1
|
Renaud LI, Béland K, Asselin E. Video microscopy: an old story with a bright biological future. Biomed Eng Online 2025; 24:44. [PMID: 40241123 PMCID: PMC12004724 DOI: 10.1186/s12938-025-01375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Single-cell analysis is increasingly popular in the field of biology, enabling more precise analyses of heterogeneous phenomena, particularly in the fields of embryology and the study of different diseases. At the heart of this evolution is video microscopy, an ancient but revolutionary technique. From its first use on embryos, through the study of C. Elegans, with the development of algorithms for its automation, the history of video microscopy has been fascinating. Unfortunately, many unresolved issues remain, such as the sheer volume of data produced and the quality of the images taken. The aim of this review is to explore the past, present and future of this technique, which could become indispensable in recent decades, to understand cell fate and how diseases affect their destiny.
Collapse
Affiliation(s)
- Léa-Isabelle Renaud
- Département de Biologie Médicale, Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Kelliane Béland
- Département de Biologie Médicale, Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Eric Asselin
- Département de Biologie Médicale, Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
| |
Collapse
|
2
|
Jose E, Paek AL. Measuring FOXO Nuclear Shuttling Dynamics by Fluorescence Microscopy. Methods Mol Biol 2025; 2871:131-143. [PMID: 39565584 DOI: 10.1007/978-1-0716-4217-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
FOXO transcription factors respond to a number of different stresses by shuttling from the cytoplasm to the nucleus where they upregulate hundreds of target genes with diverse cellular functions. The cellular consequences of FOXO activation are both stress and cell-type specific. Recent evidence suggests that one way in which FOXO dictates stress-specific outcomes is through distinct nuclear/cytoplasmic shuttling dynamics. Here we outline methods for measuring FOXO nuclear shuttling dynamics using fluorescence-based reporters.
Collapse
Affiliation(s)
- Elizabeth Jose
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Andrew L Paek
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
3
|
Bissegger L, Constantin TA, Keles E, Raguž L, Barlow-Busch I, Orbegozo C, Schaefer T, Borlandelli V, Bohnacker T, Sriramaratnam R, Schäfer A, Gstaiger M, Burke JE, Borsari C, Wymann MP. Rapid, potent, and persistent covalent chemical probes to deconvolute PI3Kα signaling. Chem Sci 2024; 15:20274-20291. [PMID: 39568927 PMCID: PMC11575505 DOI: 10.1039/d4sc05459h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Chemical probes have gained importance in the elucidation of signal transduction in biology. Insufficient selectivity and potency, lack of cellular activity and inappropriate use of chemical probes has major consequences on interpretation of biological results. The catalytic subunit of phosphoinositide 3-kinase α (PI3Kα) is one of the most frequently mutated genes in cancer, but fast-acting, high-quality probes to define PI3Kα's specific function to clearly separate it from other class I PI3K isoforms, are not available. Here, we present a series of novel covalent PI3Kα-targeting probes with optimized intracellular target access and kinetic parameters. On-target TR-FRET and off-target assays provided relevant kinetic parameters (k chem, k inact and K i) to validate our chemical probes. Additional intracellular nanoBRET tracer displacement measurements showed rapid diffusion across the cell membrane and extremely fast target engagement, while investigations of signaling downstream of PI3Kα via protein kinase B (PKB/Akt) and forkhead box O (FOXO) revealed blunted pathway activity in cancer cell lines with constitutively activated PI3Kα lasting for several days. In contrast, persistent PI3Kα inhibition was rapidly bypassed by other class I PI3K isoforms in cells lacking functional phosphatase and tensin homolog (PTEN). Comparing the rapidly-diffusing, fast target-engaging chemical probe 9 to clinical reversible PI3Kα-selective inhibitors alpelisib, inavolisib and 9r, a reversible analogue of 9, revealed 9's superior potency to inhibit growth (up to 600-fold) associated with sustained suppression of PI3Kα signaling in breast cancer cell lines. Finally, using a simple washout protocol, the utility of the highly-selective covalent PI3Kα probe 9 was demonstrated by the quantification of the coupling of insulin, EGF and CXCL12 receptors to distinct PI3K isoforms for signal transduction in response to ligand-dependent activation. Collectively, these findings along with the novel covalent chemical probes against PI3Kα provide insights into isoform-specific functions in cancer cells and highlight opportunities to achieve improved selectivity and long-lasting efficacy.
Collapse
Affiliation(s)
- Lukas Bissegger
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Theodora A Constantin
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Erhan Keles
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Luka Raguž
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria Victoria British Columbia V8W 2Y2 Canada
| | - Clara Orbegozo
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Valentina Borlandelli
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Alexander Schäfer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich Otto-Stern-Weg 3 8093 Zürich Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich Otto-Stern-Weg 3 8093 Zürich Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria Victoria British Columbia V8W 2Y2 Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Chiara Borsari
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| |
Collapse
|
4
|
Bennett JJR, Stern AD, Zhang X, Birtwistle MR, Pandey G. Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events. NPJ Syst Biol Appl 2024; 10:65. [PMID: 38834572 PMCID: PMC11150372 DOI: 10.1038/s41540-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.
Collapse
Affiliation(s)
- Jamie J R Bennett
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Zhang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Matsubayashi HT, Mountain J, Takahashi N, Deb Roy A, Yao T, Peterson AF, Saez Gonzalez C, Kawamata I, Inoue T. Non-catalytic role of phosphoinositide 3-kinase in mesenchymal cell migration through non-canonical induction of p85β/AP2-mediated endocytosis. Nat Commun 2024; 15:2612. [PMID: 38521786 PMCID: PMC10960865 DOI: 10.1038/s41467-024-46855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable these multifaceted roles, the catalytic subunit p110 utilizes the multi-domain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, its product PI(3,4,5)P3 generates locomotive activity. While non-catalytic roles are also implicated, underlying mechanisms and their relationship to PI(3,4,5)P3 signaling remain elusive. Here, we report that a disordered region of iSH2 contains AP2 binding motifs which can trigger clathrin and dynamin-mediated endocytosis independent of PI3K catalytic activity. The AP2 binding motif mutants of p85 aberrantly accumulate at focal adhesions and increase both velocity and persistency in fibroblast migration. We thus propose the dual functionality of PI3K in the control of cell motility, catalytic and non-catalytic, arising distinctly from juxtaposed regions within iSH2.
Collapse
Affiliation(s)
- Hideaki T Matsubayashi
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Tohoku, Japan.
| | - Jack Mountain
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Nozomi Takahashi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Tohoku, Japan
| | - Abhijit Deb Roy
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Tony Yao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Amy F Peterson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian Saez Gonzalez
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ibuki Kawamata
- Department of Robotics, Tohoku University, Tohoku, Japan
- Natural Science Division, Ochanomizu University, Kyoto, Japan
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takanari Inoue
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Center for Cell Dynamics, Institute of Basic Biomedical Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Smith MJ. Defining bone fide effectors of RAS GTPases. Bioessays 2023; 45:e2300088. [PMID: 37401638 DOI: 10.1002/bies.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
RAS GTPases play essential roles in normal development and are direct drivers of human cancers. Three decades of study have failed to wholly characterize pathways stimulated by activated RAS, driven by engagement with 'effector' proteins that have RAS binding domains (RBDs). Bone fide effectors must bind directly to RAS GTPases in a nucleotide-dependent manner, and this interaction must impart a clear change in effector activity. Despite this, for most proteins currently deemed effectors there is little mechanistic understanding of how binding to the GTPase alters protein function. There has also been limited effort to comprehensively resolve the specificity of effector binding to the full array of RAS superfamily GTPase proteins. This review will summarize what is known about RAS-driven activation for an array of potential effector proteins, focusing on structural and mechanistic effects and highlighting how little is still known regarding this key paradigm of cellular signal transduction.
Collapse
Affiliation(s)
- Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Lasick KA, Jose E, Samayoa AM, Shanks L, Pond KW, Thorne CA, Paek AL. FOXO nuclear shuttling dynamics are stimulus-dependent and correspond with cell fate. Mol Biol Cell 2023; 34:ar21. [PMID: 36735481 PMCID: PMC10011729 DOI: 10.1091/mbc.e22-05-0193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
FOXO transcription factors are regulators of cellular homeostasis linked to increased lifespan and tumor suppression. FOXOs are activated by diverse cell stresses including serum starvation and oxidative stress. FOXO activity is regulated through posttranslational modifications that control shuttling of FOXO proteins to the nucleus. In the nucleus, FOXOs up-regulate genes in multiple, often conflicting pathways, including cell-cycle arrest and apoptosis. How cells control FOXO activity to ensure the proper response for a given stress is an open question. Using quantitative immunofluorescence and live-cell imaging, we found that the dynamics of FOXO nuclear shuttling is stimulus-dependent and corresponds with cell fate. H2O2 treatment leads to an all-or-none response where some cells show no nuclear FOXO accumulation, while other cells show a strong nuclear FOXO signal. The time that FOXO remains in the nucleus increases with the dose and is linked with cell death. In contrast, serum starvation causes low-amplitude pulses of nuclear FOXO and predominantly results in cell-cycle arrest. The accumulation of FOXO in the nucleus is linked with low AKT activity for both H2O2 and serum starvation. Our findings suggest the dynamics of FOXO nuclear shuttling is one way in which the FOXO pathway dictates different cellular outcomes.
Collapse
Affiliation(s)
- Kathleen A. Lasick
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Elizabeth Jose
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Allison M. Samayoa
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85719
| | - Lisa Shanks
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Kelvin W. Pond
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85724
| | - Curtis A. Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85724
| | - Andrew L. Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- University of Arizona Cancer Center, Tucson, AZ 85724
| |
Collapse
|
8
|
Sarma U, Ripka L, Anyaegbunam UA, Legewie S. Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway. Methods Mol Biol 2023; 2634:215-251. [PMID: 37074581 DOI: 10.1007/978-1-0716-3008-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Nongenetic heterogeneity is key to cellular decisions, as even genetically identical cells respond in very different ways to the same external stimulus, e.g., during cell differentiation or therapeutic treatment of disease. Strong heterogeneity is typically already observed at the level of signaling pathways that are the first sensors of external inputs and transmit information to the nucleus where decisions are made. Since heterogeneity arises from random fluctuations of cellular components, mathematical models are required to fully describe the phenomenon and to understand the dynamics of heterogeneous cell populations. Here, we review the experimental and theoretical literature on cellular signaling heterogeneity, with special focus on the TGFβ/SMAD signaling pathway.
Collapse
Affiliation(s)
- Uddipan Sarma
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Lorenz Ripka
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Uchenna Alex Anyaegbunam
- Institute of Molecular Biology (IMB), Mainz, Germany
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Systems Biology, Institute for Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center for Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
9
|
Stern AD, Smith GR, Santos LC, Sarmah D, Zhang X, Lu X, Iuricich F, Pandey G, Iyengar R, Birtwistle MR. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci Rep 2022; 12:18077. [PMID: 36302844 PMCID: PMC9613772 DOI: 10.1038/s41598-022-23071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biochemical correlates of stochastic single-cell fates have been elusive, even for the well-studied mammalian cell cycle. We monitored single-cell dynamics of the ERK and Akt pathways, critical cell cycle progression hubs and anti-cancer drug targets, and paired them to division events in the same single cells using the non-transformed MCF10A epithelial line. Following growth factor treatment, in cells that divide both ERK and Akt activities are significantly higher within the S-G2 time window (~ 8.5-40 h). Such differences were much smaller in the pre-S-phase, restriction point window which is traditionally associated with ERK and Akt activity dependence, suggesting unappreciated roles for ERK and Akt in S through G2. Simple metrics of central tendency in this time window are associated with subsequent cell division fates. ERK activity was more strongly associated with division fates than Akt activity, suggesting Akt activity dynamics may contribute less to the decision driving cell division in this context. We also find that ERK and Akt activities are less correlated with each other in cells that divide. Network reconstruction experiments demonstrated that this correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in this context, in contrast to other transformed cell types. Overall, our findings support roles for ERK and Akt activity throughout the cell cycle as opposed to just before the restriction point, and suggest ERK activity dynamics may be more important than Akt activity dynamics for driving cell division in this non-transformed context.
Collapse
Affiliation(s)
- Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis C Santos
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Xiang Zhang
- School of Computing, Clemson University, Clemson, SC, USA
| | - Xiaoming Lu
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | | | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
10
|
Oost LJ, Kurstjens S, Ma C, Hoenderop JGJ, Tack CJ, de Baaij JHF. Magnesium increases insulin-dependent glucose uptake in adipocytes. Front Endocrinol (Lausanne) 2022; 13:986616. [PMID: 36093068 PMCID: PMC9453642 DOI: 10.3389/fendo.2022.986616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 01/12/2023] Open
Abstract
Background Type 2 diabetes (T2D) is characterized by a decreased insulin sensitivity. Magnesium (Mg2+) deficiency is common in people with T2D. However, the molecular consequences of low Mg2+ levels on insulin sensitivity and glucose handling have not been determined in adipocytes. The aim of this study is to determine the role of Mg2+ in the insulin-dependent glucose uptake. Methods First, the association of low plasma Mg2+ with markers of insulin resistance was assessed in a cohort of 395 people with T2D. Secondly, the molecular role of Mg2+ in insulin-dependent glucose uptake was studied by incubating 3T3-L1 adipocytes with 0 or 1 mmol/L Mg2+ for 24 hours followed by insulin stimulation. Radioactive-glucose labelling, enzymatic assays, immunocytochemistry and live microscopy imaging were used to analyze the insulin receptor phosphoinositide 3-kinases/Akt pathway. Energy metabolism was assessed by the Seahorse Extracellular Flux Analyzer. Results In people with T2D, plasma Mg2+ concentration was inversely associated with markers of insulin resistance; i.e., the lower Mg2+, the more insulin resistant. In Mg2+-deficient adipocytes, insulin-dependent glucose uptake was decreased by approximately 50% compared to control Mg2+condition. Insulin receptor phosphorylation Tyr1150/1151 and PIP3 mass were not decreased in Mg2+-deficient adipocytes. Live imaging microscopy of adipocytes transduced with an Akt sensor (FoxO1-Clover) demonstrated that FoxO1 translocation from the nucleus to the cytosol was reduced, indicting less Akt activation in Mg2+-deficient adipocytes. Immunocytochemistry using a Lectin membrane marker and at the membrane located Myc epitope-tagged glucose transporter 4 (GLUT4) demonstrated that GLUT4 translocation was diminished in insulin-stimulated Mg2+-deficient adipocytes compared to control conditions. Energy metabolism in Mg2+ deficient adipocytes was characterized by decreased glycolysis, upon insulin stimulation. Conclusions Mg2+ increases insulin-dependent glucose uptake in adipocytes and suggests that Mg2+ deficiency may contribute to insulin resistance in people with T2D.
Collapse
Affiliation(s)
- Lynette J. Oost
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Steef Kurstjens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Clinical Chemistry and Hematology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, Netherlands
| | - Chao Ma
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Beijing Tongren Hospital Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cees J. Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jeroen H. F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
11
|
Zhou X, Mehta S, Zhang J. AktAR and Akt-STOPS: Genetically Encodable Molecular Tools to Visualize and Perturb Akt Kinase Activity at Different Subcellular Locations in Living Cells. Curr Protoc 2022; 2:e416. [PMID: 35532280 PMCID: PMC9093046 DOI: 10.1002/cpz1.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The serine/threonine protein kinase Akt integrates diverse upstream inputs to regulate cell survival, growth, metabolism, migration, and differentiation. Mounting evidence suggests that Akt activity is differentially regulated depending on its subcellular location, which can include the plasma membrane, endomembrane, and nuclear compartment. This spatial control of Akt activity is critical for achieving signaling specificity and proper physiological functions, and deregulation of compartment-specific Akt signaling is implicated in various diseases, including cancer and diabetes. Understanding the spatial coordination of the signaling network centered around this key kinase and the underlying regulatory mechanisms requires precise tracking of Akt activity at distinct subcellular compartments within its native biological contexts. To address this challenge, new molecular tools are being developed, enabling us to directly interrogate the spatiotemporal regulation of Akt in living cells. These include, for instance, the newly developed genetically encodable fluorescent-protein-based Akt kinase activity reporter (AktAR2), which serves as a substrate surrogate of Akt kinase and translates Akt-specific phosphorylation into a quantifiable change in Förster resonance energy transfer (FRET). In addition, we developed the Akt substrate tandem occupancy peptide sponge (Akt-STOPS), which allows biochemical perturbation of subcellular Akt activity. Both molecular tools can be readily targeted to distinct subcellular localizations. Here, we describe a workflow to study Akt kinase activity at different subcellular locations in living cells. We provide a protocol for using genetically targeted AktAR2 and Akt-STOPS, along with fluorescence imaging in living NIH3T3 cells, to visualize and perturb, respectively, the activity of endogenous Akt kinase at different subcellular compartments. We further describe a protocol for using chemically inducible dimerization (CID) to control the plasma membrane-specific inhibition of Akt activity in real time. Lastly, we describe a protocol for maintaining NIH3T3 cells in culture, a cell line known to exhibit robust Akt activity. In all, this approach enables interrogation of spatiotemporal regulation and functions of Akt, as well as the intricate signaling networks in which it is embedded, at specific subcellular locations. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Visualizing and perturbing subcellular Akt kinase activity using AktAR and Akt-STOPS Basic Protocol 2: Using chemically inducible dimerization (CID) to control inhibition of Akt at the plasma membrane Support Protocol: Maintaining NIH3T3 cells in culture.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California.,Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Chen M, Sun T, Zhong Y, Zhou X, Zhang J. A Highly Sensitive Fluorescent Akt Biosensor Reveals Lysosome-Selective Regulation of Lipid Second Messengers and Kinase Activity. ACS CENTRAL SCIENCE 2021; 7:2009-2020. [PMID: 34963894 PMCID: PMC8704034 DOI: 10.1021/acscentsci.1c00919] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 06/14/2023]
Abstract
The serine/threonine protein kinase Akt regulates a wide range of cellular functions via phosphorylation of various substrates distributed throughout the cell, including at the plasma membrane and endomembrane compartments. Disruption of compartmentalized Akt signaling underlies the pathology of many diseases such as cancer and diabetes. However, the specific spatial organization of Akt activity and the underlying regulatory mechanisms, particularly the mechanism controlling its activity at the lysosome, are not clearly understood. We developed a highly sensitive excitation-ratiometric Akt activity reporter (ExRai-AktAR2), enabling the capture of minute changes in Akt activity dynamics at subcellular compartments. In conjunction with super-resolution expansion microscopy, we found that growth factor stimulation leads to increased colocalization of Akt with lysosomes and accumulation of lysosomal Akt activity. We further showed that 3-phosphoinositides (3-PIs) accumulate on the lysosomal surface, in a manner dependent on dynamin-mediated endocytosis. Importantly, lysosomal 3-PIs are needed for growth-factor-induced activities of Akt and mechanistic target of rapamycin complex 1 (mTORC1) on the lysosomal surface, as targeted depletion of 3-PIs has detrimental effects. Thus, 3-PIs, a class of critical lipid second messengers that are typically found in the plasma membrane, unexpectedly accumulate on the lysosomal membrane in response to growth factor stimulation, to direct the multifaceted kinase Akt to organize lysosome-specific signaling.
Collapse
Affiliation(s)
- Mingyuan Chen
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Tengqian Sun
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xin Zhou
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Bioengineering, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Pharmacology, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
- Department
of Chemistry & Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Sung HK, Mitchell PL, Gross S, Marette A, Sweeney G. ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. Am J Physiol Cell Physiol 2021; 322:C151-C163. [PMID: 34910600 DOI: 10.1152/ajpcell.00603.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.
Collapse
Affiliation(s)
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute (IUCPQ), and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Sean Gross
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, United States
| | - Andre Marette
- Quebec Heart and Lung Institute (IUCPQ), and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
Zinc (Zn2+) is an essential metal in biology, and its bioavailability is highly regulated. Many cell types exhibit fluctuations in Zn2+ that appear to play an important role in cellular function. However, the detailed molecular mechanisms by which Zn2+ dynamics influence cell physiology remain enigmatic. Here, we use a combination of fluorescent biosensors and cell perturbations to define how changes in intracellular Zn2+ impact kinase signaling pathways. By simultaneously monitoring Zn2+ dynamics and kinase activity in individual cells, we quantify changes in labile Zn2+ and directly correlate changes in Zn2+ with ERK and Akt activity. Under our experimental conditions, Zn2+ fluctuations are not toxic and do not activate stress-dependent kinase signaling. We demonstrate that while Zn2+ can nonspecifically inhibit phosphatases leading to sustained kinase activation, ERK and Akt are predominantly activated via upstream signaling and through a common node via Ras. We provide a framework for quantification of Zn2+ fluctuations and correlate these fluctuations with signaling events in single cells to shed light on the role that Zn2+ dynamics play in healthy cell signaling.
Collapse
|
15
|
Wang S, Perkins NG, Ji F, Chaudhuri R, Guo Z, Sarkar P, Shao S, Li Z, Xue M. Digitonin-facilitated delivery of imaging probes enables single-cell analysis of AKT signalling activities in suspension cells. Analyst 2021; 146:5307-5315. [PMID: 34351328 DOI: 10.1039/d1an00751c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Analyzing intracellular signalling protein activities in living cells promises a better understanding of the signalling cascade and related biological processes. We have previously developed cyclic peptide-based probes for analyzing intracellular AKT signalling activities, but these peptide probes were not cell-permeable. Implementing fusogenic liposomes as delivery vehicles could circumvent the problem when analyzing adherent cells, but it remained challenging to study suspension cells using similar approaches. Here, we present a method for delivering these imaging probes into suspension cells using digitonin, which could transiently perforate the cell membrane. Using U87, THP-1, and Jurkat cells as model systems representing suspended adherent cells, myeloid cells, and lymphoid cells, we demonstrated that low concentrations of digitonin enabled a sufficient amount of probes to enter the cytosol without affecting cell viability. We further combined this delivery method with a microwell single-cell chip and interrogated the AKT signalling dynamics in THP-1 and Jurkat cells, followed by immunofluorescence-based quantitation of AKT expression levels. We resolved the cellular heterogeneity in AKT signalling activities and showed that the kinetic patterns of AKT signalling and the AKT expression levels were related in THP-1 cells, but decoupled in Jurkat cells. We expect that our approach can be adapted to study other suspension cells.
Collapse
Affiliation(s)
- Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kull T, Schroeder T. Analyzing signaling activity and function in hematopoietic cells. J Exp Med 2021; 218:e20201546. [PMID: 34129015 PMCID: PMC8210623 DOI: 10.1084/jem.20201546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.
Collapse
Affiliation(s)
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| |
Collapse
|
17
|
Pope RJ, Garner KL, Voliotis M, Lay AC, Betin VM, Tsaneva-Atanasova K, Welsh GI, Coward RJ, McArdle CA. An information theoretic approach to insulin sensing by human kidney podocytes. Mol Cell Endocrinol 2020; 518:110976. [PMID: 32750396 DOI: 10.1016/j.mce.2020.110976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
Podocytes are key components of the glomerular filtration barrier (GFB). They are insulin-responsive but can become insulin-resistant, causing features of the leading global cause of kidney failure, diabetic nephropathy. Insulin acts via insulin receptors to control activities fundamental to GFB integrity, but the amount of information transferred is unknown. Here we measure this in human podocytes, using information theory-derived statistics that take into account cell-cell variability. High content imaging was used to measure insulin effects on Akt, FOXO and ERK. Mutual Information (MI) and Channel Capacity (CC) were calculated as measures of information transfer. We find that insulin acts via noisy communication channels with more information flow to Akt than to ERK. Information flow estimates were increased by consideration of joint sensing (ERK and Akt) and response trajectory (live cell imaging of FOXO1-clover translocation). Nevertheless, MI values were always <1Bit as most information was lost through signaling. Constitutive PI3K activity is a predominant feature of the system that restricts the proportion of CC engaged by insulin. Negative feedback from Akt supressed this activity and thereby improved insulin sensing, whereas sensing was robust to manipulation of feedforward signaling by inhibiting PI3K, PTEN or PTP1B. The decisions made by individual podocytes dictate GFB integrity, so we suggest that understanding the information on which the decisions are based will improve understanding of diabetic kidney disease and its treatment.
Collapse
Affiliation(s)
- Robert Jp Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK
| | - Kathryn L Garner
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK
| | - Margaritis Voliotis
- College of Engineering, Mathematics and Physical Sciences, Living Systems Institute, University of Exeter, Exeter, EX44QF, UK
| | - Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK
| | - Virginie Ms Betin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK
| | - Krasimira Tsaneva-Atanasova
- College of Engineering, Mathematics and Physical Sciences, Living Systems Institute, University of Exeter, Exeter, EX44QF, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK
| | - Richard Jm Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK
| | - Craig A McArdle
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK; Labs. for Integrative Neuroscience and Endocrinology, Bristol Medical School, University of Bristol, Bristol, BS13NY, UK.
| |
Collapse
|
18
|
Gwynne WD, Shakeel MS, Girgis-Gabardo A, Kim KH, Ford E, Dvorkin-Gheva A, Aarts C, Isaac M, Al-Awar R, Hassell JA. Antagonists of the serotonin receptor 5A target human breast tumor initiating cells. BMC Cancer 2020; 20:724. [PMID: 32758183 PMCID: PMC7404930 DOI: 10.1186/s12885-020-07193-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Breast tumor initiating cells (BTIC) are stem-like cells that initiate and sustain tumor growth, and drive disease recurrence. Identifying therapies targeting BTIC has been hindered due primarily to their scarcity in tumors. We previously reported that BTIC frequency ranges between 15% and 50% in multiple mammary tumors of 3 different transgenic mouse models of breast cancer and that this frequency is maintained in tumor cell populations cultured in serum-free, chemically defined media as non-adherent tumorspheres. The latter enabled high-throughput screening of small molecules for their capacity to affect BTIC survival. Antagonists of several serotonin receptors (5-HTRs) were among the hit compounds. The most potent compound we identified, SB-699551, selectively binds to 5-HT5A, a Gαi/o protein coupled receptor (GPCR). Methods We evaluated the activity of structurally unrelated selective 5-HT5A antagonists using multiple orthogonal assays of BTIC frequency. Thereafter we used a phosphoproteomic approach to uncover the mechanism of action of SB-699551. To validate the molecular target of the antagonists, we used the CRISPR-Cas9 gene editing technology to conditionally knockout HTR5A in a breast tumor cell line. Results We found that selective antagonists of 5-HT5A reduced the frequency of tumorsphere initiating cells residing in breast tumor cell lines and those of patient-derived xenografts (PDXs) that we established. The most potent compound among those tested, SB-699551, reduced the frequency of BTIC in ex vivo assays and acted in concert with chemotherapy to shrink human breast tumor xenografts in vivo. Our phosphoproteomic experiments established that exposure of breast tumor cells to SB-699551 elicited signaling changes in the canonical Gαi/o-coupled pathway and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis. Moreover, conditional mutation of the HTR5A gene resulted in the loss of tumorsphere initiating cells and BTIC thus mimicking the effect of SB-699551. Conclusions Our data provide genetic, pharmacological and phosphoproteomic evidence consistent with the on-target activity of SB-699551. The use of such agents in combination with cytotoxic chemotherapy provides a novel therapeutic approach to treat breast cancer.
Collapse
Affiliation(s)
- William D Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Mirza S Shakeel
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Kwang H Kim
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Emily Ford
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Anna Dvorkin-Gheva
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Craig Aarts
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Methvin Isaac
- Drug Discovery Group, The Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON, M5G 0A3, Canada
| | - Rima Al-Awar
- Drug Discovery Group, The Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto, ON, M5G 0A3, Canada
| | - John A Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
19
|
Xu J, Jiang C, Wang X, Geng M, Peng Y, Guo Y, Wang S, Li X, Tao P, Zhang F, Han Y, Ning Q, Zhu W, Meng L, Lu S. Upregulated PKM2 in Macrophages Exacerbates Experimental Arthritis via STAT1 Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:181-192. [PMID: 32503893 DOI: 10.4049/jimmunol.1901021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis. We hypothesize that Pkm2, as a key regulatory enzyme of glycolysis pathway, triggers the activation of macrophages (Mφ), which results in proinflammatory cytokine production during the arthritis progress. In this study, Pkm2 was found to be overexpressed in ED1-positive Mφ in spleens and synovial tissues from arthritic rats via immunofluorescence, Western blotting, and quantitative RT-PCR. To reveal the role of Pkm2, Dark Agouti rats were treated with either Pkm2 enzyme inhibitor shikonin or the RNA interference plasmids of Pkm2 and negative control plasmids, respectively, via i.p. injection. Pkm2 intervention could alleviate the severity of pristane-induced arthritis in aspects of the macroscopic arthritis score, perimeter changes of midpaw, and the synovitis and destruction of the bone and cartilage as well as reduce the ED1 and p-Stat1-positive cell population in rat synovial tissues. Silencing Pkm2 by RNA interference in classical activated rat and mouse Mφ resulted in less Tnf-α, Il-1β production via Stat1 signaling. Collectively, Pkm2 is highly expressed in ED1-positive Mφ of spleens and synovial tissues from arthritic rats and promotes Mφ activation via Stat1 signaling. Pkm2 might be a promising selective metabolic target molecule for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xipeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yizhao Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiaowei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Pei Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China; and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
Gross SM, Dane MA, Bucher E, Heiser LM. Individual Cells Can Resolve Variations in Stimulus Intensity along the IGF-PI3K-AKT Signaling Axis. Cell Syst 2019; 9:580-588.e4. [PMID: 31838146 DOI: 10.1016/j.cels.2019.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/07/2019] [Accepted: 11/06/2019] [Indexed: 11/28/2022]
Abstract
Cells sense and respond to signals in their local environment by activating signaling cascades that lead to phenotypic changes. Differences in these signals can be discriminated at the population level; however, single cells have been thought to be limited in their capacity to distinguish ligand doses due to signaling noise. We describe here the rational development of a genetically encoded FoxO1 sensor, which serves as a down-stream readout of insulin growth factor-phosphatidylinositol 3-kinase IGF-PI3K-AKT signaling pathway activity. With this reporter, we tracked individual cell responses to multiple IGF-I doses, pathway inhibitors, and repeated treatments. We observed that individual cells can discriminate multiple IGF-I doses, and these responses are sustained over time, are reproducible at the single-cell level, and display cell-to-cell heterogeneity. These studies imply that cell-to-cell variation in signaling responses is biologically meaningful and support the endeavor to elucidate mechanisms of cell signaling at the level of the individual cell.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health & Sciences University, Portland OR, USA.
| |
Collapse
|
21
|
MicroRNA-26b/PTEN Signaling Pathway Mediates Glycine-Induced Neuroprotection in SAH Injury. Neurochem Res 2019; 44:2658-2669. [DOI: 10.1007/s11064-019-02886-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
22
|
Kearney AL, Cooke KC, Norris DM, Zadoorian A, Krycer JR, Fazakerley DJ, Burchfield JG, James DE. Serine 474 phosphorylation is essential for maximal Akt2 kinase activity in adipocytes. J Biol Chem 2019; 294:16729-16739. [PMID: 31548312 DOI: 10.1074/jbc.ra119.010036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/15/2019] [Indexed: 01/06/2023] Open
Abstract
The Ser/Thr protein kinase Akt regulates essential biological processes such as cell survival, growth, and metabolism. Upon growth factor stimulation, Akt is phosphorylated at Ser474; however, how this phosphorylation contributes to Akt activation remains controversial. Previous studies, which induced loss of Ser474 phosphorylation by ablating its upstream kinase mTORC2, have implicated Ser474 phosphorylation as a driver of Akt substrate specificity. Here we directly studied the role of Akt2 Ser474 phosphorylation in 3T3-L1 adipocytes by preventing Ser474 phosphorylation without perturbing mTORC2 activity. This was achieved by utilizing a chemical genetics approach, where ectopically expressed S474A Akt2 was engineered with a W80A mutation to confer resistance to the Akt inhibitor MK2206, and thus allow its activation independent of endogenous Akt. We found that insulin-stimulated phosphorylation of four bona fide Akt substrates (TSC2, PRAS40, FOXO1/3a, and AS160) was reduced by ∼50% in the absence of Ser474 phosphorylation. Accordingly, insulin-stimulated mTORC1 activation, protein synthesis, FOXO nuclear exclusion, GLUT4 translocation, and glucose uptake were attenuated upon loss of Ser474 phosphorylation. We propose a model where Ser474 phosphorylation is required for maximal Akt2 kinase activity in adipocytes.
Collapse
Affiliation(s)
- Alison L Kearney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dougall M Norris
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Armella Zadoorian
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia .,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
23
|
Lin W, Mehta S, Zhang J. Genetically encoded fluorescent biosensors illuminate kinase signaling in cancer. J Biol Chem 2019; 294:14814-14822. [PMID: 31434714 DOI: 10.1074/jbc.rev119.006177] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase signaling networks stringently regulate cellular processes, such as proliferation, motility, and cell survival. These networks are also central to the evolution and progression of cancer. Accordingly, genetically encoded fluorescent biosensors capable of directly illuminating the spatiotemporal dynamics of kinase signaling in live cells are being increasingly used to investigate kinase signaling in cancer cells and tumor tissue sections. These biosensors enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Herein, we first review common design strategies for kinase activity biosensors, including signaling targets, biosensor components, and fluorescent proteins involved. Subsequently, we discuss applications of biosensors to study the biology and management of cancer. These versatile molecular tools have been deployed to study oncogenic kinase signaling in living cells and image kinase activities in tumors or to decipher the mechanisms of anticancer drugs. We anticipate that the diversity and precision of genetically encoded biosensors will expand their use to further unravel the dysregulation of kinase signaling in cancer and the modes of actions of cancer-targeting drugs.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0702
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0702
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0702
| |
Collapse
|
24
|
Spinosa PC, Humphries BA, Lewin Mejia D, Buschhaus JM, Linderman JJ, Luker GD, Luker KE. Short-term cellular memory tunes the signaling responses of the chemokine receptor CXCR4. Sci Signal 2019; 12:eaaw4204. [PMID: 31289212 PMCID: PMC7059217 DOI: 10.1126/scisignal.aaw4204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemokine receptor CXCR4 regulates fundamental processes in development, normal physiology, and diseases, including cancer. Small subpopulations of CXCR4-positive cells drive the local invasion and dissemination of malignant cells during metastasis, emphasizing the need to understand the mechanisms controlling responses at the single-cell level to receptor activation by the chemokine ligand CXCL12. Using single-cell imaging, we discovered that short-term cellular memory of changes in environmental conditions tuned CXCR4 signaling to Akt and ERK, two kinases activated by this receptor. Conditioning cells with growth stimuli before CXCL12 exposure increased the number of cells that initiated CXCR4 signaling and the amplitude of Akt and ERK activation. Data-driven, single-cell computational modeling revealed that growth factor conditioning modulated CXCR4-dependent activation of Akt and ERK by decreasing extrinsic noise (preexisting cell-to-cell differences in kinase activity) in PI3K and mTORC1. Modeling established mTORC1 as critical for tuning single-cell responses to CXCL12-CXCR4 signaling. Our single-cell model predicted how combinations of extrinsic noise in PI3K, Ras, and mTORC1 superimposed on different driver mutations in the ERK and/or Akt pathways to bias CXCR4 signaling. Computational experiments correctly predicted that selected kinase inhibitors used for cancer therapy shifted subsets of cells to states that were more permissive to CXCR4 activation, suggesting that such drugs may inadvertently potentiate pro-metastatic CXCR4 signaling. Our work establishes how changing environmental inputs modulate CXCR4 signaling in single cells and provides a framework to optimize the development and use of drugs targeting this signaling pathway.
Collapse
Affiliation(s)
- Phillip C Spinosa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brock A Humphries
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniela Lewin Mejia
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Johanna M Buschhaus
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathryn E Luker
- Department of Radiology Center for Molecular Imaging, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
McKimpson WM, Accili D. A fluorescent reporter assay of differential gene expression response to insulin in hepatocytes. Am J Physiol Cell Physiol 2019; 317:C143-C151. [PMID: 31091147 PMCID: PMC6689749 DOI: 10.1152/ajpcell.00504.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
Insulin regulates multiple hepatic metabolic pathways in a seemingly heterogeneous manner. To understand this heterogeneity, we hypothesized that different subpopulations of hepatocytes have different sensitivity to insulin. To test this hypothesis, we developed a fluorescent reporter in which the insulin-responsive fatty acid synthase (FAS) promoter drove expression of a time-dependent fluorescent protein ("timer") and characterized timer expression in flow-sorted cell populations. In Hepa1c1c7 and AML12 hepatocytes, we found that different cell populations express distinct timer fluorescence following insulin treatment, consistent with cellular heterogeneity in the response to insulin. RNA measurements indicated an enrichment of forkhead box O transcription factors in cells with a greater response to insulin. Moreover, we found evidence of increased Akt activation. These data are consistent with a heterogeneous cellular response to insulin and raise the possibility that these different subpopulations underlie the peculiar pathophysiology of hepatic insulin resistance.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University , New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University , New York, New York
| |
Collapse
|
26
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
27
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
28
|
Sampattavanich S, Steiert B, Kramer BA, Gyori BM, Albeck JG, Sorger PK. Encoding Growth Factor Identity in the Temporal Dynamics of FOXO3 under the Combinatorial Control of ERK and AKT Kinases. Cell Syst 2018; 6:664-678.e9. [PMID: 29886111 DOI: 10.1016/j.cels.2018.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/19/2017] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Extracellular growth factors signal to transcription factors via a limited number of cytoplasmic kinase cascades. It remains unclear how such cascades encode ligand identities and concentrations. In this paper, we use live-cell imaging and statistical modeling to study FOXO3, a transcription factor regulating diverse aspects of cellular physiology that is under combinatorial control. We show that FOXO3 nuclear-to-cytosolic translocation has two temporally distinct phases varying in magnitude with growth factor identity and cell type. These phases comprise synchronous translocation soon after ligand addition followed by an extended back-and-forth shuttling; this shuttling is pulsatile and does not have a characteristic frequency, unlike a simple oscillator. Early and late dynamics are differentially regulated by Akt and ERK and have low mutual information, potentially allowing the two phases to encode different information. In cancer cells in which ERK and Akt are dysregulated by oncogenic mutation, the diversity of states is lower.
Collapse
Affiliation(s)
- Somponnat Sampattavanich
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA; Siriraj Laboratory for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 12th Floor Srisavarindhira Building, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| | - Bernhard Steiert
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA; Institute of Physics, University of Freiburg, Freiburg, Germany; Freiburg Center for Systems Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard A Kramer
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA; Division of Systems Biology of Signal Transduction, German Cancer Research Center, Heidelberg, Germany
| | - Benjamin M Gyori
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Peter K Sorger
- HMS LINCS Center and Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation? CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Live-cell measurements of kinase activity in single cells using translocation reporters. Nat Protoc 2017; 13:155-169. [PMID: 29266096 DOI: 10.1038/nprot.2017.128] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although kinases are important regulators of many cellular processes, measuring their activity in live cells remains challenging. We have developed kinase translocation reporters (KTRs), which enable multiplexed measurements of the dynamics of kinase activity at a single-cell level. These KTRs are composed of an engineered construct in which a kinase substrate is fused to a bipartite nuclear localization signal (bNLS) and nuclear export signal (NES), as well as to a fluorescent protein for microscopy-based detection of its localization. The negative charge introduced by phosphorylation of the substrate is used to directly modulate nuclear import and export, thereby regulating the reporter's distribution between the cytoplasm and nucleus. The relative cytoplasmic versus nuclear fluorescence of the KTR construct (the C/N ratio) is used as a proxy for the kinase activity in living, single cells. Multiple KTRs can be studied in the same cell by fusing them to different fluorescent proteins. Here, we present a protocol to execute and analyze live-cell microscopy experiments using KTRs. We describe strategies for development of new KTRs and procedures for lentiviral expression of KTRs in a cell line of choice. Cells are then plated in a 96-well plate, from which multichannel fluorescent images are acquired with automated time-lapse microscopy. We provide detailed guidance for a computational analysis and parameterization pipeline. The entire procedure, from virus production to data analysis, can be completed in ∼10 d.
Collapse
|
31
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
33
|
Gross SM, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol 2017; 312:C328-C340. [PMID: 28100485 DOI: 10.1152/ajpcell.00312.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/20/2023]
Abstract
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas
| |
Collapse
|
34
|
Gross SM, Rotwein P. Unraveling Growth Factor Signaling and Cell Cycle Progression in Individual Fibroblasts. J Biol Chem 2016; 291:14628-38. [PMID: 27226630 DOI: 10.1074/jbc.m116.734194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/06/2022] Open
Abstract
Cultured cells require the actions of growth factors to enter the cell cycle, but how individual members of a population respond to the same stimulus remains unknown. Here we have employed continuous monitoring by live cell imaging in a dual-reporter cell model to investigate the regulation of short-term growth factor signaling (protein kinase B (PKB/Akt) activity) and longer-term progression through the cell cycle (cyclin-dependent kinase 2 activity). In the total population, insulin-like growth factor-I (IGF-I)-enhanced cell cycle entry by >5-fold compared with serum-free medium (from 13.5 to 78%), but at the single cell level we observed a broad distribution in the timing of G1 exit (4-24 h, mean ∼12 h) that did not vary with either the amount or duration of IGF-I treatment. Cells that failed to re-enter the cell cycle exhibited similar responses to IGF-I in terms of integrated Akt activity and migration distance compared with those that did. We made similar observations with EGF, PDGF-AA, and PDGF-BB. As potential thresholds of growth factor-mediated cell cycle progression appeared to be heterogeneous within the population, the longer-term proliferative outcomes of individual cells to growth factor stimulation could not be predicted based solely on acute Akt signaling responses, no matter how robust these might be. Thus, although we could define a relationship at the population level between growth factor-induced Akt signaling dynamics and cell cycle progression, we could not predict the fate of individual cells.
Collapse
Affiliation(s)
- Sean M Gross
- From the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Peter Rotwein
- the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
35
|
Gross SM, Rotwein P. Mapping growth-factor-modulated Akt signaling dynamics. J Cell Sci 2016; 129:2052-63. [PMID: 27044757 DOI: 10.1242/jcs.183764] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Growth factors alter cellular behavior through shared signaling cascades, raising the question of how specificity is achieved. Here, we have determined how growth factor actions are encoded into Akt signaling dynamics by real-time tracking of a fluorescent sensor. In individual cells, Akt activity was encoded in an analog pattern, with similar latencies (∼2 min) and half-maximal peak response times (range of 5-8 min). Yet, different growth factors promoted dose-dependent and heterogeneous changes in signaling dynamics. Insulin treatment caused sustained Akt activity, whereas EGF or PDGF-AA promoted transient signaling; PDGF-BB produced sustained responses at higher concentrations, but short-term effects at low doses, actions that were independent of the PDGF-α receptor. Transient responses to EGF were caused by negative feedback at the receptor level, as a second treatment yielded minimal responses, whereas parallel exposure to IGF-I caused full Akt activation. Small-molecule inhibitors reduced PDGF-BB signaling to transient responses, but only decreased the magnitude of IGF-I actions. Our observations reveal distinctions among growth factors that use shared components, and allow us to capture the consequences of receptor-specific regulatory mechanisms on Akt signaling.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|