1
|
Lishchynskyi O, Tymetska S, Shymborska Y, Raczkowska J, Awsiuk K, Skirtach AG, Korolko S, Chebotar A, Budkowski A, Stetsyshyn Y. Temperature-responsive properties of pH-sensitive poly(methacrylic acid)-grafted brush coatings with controlled wettability for cell culture. J Mater Chem B 2025; 13:3618-3632. [PMID: 39950436 DOI: 10.1039/d4tb02217c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Poly(methacrylic acid) (PMAA) is a well-known pH-responsive polymer with under-explored temperature-responsive properties. This study investigated the temperature-responsive properties of PMAA-grafted brush coatings, synthesized via the SI-ATRP polymerization of sodium methacrylate (NaMAA) and methacrylic acid (MAA) on glass surfaces. Distinct water contact angles were observed for PMAA brush coatings fabricated from NaMAA (38 deg) and MAA (60 deg) solutions. The reduced wettability of PMAA brushes from MAA indicates a reduced exposure of the hydrophilic moieties acquired during synthesis, which is postulated to occur with a lower grafting density. PMAA brush coatings showed a lower critical solution temperature (LCST), characterized by changes in wettability and thickness; however, this transition was not observed after immersion in various pH buffer solutions. Although inhibited growth of cells cultured on PMAA brushes was previously reported, we observed that the increased hydrophobicity of PMAA coatings from MAA resulted in excellent biocompatibility, demonstrated by growth and viability of dermal fibroblast cultures, making them prospective for biomedical applications. However, the LCST transition of these coatings did not induce temperature-controlled changes in protein (BSA) adsorption and cell (fibroblast) morphology.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, Lviv, 79013, Ukraine.
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | - Svitlana Tymetska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, Kraków 30-348, Poland
| | - Yana Shymborska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Andre G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | - Sergiy Korolko
- Hetman Petro Sahaidachnyi National Army Academy, 32, Heroes of Maidan Street, Lviv, 79012, Ukraine
| | - Anastasiia Chebotar
- Lviv Polytechnic National University, St. George's Square 2, Lviv, 79013, Ukraine.
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, Lviv, 79013, Ukraine.
| |
Collapse
|
2
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
3
|
James J, Fokin AI, Guschin DY, Wang H, Polesskaya A, Rubtsova SN, Clainche CL, Silberzan P, Gautreau AM, Romero S. Vinculin-Arp2/3 interaction inhibits branched actin assembly to control migration and proliferation. Life Sci Alliance 2025; 8:e202402583. [PMID: 39547716 PMCID: PMC11568829 DOI: 10.26508/lsa.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Vinculin is a mechanotransducer that reinforces links between cell adhesions and linear arrays of actin filaments upon myosin-mediated contractility. Both adhesions to the substratum and neighboring cells, however, are initiated within membrane protrusions that originate from Arp2/3-nucleated branched actin networks. Vinculin has been reported to interact with the Arp2/3 complex, but the role of this interaction remains poorly understood. Here, we compared the phenotypes of vinculin knock-out (KO) cells with those of knock-in (KI-P878A) cells, where the point mutation P878A that impairs the Arp2/3 interaction is introduced in the two vinculin alleles of MCF10A mammary epithelial cells. The interaction of vinculin with Arp2/3 inhibits actin polymerization at membrane protrusions and decreases migration persistence of single cells. In cell monolayers, vinculin recruits Arp2/3 and the vinculin-Arp2/3 interaction participates in cell-cell junction plasticity. Through this interaction, vinculin controls the decision to enter a new cell cycle as a function of cell density.
Collapse
Affiliation(s)
- John James
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Artem I Fokin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Dmitry Y Guschin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hong Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Svetlana N Rubtsova
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Silberzan
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
4
|
Cocom-Chan B, Khakzad H, Konate M, Aguilar DI, Bello C, Valencia-Gallardo C, Zarrouk Y, Fattaccioli J, Mauviel A, Javelaud D, Tran Van Nhieu G. IpaA reveals distinct modes of vinculin activation during Shigella invasion and cell-matrix adhesion. Life Sci Alliance 2024; 7:e202302418. [PMID: 38834194 PMCID: PMC11150655 DOI: 10.26508/lsa.202302418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Vinculin is a cytoskeletal linker strengthening cell adhesion. The Shigella IpaA invasion effector binds to vinculin to promote vinculin supra-activation associated with head-domain-mediated oligomerization. Our study investigates the impact of mutations of vinculin D1D2 subdomains' residues predicted to interact with IpaA VBS3. These mutations affected the rate of D1D2 trimer formation with distinct effects on monomer disappearance, consistent with structural modeling of a closed and open D1D2 conformer induced by IpaA. Notably, mutations targeting the closed D1D2 conformer significantly reduced Shigella invasion of host cells as opposed to mutations targeting the open D1D2 conformer and later stages of vinculin head-domain oligomerization. In contrast, all mutations affected the formation of focal adhesions (FAs), supporting the involvement of vinculin supra-activation in this process. Our findings suggest that IpaA-induced vinculin supra-activation primarily reinforces matrix adhesion in infected cells, rather than promoting bacterial invasion. Consistently, shear stress studies pointed to a key role for IpaA-induced vinculin supra-activation in accelerating and strengthening cell-matrix adhesion.
Collapse
Affiliation(s)
- Benjamin Cocom-Chan
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Hamed Khakzad
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Mahamadou Konate
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Daniel Isui Aguilar
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Chakir Bello
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Cesar Valencia-Gallardo
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Yosra Zarrouk
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Alain Mauviel
- Institut Curie, PSL Research University, INSERM U1021, CNRS UMR3347, Team "TGF-ß and Oncogenesis", Equipe Labellisée LIGUE 2016, Orsay, France
- Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 3347, Orsay, France
| | - Delphine Javelaud
- Institut Curie, PSL Research University, INSERM U1021, CNRS UMR3347, Team "TGF-ß and Oncogenesis", Equipe Labellisée LIGUE 2016, Orsay, France
- Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 3347, Orsay, France
| | - Guy Tran Van Nhieu
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| |
Collapse
|
5
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
6
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
7
|
Complete Model of Vinculin Suggests the Mechanism of Activation by Helical Super-Bundle Unfurling. Protein J 2022; 41:55-70. [PMID: 35006498 DOI: 10.1007/s10930-022-10040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 12/24/2022]
Abstract
To shed light onto the activation mechanism of vinculin, we carried out a detailed refinement of chicken vinculin and compared it to the human protein which is greater than 95% identical. Refinement resulted in a complete and significantly improved model. This model includes important elements such as a pro-rich strap region (PRR) and C-terminus. The conformation of the PRR stabilized by its inter- and intra-molecular contacts shows a dynamic, but relatively stable motif that constitutes a docking platform for multiple molecules. The contact of the C-terminus with the PRR suggests that phosphorylation of Tyr1065 might control activation and membrane binding. Improved electron densities showed the presence of large solvent molecules such as phosphates/sulfates and a head-group of PIP2. The improved model allowed for a computational stability analysis to be performed by the program Corex/Best which located numerous hot-spots of increased and decreased stability. Proximity of the identified binding sites for regulatory partners involved in inducing or suppressing the activation of vinculin to the unstable elements sheds new light onto the activation pathway and differential activation. This stability analysis suggests that the activation pathway proceeds by unfurling of the super-bundle built from four bundles of helices without separation of the Vt region (840-1066) from the head. According to our mechanism, when activating proteins bind at the strap region a separation of N and C terminal bundles occurs, followed by unfurling of the super-bundle and flattening of the general shape of the molecule, which exposes the interaction sites for binding of auxiliary proteins.
Collapse
|
8
|
Wang Y, Yao M, Baker KB, Gough RE, Le S, Goult BT, Yan J. Force-Dependent Interactions between Talin and Full-Length Vinculin. J Am Chem Soc 2021; 143:14726-14737. [PMID: 34463480 DOI: 10.1021/jacs.1c06223] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Talin and vinculin are part of a multicomponent system involved in mechanosensing in cell-matrix adhesions. Both exist in autoinhibited forms, and activation of vinculin requires binding to mechanically activated talin, yet how forces affect talin's interaction with vinculin has not been investigated. Here by quantifying the kinetics of force-dependent talin-vinculin interactions using single-molecule analysis, we show that mechanical exposure of a single vinculin binding site (VBS) in talin is sufficient to relieve the autoinhibition of vinculin, resulting in high-affinity binding. We provide evidence that the vinculin undergoes dynamic fluctuations between an autoinhibited closed conformation and an open conformation that is stabilized upon binding to the VBS. Furthermore, we discover an additional level of regulation in which the mechanically exposed VBS binds vinculin significantly more tightly than the isolated VBS alone. Molecular dynamics simulations reveal the basis of this new regulatory mechanism, identifying a sensitive force-dependent change in the conformation of an exposed VBS that modulates binding. Together, these results provide a comprehensive understanding of how the interplay between force and autoinhibition provides exquisite complexity within this major mechanosensing axis.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Physics, National University of Singapore, Singapore 117546, Singapore
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Karen B Baker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | | | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117546, Singapore
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117546, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
9
|
Wang X, Steinberg T, Dieterle MP, Ramminger I, Husari A, Tomakidi P. FAK Shutdown: Consequences on Epithelial Morphogenesis and Biomarker Expression Involving an Innovative Biomaterial for Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22189774. [PMID: 34575938 PMCID: PMC8470904 DOI: 10.3390/ijms22189774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.
Collapse
Affiliation(s)
- Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Correspondence:
| | - Martin P. Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| |
Collapse
|
10
|
Gao Q, Hou Y, Li Z, Hu J, Huo D, Zheng H, Zhang J, Yao X, Gao R, Wu X, Sui L. mTORC2 regulates hierarchical micro/nano topography-induced osteogenic differentiation via promoting cell adhesion and cytoskeletal polymerization. J Cell Mol Med 2021; 25:6695-6708. [PMID: 34114337 PMCID: PMC8278073 DOI: 10.1111/jcmm.16672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Surface topography acts as an irreplaceable role in the long‐term success of intraosseous implants. In this study, we prepared the hierarchical micro/nano topography using selective laser melting combined with alkali heat treatment (SLM‐AHT) and explored the underlying mechanism of SLM‐AHT surface‐elicited osteogenesis. Our results show that cells cultured on SLM‐AHT surface possess the largest number of mature FAs and exhibit a cytoskeleton reorganization compared with control groups. SLM‐AHT surface could also significantly upregulate the expression of the cell adhesion‐related molecule p‐FAK, the osteogenic differentiation‐related molecules RUNX2 and OCN as well as the mTORC2 signalling pathway key molecule Rictor. Notably, after the knocked‐down of Rictor, there were no longer significant differences in the gene expression levels of the cell adhesion‐related molecules and osteogenic differentiation‐related molecules among the three titanium surfaces, and the cells on SLM‐AHT surface failed to trigger cytoskeleton reorganization. In conclusion, the results suggest that mTORC2 can regulate the hierarchical micro/nano topography‐mediated osteogenesis via cell adhesion and cytoskeletal reorganization.
Collapse
Affiliation(s)
- Qian Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuying Hou
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Jinyang Hu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Huo
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Huimin Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xiaoyu Yao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Rui Gao
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Wu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
11
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
13
|
Manipulation of Focal Adhesion Signaling by Pathogenic Microbes. Int J Mol Sci 2021; 22:ijms22031358. [PMID: 33572997 PMCID: PMC7866387 DOI: 10.3390/ijms22031358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.
Collapse
|
14
|
Foxall E, Staszowska A, Hirvonen LM, Georgouli M, Ciccioli M, Rimmer A, Williams L, Calle Y, Sanz-Moreno V, Cox S, Jones GE, Wells CM. PAK4 Kinase Activity Plays a Crucial Role in the Podosome Ring of Myeloid Cells. Cell Rep 2020; 29:3385-3393.e6. [PMID: 31825823 PMCID: PMC6915307 DOI: 10.1016/j.celrep.2019.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/03/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
p21-Activated kinase 4 (PAK4), a serine/threonine kinase, is purported to localize to podosomes: transient adhesive structures that degrade the extracellular matrix to facilitate rapid myeloid cell migration. We find that treatment of transforming growth factor β (TGF-β)-differentiated monocytic (THP-1) cells with a PAK4-targeted inhibitor significantly reduces podosome formation and induces the formation of focal adhesions. This switch in adhesions confers a diminution of matrix degradation and reduced cell migration. Furthermore, reduced PAK4 expression causes a significant reduction in podosome number that cannot be rescued by kinase-dead PAK4, supporting a kinase-dependent role. Concomitant with PAK4 depletion, phosphorylation of Akt is perturbed, whereas a specific phospho-Akt signal is detected within the podosomes. Using superresolution analysis, we find that PAK4 specifically localizes in the podosome ring, nearer to the actin core than other ring proteins. We propose PAK4 kinase activity intersects with the Akt pathway at the podosome ring:core interface to drive regulation of macrophage podosome turnover.
Collapse
Affiliation(s)
- Elizabeth Foxall
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Adela Staszowska
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Liisa M Hirvonen
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mirella Georgouli
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Alexander Rimmer
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Oxford University, Oxford, UK
| | - Yolanda Calle
- Department of Life Sciences, University of Roehampton, London, UK
| | - Victoria Sanz-Moreno
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Claire M Wells
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
15
|
Lim J, Chu YS, Chu YC, Lo CM, Wang JL. Low Intensity Ultrasound Induces Epithelial Cell Adhesion Responses. J Biomech Eng 2020; 142:091014. [PMID: 32280990 DOI: 10.1115/1.4046883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 07/25/2024]
Abstract
In this study, we investigated the cellular mechanosensitive responses to a low intensity ultrasound (LIUS) stimulation (ISATA = 1 mW/cm2, pressure = 10 kPa). The dose and temporal effects at cell-substrate adhesion (CSA) at the basal level and cell-cell adhesion (CCA) at the apical level are reported in detail. A model of mouse mammary gland epithelial cells (EpH4) and the phosphorylation of mechanosensitive 130 kDa Crk-associated substrate (p130CAS) as an indicator for cellular responses were used. The intensity of phospho-p130CAS was found to be dependent on LIUS stress level, and the p130CAS was phosphorylated after 1 min stimulation at CSA. The phospho-p130CAS was also found to increase significantly at CCA upon LIUS stimulation. We confirmed that the cellular responses to ultrasound are immediate and dose dependent. Ultrasound affects not only CSA but also CCA. An E-cadherin knockout (EpH4ECad-/-) model also confirmed that phosphorylation of p130CAS at CCA is related to E-cadherins.
Collapse
Affiliation(s)
- Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, 605 Jen-Su Hall, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yeh-Shiu Chu
- Brian Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, 605 Jen-Su Hall, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chun-Min Lo
- Department of Biomedical Engineering, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, 602 Jen-Su Hall, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Zuidema A, Wang W, Sonnenberg A. Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Bioessays 2020; 42:e2000119. [PMID: 32830356 DOI: 10.1002/bies.202000119] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
17
|
Ham TR, Collins KL, Hoffman BD. Molecular Tension Sensors: Moving Beyond Force. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:83-94. [PMID: 32864525 DOI: 10.1016/j.cobme.2019.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nearly all cellular processes are sensitive to mechanical inputs, and this plays a major role in diverse physiological processes. Mechanical stimuli are thought to be primarily detected through force-induced changes in protein structure. Approximately a decade ago, molecular tension sensors were created to measure forces across proteins within cells. Since then, an impressive assortment of sensors has been created and provided key insights into mechanotransduction, but comparisons of measurements between various sensors are challenging. In this review, we discuss the different types of molecular tension sensors, provide a system of classification based on their molecular-scale mechanical properties, and highlight how new applications of these sensors are enabling measurements beyond the magnitude of tensile load. We suggest that an expanded understanding of the functionality of these sensors, as well as integration with other techniques, will lead to consensus amongst measurements as well as critical insights into the underlying mechanisms of mechanotransduction.
Collapse
Affiliation(s)
- Trevor R Ham
- Duke University, Room 1379 CIEMAS, 101 Science Drive, 27710, United States
| | - Kasie L Collins
- Duke University, Room 1379 CIEMAS, 101 Science Drive, 27710, United States
| | - Brenton D Hoffman
- Duke University, Room 1379 CIEMAS, 101 Science Drive, 27710, United States
| |
Collapse
|
18
|
Lee HT, Sharek L, O’Brien ET, Urbina FL, Gupton SL, Superfine R, Burridge K, Campbell SL. Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS One 2019; 14:e0221962. [PMID: 31483833 PMCID: PMC6726196 DOI: 10.1371/journal.pone.0221962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
Vinculin (Vcn) is a ubiquitously expressed cytoskeletal protein that links transmembrane receptors to actin filaments, and plays a key role in regulating cell adhesion, motility, and force transmission. Metavinculin (MVcn) is a Vcn splice isoform that contains an additional exon encoding a 68-residue insert within the actin binding tail domain. MVcn is selectively expressed at sub-stoichiometic amounts relative to Vcn in smooth and cardiac muscle cells. Mutations in the MVcn insert are linked to various cardiomyopathies. In vitro analysis has previously shown that while both proteins can engage filamentous (F)-actin, only Vcn can promote F-actin bundling. Moreover, we and others have shown that MVcn can negatively regulate Vcn-mediated F-actin bundling in vitro. To investigate functional differences between MVcn and Vcn, we stably expressed either Vcn or MVcn in Vcn-null mouse embryonic fibroblasts. While both MVcn and Vcn were observed at FAs, MVcn-expressing cells had larger but fewer focal adhesions per cell compared to Vcn-expressing cells. MVcn-expressing cells migrated faster and exhibited greater persistence compared to Vcn-expressing cells, even though Vcn-containing FAs assembled and disassembled faster. Magnetic tweezer measurements on Vcn-expressing cells show a typical cell stiffening phenotype in response to externally applied force; however, this was absent in Vcn-null and MVcn-expressing cells. Our findings that MVcn expression leads to larger but fewer FAs per cell, in conjunction with the inability of MVcn to bundle F-actin in vitro and rescue the cell stiffening response, are consistent with our previous findings of actin bundling deficient Vcn variants, suggesting that deficient actin-bundling may account for some of the differences between Vcn and MVcn.
Collapse
Affiliation(s)
- Hyunna T. Lee
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa Sharek
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fabio L. Urbina
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Arterial aging engages a plethora of key signalling pathways that act in concert to induce vascular smooth muscle cell (VSMC) phenotypic changes leading to vascular degeneration and extracellular matrix degradation responsible for alterations of the mechanical properties of the vascular wall. This review highlights proof-of-concept examples of components of the extracellular matrix, VSMC receptors which connect extracellular and intracellular structures, and signalling pathways regulating changes in mechanotransduction and vascular homeostasis in aging. Furthermore, it provides a new framework for understanding how VSMC stiffness and adhesion to extracellular matrix contribute to arterial stiffness and how interactions with endothelial cells, platelets, and immune cells can regulate vascular aging. The identification of the key players of VSMC changes operating in large and small-sized arteries in response to increased mechanical load may be useful to better elucidate the causes and consequences of vascular aging and associated progression of hypertension, arteriosclerosis, and atherosclerosis.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Faculte de Medecine, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Veronique Regnault
- INSERM, U1116, Faculte de Medecine, 9 Avenue de la forêt de Haye, CS 50184, 54505 Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Alberto P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
20
|
Onochie OE, Onyejose AJ, Rich CB, Trinkaus-Randall V. The Role of Hypoxia in Corneal Extracellular Matrix Deposition and Cell Motility. Anat Rec (Hoboken) 2019; 303:1703-1716. [PMID: 30861330 DOI: 10.1002/ar.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
The cornea is an excellent model tissue to study how cells adapt to periods of hypoxia as it is naturally exposed to diurnal fluxes in oxygen. It is avascular, transparent, and highly innervated. In certain pathologies, such as diabetes, limbal stem cell deficiency, or trauma, the cornea may be exposed to hypoxia for variable lengths of time. Due to its avascularity, the cornea requires atmospheric oxygen, and a reduction in oxygen availability can impair its physiology and function. We hypothesize that hypoxia alters membrane stiffness and the deposition of matrix proteins, leading to changes in cell migration, focal adhesion formation, and wound repair. Two systems-a 3D corneal organ culture model and polyacrylamide substrates of varying stiffness-were used to examine the response of corneal epithelium to normoxic and hypoxic environments. Exposure to hypoxia alters the deposition of the matrix proteins such as laminin and Type IV collagen. In addition, previous studies had shown a change in fibronectin after injury. Studies performed on matrix-coated acrylamide substrates ranging from 0.2 to 50 kPa revealed stiffness-dependent changes in cell morphology. The localization, number, and length of paxillin pY118- and vinculin pY1065-containing focal adhesions were different in wounded corneas and in human corneal epithelial cells incubated in hypoxic environments. Overall, these results demonstrate that low-oxygenated environments modify the composition of the extracellular matrix, basal lamina stiffness, and focal adhesion dynamics, leading to alterations in the function of the cornea. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Obianamma E Onochie
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Anwuli J Onyejose
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Rothenberg KE, Scott DW, Christoforou N, Hoffman BD. Vinculin Force-Sensitive Dynamics at Focal Adhesions Enable Effective Directed Cell Migration. Biophys J 2019; 114:1680-1694. [PMID: 29642037 DOI: 10.1016/j.bpj.2018.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/03/2023] Open
Abstract
Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.
Collapse
Affiliation(s)
| | - David W Scott
- Lineberger Comprehensive Cancer Center, UNC Chapel, Chapel Hill, North Carolina
| | | | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
22
|
Onochie OE, Zollinger A, Rich CB, Smith M, Trinkaus-Randall V. Epithelial cells exert differential traction stress in response to substrate stiffness. Exp Eye Res 2019; 181:25-37. [PMID: 30653966 DOI: 10.1016/j.exer.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
Epithelial wound healing is essential for maintaining the function and clarity of the cornea. Successful repair after injury involves the coordinated movements of cell sheets over the wounded region. While collective migration has been the focus of studies, the effects that environmental changes have on this form of movement are poorly understood. To examine the role of substrate compliancy on multi-layered epithelial sheet migration, we performed traction force and confocal microscopy to determine differences in traction forces and to examine focal adhesions on synthetic and biological substrates. The leading edges of corneal epithelial sheets undergo retraction or contraction prior to migration, and alterations in the sheet's stiffness are affected by the amount of force exerted by cells at the leading edge. On substrates of 30 kPa, cells exhibited greater and more rapid movement than on substrates of 8 kPa, which are similar to that of the corneal basement membrane. Vinculin and its phosphorylated residue Y1065 were prominent along the basal surface of migrating cells, while Y822 was prominent between neighboring cells along the leading edge. Vinculin localization was diffuse on a substrate where the basement membrane was removed. Furthermore, when cells were cultured on fibronectin-coated acrylamide substrates of 8 and 50 kPa and then wounded, there was an injury-induced phosphorylation of Y1065 and substrate dependent changes in the number and size of vinculin containing focal adhesions. These results demonstrate that changes in substrate stiffness affected traction forces and vinculin dynamics, which potentially could contribute to the delayed healing response associated with certain corneal pathologies.
Collapse
Affiliation(s)
- Obianamma E Onochie
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Alicia Zollinger
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Michael Smith
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Campbell H, Heidema C, Pilarczyk DG, DeMali KA. SHP-2 is activated in response to force on E-cadherin and dephosphorylates vinculin Y822. J Cell Sci 2018; 131:jcs.216648. [PMID: 30478196 DOI: 10.1242/jcs.216648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
The response of cells to mechanical inputs is a key determinant of cell behavior. In response to external forces, E-cadherin initiates signal transduction cascades that allow the cell to modulate its contractility to withstand the force. Much attention has focused on identifying the E-cadherin signaling pathways that promote contractility, but the negative regulators remain undefined. In this study, we identify SHP-2 as a force-activated phosphatase that negatively regulates E-cadherin force transmission by dephosphorylating vinculin Y822. To specifically probe a role for SHP-2 in E-cadherin mechanotransduction, we mutated vinculin so that it retains its phosphorylation but cannot be dephosphorylated. Cells expressing the mutant vinculin have increased contractility. This work provides a mechanism for inactivating E-cadherin mechanotransduction and provides a new method for specifically targeting the action of phosphatases in cells.
Collapse
Affiliation(s)
- Hannah Campbell
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christy Heidema
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daisy G Pilarczyk
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, Grigsby S, Basrur V, Nesvizhskii AI, Muntean A, Gonzalez ME, Kidwell KM, Nikolovska-Coleska Z, Kleer CG. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun 2018; 9:2801. [PMID: 30022044 PMCID: PMC6051995 DOI: 10.1038/s41467-018-05078-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 05/31/2018] [Indexed: 12/19/2022] Open
Abstract
Overexpression of EZH2 in estrogen receptor negative (ER-) breast cancer promotes metastasis. EZH2 has been mainly studied as the catalytic component of the Polycomb Repressive Complex 2 (PRC2) that mediates gene repression by trimethylating histone H3 at lysine 27 (H3K27me3). However, how EZH2 drives metastasis despite the low H3K27me3 levels observed in ER- breast cancer is unknown. Here we show that in human invasive carcinomas and distant metastases, cytoplasmic EZH2 phosphorylated at T367 is significantly associated with ER- disease and low H3K27me3 levels. p38-mediated EZH2 phosphorylation at T367 promotes EZH2 cytoplasmic localization and potentiates EZH2 binding to vinculin and other cytoskeletal regulators of cell migration and invasion. Ectopic expression of a phospho-deficient T367A-EZH2 mutant is sufficient to inhibit EZH2 cytoplasmic expression, disrupt binding to cytoskeletal regulators, and reduce EZH2-mediated adhesion, migration, invasion, and development of spontaneous metastasis. These results point to a PRC2-independent non-canonical mechanism of EZH2 pro-metastatic function.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/therapy
- Cell Line, Tumor
- Cell Movement
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Heterografts
- Histones/genetics
- Histones/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Mice
- Mice, SCID
- Phosphorylation
- Polycomb Repressive Complex 2/genetics
- Polycomb Repressive Complex 2/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Survival Analysis
- Threonine
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Talha Anwar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Molecular Cellular and Pathology Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caroline Arellano-Garcia
- Michigan Post-baccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James Ropa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Molecular Cellular and Pathology Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu-Chih Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hong Sun Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sierrah Grigsby
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Molecular Cellular and Pathology Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andrew Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
25
|
Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression. Exp Mol Med 2018; 50:1-11. [PMID: 30022046 PMCID: PMC6052162 DOI: 10.1038/s12276-018-0119-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023] Open
Abstract
Corticalization, coalescence of trabecular bone into the metaphyseal cortex, is important for the longitudinal growth of long bones. However, little is known about the molecular mechanisms controlling corticalization. To understand the molecular mechanisms underlying corticalization, we analyzed osteoblast-specific Osterix-knockout mice (Col-OMT). In control mice, corticalization was initiated after 7 postnatal days, and the number of osteoblasts in the peripheral spongiosa was increased compared to the number in the central spongiosa. In contrast, in Col-OMT mice, corticalization was delayed, and the number of osteoblasts in peripheral zones was unchanged compared to the central zone. Furthermore, femoral length was decreased in Col-OMT mice at 1 month. Because Col-OMT mice exhibited impaired matrix coalescence and osteoblast migration, we evaluated integrin signaling in Col-OMT mice. Osterix bound to the Itgb3 promoter and increased transcription of the Itgb3 gene in osteoblast cells. Interestingly, the inner and outer cortical bones were separated in Itgb3-null mice at postnatal day 7. In Itgb3-null mice, the number of osteoblasts in peripheral zones was not changed, and the femoral length was decreased. Taken together, these results indicate that Osterix regulates corticalization for longitudinal bone growth via the control of integrin β3 expression in osteoblasts. Our findings imply that the ability to control osteoblast function during corticalization may help in the treatment of short stature.
Collapse
|
26
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
27
|
Goldmann WH. Molecular interactions between vinculin and phospholipids. Cell Biol Int 2018; 42:1076-1078. [PMID: 29696730 DOI: 10.1002/cbin.10978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/21/2018] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein vinculin has been implicated in associating with soluble and membranous phospholipids. Detailed investigations over the past ten years describe the intermolecular interactions of the vinculin tail domain with soluble and membrane phospholipids. Previous studies have implied that the tail's unstructured C-terminal region affects the mechanical behavior of cells and that the same region, at the molecular level, has bi-stable behavior sensitive to different protonation states. The aim of this short communication is to discuss whether the C-terminal vinculin tail (Vt) domain interacts favorably with membrane-embedded phospholipids such as PIP2 and that the region is also an anchor for lipid membranes.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, D-91052, Erlangen, Germany
| |
Collapse
|
28
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
29
|
Malik-Sheriff RS, Imtiaz S, Grecco HE, Zamir E. Diverse patterns of molecular changes in the mechano-responsiveness of focal adhesions. Sci Rep 2018; 8:2187. [PMID: 29391434 PMCID: PMC5795008 DOI: 10.1038/s41598-018-20252-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/27/2017] [Indexed: 01/09/2023] Open
Abstract
Focal adhesions anchor contractile actin fibers with the extracellular matrix, sense the generated tension and respond to it by changing their morphology and composition. Here we ask how this mechanosensing is enabled at the protein-network level, given the modular assembly and multitasking of focal adhesions. To address this, we applied a sensitive 4-color live cell imaging approach, enabling monitoring patterns of molecular changes in single focal adhesions. Co-imaging zyxin, FAK, vinculin and paxillin revealed heterogeneities in their responses to Rho-associated kinase (ROCK)-mediated perturbations of actomyosin contractility. These responses were rather weakly correlated between the proteins, reflecting diverse compositional changes in different focal adhesions. This diversity is partially attributable to the location of focal adhesions, their area, molecular content and previous contractility perturbations, suggesting that integration of multiple local cues shapes differentially focal adhesion mechano-responsiveness. Importantly, the compositional changes upon ROCK perturbations exhibited distinct paths in different focal adhesions. Moreover, the protein exhibiting the strongest response to ROCK perturbations varied among different focal adhesions. The diversity in response patterns is plausibly enabled by the modular mode of focal adhesions assembly and can provide them the needed flexibility to perform multiple tasks by combining optimally a common set of multifunctional components.
Collapse
Affiliation(s)
- Rahuman S Malik-Sheriff
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton, Cambridge, UK
| | - Sarah Imtiaz
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Hernán E Grecco
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
| | - Eli Zamir
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany. .,Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
30
|
Sun L, Noel JK, Levine H, Onuchic JN. Molecular Simulations Suggest a Force-Dependent Mechanism of Vinculin Activation. Biophys J 2017; 113:1697-1710. [PMID: 29045864 DOI: 10.1016/j.bpj.2017.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/19/2017] [Accepted: 08/08/2017] [Indexed: 10/18/2022] Open
Abstract
Focal adhesions are dynamic constructs at the leading edge of migrating cells, linking them to the extracellular matrix and enabling force sensing and transmission. The lifecycle of a focal adhesion is a highly coordinated process involving spatial and temporal variations of protein composition, interaction, and cellular tension. The assembly of focal adhesions requires the recruitment and activation of vinculin. Vinculin is present in the cytoplasm in an autoinhibited conformation in which its tail is held pincerlike by its head domains, further stabilized by two high-affinity head-tail interfaces. Vinculin has binding sites for talin and F-actin, but effective binding requires vinculin activation to release its head-tail associations. In migrating cells, it has been shown that the locations of vinculin activation coincide with areas of high cellular tension, and that the highest recorded tensions across vinculin are associated with adhesion assembly. Here, we use a structure-based model to investigate vinculin activation by talin modulated by tensile force generated by transient associations with F-actin. We show that vinculin activation may proceed from an intermediate state stabilized by partial talin-vinculin association. There is a low-force regime and a high-force regime where vinculin activation is dominated by two different pathways with distinct responses to force. Specifically, at zero or low forces, vinculin activation requires substantial destabilization of the main head-tail interface, which is rigid and undergoes very limited fluctuations, despite the other being relatively flexible. This pathway is not significantly affected by force; instead, higher forces favor an alternative pathway, which seeks to release the vinculin tail from its pincerlike head domains before destabilizing the head-tail interfaces. This pathway has a force-sensitive activation barrier and is significantly accelerated by force. Experimental data of vinculin during various stages of the focal adhesion lifecycle are consistent with the proposed force-regulated activation pathway.
Collapse
Affiliation(s)
- Li Sun
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Max Delbrück Center, Berlin, Germany
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
31
|
Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci Rep 2017; 7:16499. [PMID: 29184125 PMCID: PMC5705666 DOI: 10.1038/s41598-017-16486-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 01/16/2023] Open
Abstract
Information in the microenvironment guides complex cellular decisions such as whether or not to proliferate and migrate. The effects of soluble extracellular signals on these cellular functions are fairly well understood, but relatively little is known about how the extracellular matrix (ECM), and particularly the mechanical information in the ECM, guides these cellular decisions. Here, we show that CD44, a major receptor for the glycosaminoglycan ECM component hyaluronan, coordinates the motility and proliferative responses to ECM stiffening. We analyzed these cellular responses on fibronectin-coated polyacrylamide hydrogels prepared at a physiologic range of ECM stiffness and found that stiffening of the ECM leads to both cell cycling and cell motility in serum-stimulated primary mouse dermal fibroblasts. Remarkably, deletion of CD44 impaired stiffness-stimulated motility of the primary cells without affecting other hallmark cellular responses to ECM stiffening including cell spread area, stress fiber formation, focal adhesion maturation, and intracellular stiffening. Even stiffness-mediated cell proliferation was unaffected by deletion of CD44. Our results reveal a novel effect of CD44, which is imposed downstream of ECM-mechanosensing and determines if cells couple or uncouple their proliferative and motility responses to ECM stiffness.
Collapse
|
32
|
Ichikawa T, Kita M, Matsui TS, Nagasato AI, Araki T, Chiang SH, Sezaki T, Kimura Y, Ueda K, Deguchi S, Saltiel AR, Kioka N. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci 2017; 130:3517-3531. [PMID: 28864765 DOI: 10.1242/jcs.200691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 (ArgBP2) constitute an adaptor protein family called the vinexin (SORBS) family that is targeted to focal adhesions (FAs). Although numerous studies have focused on each of the SORBS proteins and partially elucidated their involvement in mechanotransduction, a comparative analysis of their function has not been well addressed. Here, we established mouse embryonic fibroblasts that individually expressed SORBS proteins and analysed their functions in an identical cell context. Both vinexin-α and CAP co-localized with vinculin at FAs and promoted the appearance of vinculin-rich FAs, whereas ArgBP2 co-localized with α-actinin at the proximal end of FAs and punctate structures on actin stress fibers (SFs), and induced paxillin-rich FAs. Furthermore, both vinexin-α and CAP contributed to extracellular matrix stiffness-dependent vinculin behaviors, while ArgBP2 stabilized α-actinin on SFs and enhanced intracellular contractile forces. These results demonstrate the differential roles of SORBS proteins in mechanotransduction.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Masahiro Kita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tsubasa S Matsui
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ayaka Ichikawa Nagasato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiko Araki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan
| | - Shian-Huey Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takuhito Sezaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Shinji Deguchi
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
33
|
Han MKL, van der Krogt GNM, de Rooij J. Zygotic vinculin is not essential for embryonic development in zebrafish. PLoS One 2017; 12:e0182278. [PMID: 28767718 PMCID: PMC5540497 DOI: 10.1371/journal.pone.0182278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
The formation of multicellular tissues during development is governed by mechanical forces that drive cell shape and tissue architecture. Protein complexes at sites of adhesion to the extracellular matrix (ECM) and cell neighbors, not only transmit these mechanical forces, but also allow cells to respond to changes in force by inducing biochemical feedback pathways. Such force-induced signaling processes are termed mechanotransduction. Vinculin is a central protein in mechanotransduction that in both integrin-mediated cell-ECM and cadherin-mediated cell-cell adhesions mediates force-induced cytoskeletal remodeling and adhesion strengthening. Vinculin was found to be important for the integrity and remodeling of epithelial tissues in cell culture models and could therefore be expected to be of broad importance in epithelial morphogenesis in vivo. Besides a function in mouse heart development, however, the importance of vinculin in morphogenesis of other vertebrate tissues has remained unclear. To investigate this further, we knocked out vinculin functioning in zebrafish, which contain two fully functional isoforms designated as vinculin A and vinculin B that both show high sequence conservation with higher vertebrates. Using TALEN and CRISPR-Cas gene editing technology we generated vinculin-deficient zebrafish. While single vinculin A mutants are viable and able to reproduce, additional loss of zygotic vinculin B was lethal after embryonic stages. Remarkably, vinculin-deficient embryos do not show major developmental defects, apart from mild pericardial edemas. These results lead to the conclusion that vinculin is not of broad importance for the development and morphogenesis of zebrafish tissues.
Collapse
Affiliation(s)
- Mitchell K. L. Han
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard N. M. van der Krogt
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|
35
|
Abstract
Cadherin adhesion complexes have recently emerged as sensors of tissue tension that regulate key developmental processes. Super-resolution microscopy experiments now unravel the spatial organization of the interface between cadherins and the actin cytoskeleton and reveal how vinculin, a central component in cadherin mechanotransduction, is regulated by mechanical and biochemical signals.
Collapse
|
36
|
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017; 74:2999-3009. [PMID: 28401269 PMCID: PMC5501900 DOI: 10.1007/s00018-017-2511-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
37
|
Chronopoulos A, Lieberthal TJ, del Río Hernández AE. Pancreatic cancer: a mechanobiology approach. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5d1b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation. Sci Rep 2016; 6:31547. [PMID: 27526936 PMCID: PMC4985743 DOI: 10.1038/srep31547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.
Collapse
|
39
|
Cell-cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 2016; 74:279-292. [PMID: 27506620 PMCID: PMC5219012 DOI: 10.1007/s00018-016-2325-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023]
Abstract
The vasculature is one of the most dynamic tissues that encounter numerous mechanical cues derived from pulsatile blood flow, blood pressure, activity of smooth muscle cells in the vessel wall, and transmigration of immune cells. The inner layer of blood and lymphatic vessels is covered by the endothelium, a monolayer of cells which separates blood from tissue, an important function that it fulfills even under the dynamic circumstances of the vascular microenvironment. In addition, remodeling of the endothelial barrier during angiogenesis and trafficking of immune cells is achieved by specific modulation of cell-cell adhesion structures between the endothelial cells. In recent years, there have been many new discoveries in the field of cellular mechanotransduction which controls the formation and destabilization of the vascular barrier. Force-induced adaptation at endothelial cell-cell adhesion structures is a crucial node in these processes that challenge the vascular barrier. One of the key examples of a force-induced molecular event is the recruitment of vinculin to the VE-cadherin complex upon pulling forces at cell-cell junctions. Here, we highlight recent advances in the current understanding of mechanotransduction responses at, and derived from, endothelial cell-cell junctions. We further discuss their importance for vascular barrier function and remodeling in development, inflammation, and vascular disease.
Collapse
|
40
|
Mui KL, Chen CS, Assoian RK. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci 2016; 129:1093-100. [PMID: 26919980 DOI: 10.1242/jcs.183699] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cadherins and integrins are intrinsically linked through the actin cytoskeleton and share common signaling molecules. Although mechanosensing by the integrin-actin axis has long been appreciated, a growing body of literature now demonstrates that cadherins also transduce and respond to mechanical forces. Mounting evidence shows that mechanically driven crosstalk between integrins and cadherins regulates the spatial distribution of these receptors, their signaling intermediates, the actin cytoskeleton and intracellular forces. This interplay between integrins and cadherins can control fibronectin matrix assembly and signaling, and a fine balance between traction forces at focal adhesions and intercellular tension at adherens junctions is crucial for directional collective cell migration. In this Commentary, we discuss two central ideas: (1) how the dynamic interplay between integrins and cadherins regulates the spatial organization of intracellular signals and the extracellular matrix, and (2) the emerging consensus that intracellular force is a central mechanism that dictates cell behavior, guides tissue development and ultimately drives physiology.
Collapse
Affiliation(s)
- Keeley L Mui
- Department of Systems Pharmacology and Translational Therapeutics, Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
42
|
Mechanosensitive components of integrin adhesions: Role of vinculin. Exp Cell Res 2015; 343:21-27. [PMID: 26607713 PMCID: PMC4856733 DOI: 10.1016/j.yexcr.2015.11.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022]
Abstract
External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell–matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli.
Collapse
|