions, apoE4 impaired respiration and increased glycolysis, but when challenged or stressed, apoE4-expressing neurons had 50% less reserve capacity to generate ATP to meet energy requirements than apoE3-expressing neurons. ApoE4 expression also decreased the NAD+/NADH ratio and increased the levels of reactive oxygen species and mitochondrial calcium. Global proteomic profiling revealed widespread changes in mitochondrial processes in apoE4 cells, including reduced levels of numerous respiratory complex subunits and major disruptions to all detected subunits in complex V (ATP synthase). Also altered in apoE4 cells were levels of proteins related to mitochondrial endoplasmic reticulum-associated membranes, mitochondrial fusion/fission, mitochondrial protein translocation, proteases, and mitochondrial ribosomal proteins. ApoE4-induced bioenergetic deficits led to extensive metabolic rewiring, but despite numerous cellular adaptations, apoE4-expressing neurons remained vulnerable to metabolic stress. Our results provide insights into potential molecular targets of therapies to correct apoE4-associated mitochondrial dysfunction and altered cellular metabolism.
Collapse
Affiliation(s)
- Adam L. Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Present address: Helen & Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chaeyoung Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Present address: Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA, USA
| | - Billy W. Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Robert W. Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Vogt S, Ruppert V, Pankuweit S, Paletta JPJ, Rhiel A, Weber P, Irqsusi M, Cybulski P, Ramzan R. Myocardial insufficiency is related to reduced subunit 4 content of cytochrome c oxidase. J Cardiothorac Surg 2018; 13:95. [PMID: 30223867 PMCID: PMC6142347 DOI: 10.1186/s13019-018-0785-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/11/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Treatment of heart failure remains one of the most challenging task for intensive care medicine, cardiology and cardiac surgery. New options and better indicators are always required. Understanding the basic mechanisms underlying heart failure promote the development of adjusted therapy e.g. assist devices and monitoring of recovery. If cardiac failure is related to compromised cellular respiration of the heart, remains unclear. Myocardial respiration depends on Cytochrome c- Oxidase (CytOx) activity representing the rate limiting step for the mitochondrial respiratory chain. The enzymatic activity as well as mRNA expression of enzyme's mitochondrial encoded catalytic subunit 2, nuclear encoded regulatory subunit 4 and protein contents were studied in biopsies of cardiac patients suffering from myocardial insufficiency and dilated cardiomyopathy (DCM). METHODS Fifty-four patients were enrolled in the study and underwent coronary angiography. Thirty male patients (mean age: 45 +/- 15 yrs.) had a reduced ejection fraction (EF) 35 ± 12% below 45% and a left ventricular end diastolic diameter (LVEDD) of 71 ± 10 mm bigger than 56 mm. They were diagnosed as having idiopathic dilated cardiomyopathy (DCM) without coronary heart disease and NYHA-class 3 and 4. Additionally, 24 male patients (mean age: 52 +/- 11 yrs.) after exclusion of secondary cardiomyopathies, coronary artery or valve disease, served as control (EF: 68 ± 7, LVEDD: 51 ± 7 mm). Total RNA was extracted from two biopsies of each person. Real-time PCR analysis was performed with specific primers followed by a melt curve analysis. Corresponding protein expression in the tissue was studied with immune-histochemistry while enzymatic activity was evaluated by spectroscopy. RESULTS Gene and protein expression analysis of patients showed a significant decrease of subunit 4 (1.1 vs. 0.6, p < 0.001; 7.7 ± 3.1% vs. 2.8 ± 1.4%, p < 0.0001) but no differences in subunit 2. Correlations were found between reduced subunit 2 expression, low EF (r = 0.766, p < 0.00045) and increased LVEDD (r = 0.492, p < 0.0068). In case of DCM less subunit 4 expression and reduced shortening fraction (r = 0.524, p < 0.017) was found, but enzymatic activity was higher (0.08 ± 0.06 vs. 0.26 ± 0.08 U/mg, p < 0.001) although myocardial oxygen consumption continued to the same extent. CONCLUSION In case of myocardial insufficiency and DCM, decreased expression of COX 4 results in an impaired CytOx activity. Higher enzymatic activity but equal oxygen consumption contribute to the pathophysiology of the myocardial insufficiency and appears as an indicator of oxidative stress. This kind of dysregulation should be in the focus for the development of diagnostic and therapy procedures.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany. .,Heart Surgery, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany.
| | - Volker Ruppert
- Department for Internal Medicine- Cardiology, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Sabine Pankuweit
- Department for Internal Medicine- Cardiology, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Jürgen P J Paletta
- Clinic for Orthopedics and Rheumatology, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Annika Rhiel
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Petra Weber
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Marc Irqsusi
- Heart Surgery, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Pia Cybulski
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| | - Rabia Ramzan
- Cardiovascular Research Laboratories at the Biochemical Pharmacological Center, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany.,Heart Surgery, Philipps-University Marburg and Universitätsklinikum Gießen and Marburg GmbH, Marburg, Germany
| |
Collapse
|
38
|
Pogoda CS, Keepers KG, Lendemer JC, Kane NC, Tripp EA. Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol Ecol 2018; 27:1155-1169. [DOI: 10.1111/mec.14519] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/21/2017] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
|
39
|
Co-translational control of protein complex formation: a fundamental pathway of cellular organization? Biochem Soc Trans 2018; 46:197-206. [PMID: 29432142 DOI: 10.1042/bst20170451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Analyses of proteomes from a large number of organisms throughout the domains of life highlight the key role played by multiprotein complexes for the implementation of cellular function. While the occurrence of multiprotein assemblies is ubiquitous, the understanding of pathways that dictate the formation of quaternary structure remains enigmatic. Interestingly, there are now well-established examples of protein complexes that are assembled co-translationally in both prokaryotes and eukaryotes, and indications are that the phenomenon is widespread in cells. Here, we review complex assembly with an emphasis on co-translational pathways, which involve interactions of nascent chains with other nascent or mature partner proteins, respectively. In prokaryotes, such interactions are promoted by the polycistronic arrangement of mRNA and the associated co-translation of functionally related cell constituents in order to enhance otherwise diffusion-dependent processes. Beyond merely stochastic events, however, co-translational complex formation may be sensitive to subunit availability and allow for overall regulation of the assembly process. We speculate how co-translational pathways may constitute integral components of quality control systems to ensure the correct and complete formation of hundreds of heterogeneous assemblies in a single cell. Coupling of folding of intrinsically disordered domains with co-translational interaction of binding partners may furthermore enhance the efficiency and fidelity with which correct conformation is attained. Co-translational complex formation may constitute a fundamental pathway of cellular organization, with profound importance for health and disease.
Collapse
|
40
|
Lorenzi I, Oeljeklaus S, Aich A, Ronsör C, Callegari S, Dudek J, Warscheid B, Dennerlein S, Rehling P. The mitochondrial TMEM177 associates with COX20 during COX2 biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:323-333. [PMID: 29154948 PMCID: PMC5764226 DOI: 10.1016/j.bbamcr.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.
Collapse
Affiliation(s)
- Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany
| | - Bettina Warscheid
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany.
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, GZMB, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
41
|
Aich A, Wang C, Chowdhury A, Ronsör C, Pacheu-Grau D, Richter-Dennerlein R, Dennerlein S, Rehling P. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 2018; 7:32572. [PMID: 29381136 PMCID: PMC5809144 DOI: 10.7554/elife.32572] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022] Open
Abstract
Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines.
Collapse
Affiliation(s)
- Abhishek Aich
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Cong Wang
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Christin Ronsör
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | | | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre Göttingen, Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
42
|
Lin PI, Tai YT, Chan WP, Lin YL, Liao MH, Chen RM. Estrogen/ERα signaling axis participates in osteoblast maturation via upregulating chromosomal and mitochondrial complex gene expressions. Oncotarget 2017; 9:1169-1186. [PMID: 29416685 PMCID: PMC5787428 DOI: 10.18632/oncotarget.23453] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/09/2017] [Indexed: 01/08/2023] Open
Abstract
Estrogen deficiency usually leads to bone loss and osteoporosis in postmenopausal women. Osteoblasts play crucial roles in bone formation. However, osteoblast functions are influenced by mitochondrial bioenergetic conditions. In this study, we investigated the roles of the estrogen and estrogen receptor alpha (ERα) axis in mitochondrial energy metabolism and subsequent osteoblast mineralization. Exposure of rat calvarial osteoblasts to estradiol caused substantial improvements in alkaline phosphatase activities and cell calcification. In parallel, treatment of human osteoblast-like U2OS cells, derived from a female osteosarcoma patient, with estradiol specifically augmented ERα levels. Sequentially, estradiol stimulated translocation of ERα to nuclei in human osteoblasts and induced expressions of genomic respiratory chain complex NDUFA10, UQCRC1, cytochrome c oxidase (COX)8A, COX6A2, COX8C, COX6C, COX6B2, COX412, and ATP12A genes. Concurrently, estradiol stimulated translocation of ERα to mitochondria from the cytoplasm. A bioinformatic search found the existence of four estrogen response elements in the 5’-promoter region of the mitochondrial cox i gene. Interestingly, estradiol induced COX I mRNA and protein expressions in human osteoblasts or rat calvarial osteoblasts. Knocking-down ERα translation concurrently downregulated estradiol-induced COX I mRNA expression. Consequently, exposure to estradiol led to successive increases in the mitochondrial membrane potential, the mitochondrial enzyme activity, and cellular adenosine triphosphate levels. Taken together, this study showed the roles of the estradiol/ERα signaling axis in improving osteoblast maturation through upregulating the mitochondrial bioenergetic system due to induction of definite chromosomal and mitochondrial complex gene expressions. Our results provide novel insights elucidating the roles of the estrogen/ERα alliance in regulating bone formation.
Collapse
Affiliation(s)
- Pei-I Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Tai
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Abstract
All known eukaryotes require copper for their development and survival. The essentiality of copper reflects its widespread use as a co-factor in conserved enzymes that catalyze biochemical reactions critical to energy production, free radical detoxification, collagen deposition, neurotransmitter biosynthesis and iron homeostasis. However, the prioritized use of copper poses an organism with a considerable challenge because, in its unbound form, copper can potentiate free radical production and displace iron-sulphur clusters to disrupt protein function. Protective mechanisms therefore evolved to mitigate this challenge and tightly regulate the acquisition, trafficking and storage of copper such that the metal ion is rarely found in its free form in the cell. Findings by a number of groups over the last ten years emphasize that this regulatory framework forms the foundation of a system that is capable of monitoring copper status and reprioritizing copper usage at both the cellular and systemic levels of organization. While the identification of relevant molecular mechanisms and signaling pathways has proven to be difficult and remains a barrier to our full understanding of the regulation of copper homeostasis, mounting evidence points to the mitochondrion as a pivotal hub in this regard in both healthy and diseased states. Here, we review our current understanding of copper handling pathways contained within the organelle and consider plausible mechanisms that may serve to functionally couple their activity to that of other cellular copper handling machinery to maintain copper homeostasis.
Collapse
Affiliation(s)
- Zakery N. Baker
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| |
Collapse
|
44
|
Kadenbach B. Regulation of Mammalian 13-Subunit Cytochrome c Oxidase and Binding of other Proteins: Role of NDUFA4. Trends Endocrinol Metab 2017; 28:761-770. [PMID: 28988874 DOI: 10.1016/j.tem.2017.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Cytochrome c oxidase (CcO) is the final oxygen accepting enzyme complex (complex IV) of the mitochondrial respiratory chain. In contrast to the other complexes (I, II, and III), CcO is highly regulated via isoforms for six of its ten nuclear-coded subunits, which are differentially expressed in species, tissues, developmental stages, and cellular oxygen concentrations. Recent publications have claimed that NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 (NDUFA4), originally identified as subunit of complex I, represents a 14th subunit of CcO. Results on CcO composition in tissues from adult animals and the review of data from recent literature strongly suggest that NDUFA4 is not a 14th subunit of CcO but may represent an assembly factor for CcO or supercomplexes (respirasomes) in mitochondria of growing cells and cancer tissues.
Collapse
|
45
|
Intratumoral lactate metabolism in Barrett's esophagus and adenocarcinoma. Oncotarget 2017; 8:22894-22902. [PMID: 28206968 PMCID: PMC5410271 DOI: 10.18632/oncotarget.15284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Monocarboxylate transporters (MCTs) are cell membrane proteins which transport pyruvate, lactate and ketone bodies across the plasma membrane. MCTs are activated in various cancers, but their expression in esophageal adenocarcinoma is not known. The present study was conducted to elucidate the expression of MCTs in esophageal adenocarcinoma and its precursor lesions. Results Cytoplasmic MCT1, MCT4 and MTCO1 expression linearly increased from normal epithelium to Barrett's mucosa to dysplasia and cancer. Low cytoplasmic MCT1 expression associated with high T-class (P < 0.01), positive lymph node metastases (P < 0.05), positive distant metastases (P < 0.01) and high tumor stage (P < 0.01). High cytoplasmic MCT4 expression correlated significantly with positive distant metastases (P < 0.05). Both low MCT1 and high MCT4 histoscore predicted survival in univariate analysis (P < 0.01). MCT4 histoscore predicted survival in multivariate analysis (P = 0.043; HR 1.8 95%CI 1.0–3.1). MTCO1 expression was not correlated to clinicopathological variables or survival. Materials and Methods MCT1, MCT4 and mitochondrial cytochrome c oxidase (MTCO1) expression were determined with immunohistochemistry in esophageal specimens from 129 patients with columnar dysplasia or adenocarcinoma. Specimens including normal esophagus (n = 88), gastric (n = 67) or intestinal metaplasia (n = 51), low-grade (n = 42), high-grade dysplasia (n = 37) and esophageal adenocarcinoma (n = 99) were evaluated. Conclusions Major increase in markers of tumor metabolism occurs during carcinogenesis and progression of esophageal adenocarcinoma. MCT1 and MCT4 are prognostic factors in esophageal adenocarcinoma.
Collapse
|
46
|
Box JM, Kaur J, Stuart RA. MrpL35, a mitospecific component of mitoribosomes, plays a key role in cytochrome c oxidase assembly. Mol Biol Cell 2017; 28:3489-3499. [PMID: 28931599 PMCID: PMC5683760 DOI: 10.1091/mbc.e17-04-0239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Mitoribosomes perform the synthesis of the core components of the oxidative phosphorylation (OXPHOS) system encoded by the mitochondrial genome. We provide evidence that MrpL35 (mL38), a mitospecific component of the yeast mitoribosomal central protuberance, assembles into a subcomplex with MrpL7 (uL5), Mrp7 (bL27), and MrpL36 (bL31) and mitospecific proteins MrpL17 (mL46) and MrpL28 (mL40). We isolated respiratory defective mrpL35 mutant yeast strains, which do not display an overall inhibition in mitochondrial protein synthesis but rather have a problem in cytochrome c oxidase complex (COX) assembly. Our findings indicate that MrpL35, with its partner Mrp7, play a key role in coordinating the synthesis of the Cox1 subunit with its assembly into the COX enzyme and in a manner that involves the Cox14 and Coa3 proteins. We propose that MrpL35 and Mrp7 are regulatory subunits of the mitoribosome acting to coordinate protein synthesis and OXPHOS assembly events and thus the bioenergetic capacity of the mitochondria.
Collapse
Affiliation(s)
- Jodie M Box
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Jasvinder Kaur
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
47
|
Shepherd DL, Hathaway QA, Pinti MV, Nichols CE, Durr AJ, Sreekumar S, Hughes KM, Stine SM, Martinez I, Hollander JM. Exploring the mitochondrial microRNA import pathway through Polynucleotide Phosphorylase (PNPase). J Mol Cell Cardiol 2017; 110:15-25. [PMID: 28709769 PMCID: PMC5854179 DOI: 10.1016/j.yjmcc.2017.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the primary cause of mortality for individuals with type 2 diabetes mellitus. During the diabetic condition, cardiovascular dysfunction can be partially attributed to molecular changes in the tissue, including alterations in microRNA (miRNA) interactions. MiRNAs have been reported in the mitochondrion and their presence may influence cellular bioenergetics, creating decrements in functional capacity. In this study, we examined the roles of Argonaute 2 (Ago2), a protein associated with cytosolic and mitochondrial miRNAs, and Polynucleotide Phosphorylase (PNPase), a protein found in the inner membrane space of the mitochondrion, to determine their role in mitochondrial miRNA import. In cardiac tissue from human and mouse models of type 2 diabetes mellitus, Ago2 protein levels were unchanged while PNPase protein expression levels were increased; also, there was an increase in the association between both proteins in the diabetic state. MiRNA-378 was found to be significantly increased in db/db mice, leading to decrements in ATP6 levels and ATP synthase activity, which was also exhibited when overexpressing PNPase in HL-1 cardiomyocytes and in HL-1 cells with stable miRNA-378 overexpression (HL-1-378). To assess potential therapeutic interventions, flow cytometry evaluated the capacity for targeting miRNA-378 species in mitochondria through antimiR treatment, revealing miRNA-378 level-dependent inhibition. Our study establishes PNPase as a contributor to mitochondrial miRNA import through the transport of miRNA-378, which may regulate bioenergetics during type 2 diabetes mellitus. Further, our data provide evidence that manipulation of PNPase levels may enhance the delivery of antimiR therapeutics to mitochondria in physiological and pathological conditions.
Collapse
Affiliation(s)
- Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Cody E Nichols
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Shruthi Sreekumar
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Kristen M Hughes
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Seth M Stine
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Ivan Martinez
- Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
48
|
Wang J, Sun Z, Jiang J, Wu D, Liu X, Xie Z, Chen E, Zhu D, Ye C, Zhang X, Chen W, Cao H, Li L. Proteomic Signature of Acute Liver Failure: From Discovery and Verification in a Pig Model to Confirmation in Humans. Mol Cell Proteomics 2017; 16:1188-1199. [PMID: 28336726 PMCID: PMC5500754 DOI: 10.1074/mcp.m117.067397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a fatal condition hallmarked by rapid development. The present study aimed to describe the dynamic alterations of serum proteins associated with ALF development, and to seek for novel biomarkers of ALF. Miniature pigs (n = 38) were employed to establish ALF models by infusing d-galactosamine (GALN, 1.3 g/kg). A total of 1310 serum proteins were compared in pooled serum samples (n = 10) before and 36 h after GALN administration through label-free quantitation (LFQ) based shotgun proteomics. Functional analysis suggested a significant enrichment of ALF-related proteins involved in energy metabolism. Temporal changes of 20 energy metabolism related proteins were investigated in individual pigs (n = 8) via parallel reaction monitoring (PRM) based targeted proteomics. In addition, mitochondrion degeneration and gene expression alteration of aerobic metabolism genes were confirmed in GALN-insulted pig liver. In clinical validation study enrolled 34 ALF patients and 40 healthy controls, fructose-1,6-bisphosphatase 1 (FBP1) showed a prognostic value for short-term survival (30 days) equal to that of the Model of End-stage Liver Disease score (ROC-AUC = 0.778). Survival analysis suggested significantly higher death-related hazard in ALF patients with higher FBP1 levels (>16.89 μg/dL) than in those with lower FBP1 levels (p = 0.002). Additionally, serum retinol binding protein 4 (RBP4) level was found decreased prior to ALT elevation in GALN-insulted pig model. We also confirmed that serum level of RBP4 is significantly lower in ALF patients (p < 0.001) as compared with healthy controls. In summary, this translational study, displayed by multistaged proteomics techniques, unveiled underlying functional changes related to the development of ALF and facilitated the discovery of novel ALF markers.
Collapse
Affiliation(s)
- Jie Wang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zeyu Sun
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Jiang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Daxian Wu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoli Liu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongyang Xie
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ermei Chen
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Danhua Zhu
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Ye
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoqian Zhang
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenqian Chen
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongcui Cao
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lanjuan Li
- From the ‡State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases; The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
49
|
Baleeiro RB, Walden P. Immature human DCs efficiently translocate endocytosed antigens into the cytosol for proteasomal processing. Mol Immunol 2017. [PMID: 28644974 DOI: 10.1016/j.molimm.2017.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cross-presentation of endocytosed antigen is essential for induction of CD8 effector T cell responses and a hallmark of dendritic cells (DCs). The mode of antigen processing in this context is controversial and some models imply translocation of the antigen from the endosomes into the cytosol. To test this hypothesis we made use of the pro-apoptotic properties of cytochrome c when in the cytosol, and confirmed that it indeed triggered apoptosis of human immature DCs but only at high concentrations. Proteasome inhibitors reduced the required concentration of cytochrome c thousand-fold, indicating that protein translocated into the cytosol is rapidly degraded by proteasomes. Mature DCs were also susceptible to cytochrome c-triggered apoptosis at high concentrations but proteasome inhibitors did not increase their sensitivity. Other cross-presenting cells such as B cells and monocytes were not sensitive to cytochrome c at all, indicating that they do not shuttle internalized antigen into the cytosol. Thus, processing of internalized antigens seems to follow different pathways depending on cell type and, in case of DCs, maturation state. Immature DCs appear to have a unique capacity to shuttle external antigen into the cytosol for proteasomal processing, which could explain their efficiency in antigen cross-presentation.
Collapse
Affiliation(s)
- Renato B Baleeiro
- Charité-Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Clinical Research Group Tumour Immunology, Berlin, Germany
| | - Peter Walden
- Charité-Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Clinical Research Group Tumour Immunology, Berlin, Germany.
| |
Collapse
|
50
|
Protein quality control at the mitochondrion. Essays Biochem 2017; 60:213-225. [PMID: 27744337 DOI: 10.1042/ebc20160009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.
Collapse
|