1
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Livneh I, Fabre B, Goldhirsh G, Lulu C, Zinger A, Shammai Vainer Y, Kaduri M, Dahan A, Ziv T, Schroeder A, Ben-Neriah Y, Zohar Y, Cohen-Kaplan V, Ciechanover A. Inhibition of nucleo-cytoplasmic proteasome translocation by the aromatic amino acids or silencing Sestrin3-their sensing mediator-is tumor suppressive. Cell Death Differ 2024; 31:1242-1254. [PMID: 39266717 PMCID: PMC11445514 DOI: 10.1038/s41418-024-01370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
The proteasome, the catalytic arm of the ubiquitin system, is regulated via its dynamic compartmentation between the nucleus and the cytoplasm, among other mechanisms. Under amino acid shortage, the proteolytic complex is translocated to the cytoplasm, where it stimulates proteolysis to supplement recycled amino acids for essential protein synthesis. This response is mediated via the mTOR pathway and the lack of the three aromatic amino acids Tyr, Trp, and Phe (YWF). mTOR activation by supplementation of the triad inhibits proteasome translocation, leading to cell death. We now show that tumoral inherent stress conditions result in translocation of the proteasome from the nucleus to the cytosol. We further show that the modulation of the signaling cascade governed by YWF is applicable also to non-starved cells by using higher concentration of the triad to achieve a surplus relative to all other amino acids. Based on these two phenomena, we found that the modulation of stress signals via the administration of YWF leads to nuclear proteasome sequestration and inhibition of growth of xenograft, spontaneous, and metastatic mouse tumor models. In correlation with the observed effect of YWF on tumors, we found - using transcriptomic and proteomic analyses - that the triad affects various cellular processes related to cell proliferation, migration, and death. In addition, Sestrin3-a mediator of YWF sensing upstream of mTOR-is essential for proteasome translocation, and therefore plays a pro-tumorigenic role, positioning it as a potential oncogene. This newly identified approach for hijacking the cellular "satiety center" carries therefore potential therapeutic implications for cancer.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel.
| | - Bertrand Fabre
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse 3, INP, CNRS, Auzeville-Tolosane, France
| | - Gilad Goldhirsh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Chen Lulu
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adar Zinger
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yael Shammai Vainer
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviva Dahan
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaniv Zohar
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Pathology and Cytology, Rambam Health Care Campus, Haifa, Israel
| | - Victoria Cohen-Kaplan
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aaron Ciechanover
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Winter JM, Fresenius HL, Cunningham CN, Wei P, Keys HR, Berg J, Bott A, Yadav T, Ryan J, Sirohi D, Tripp SR, Barta P, Agarwal N, Letai A, Sabatini DM, Wohlever ML, Rutter J. Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction. eLife 2022; 11:82860. [PMID: 36409067 DOI: 10.7554/elife.82860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here, we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.
Collapse
Affiliation(s)
- Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Corey N Cunningham
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jordan Berg
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Alex Bott
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Tarun Yadav
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Deepika Sirohi
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Sheryl R Tripp
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Paige Barta
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - David M Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| |
Collapse
|
4
|
Zhang H, Zheng Y, Han D, Lu J, Yin S, Hu H, Zhao C. Combination of Palmitic Acid and Methylseleninic Acid Induces Mitochondria-Dependent Apoptosis via Attenuation of the IRE1α Arm and Enhancement of CHOP in Hepatoma. ACS OMEGA 2021; 6:15708-15715. [PMID: 34179614 PMCID: PMC8223223 DOI: 10.1021/acsomega.1c00959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The most common saturated fatty acid in the human diet is palmitic acid (PA), and emerging evidence suggests that it may have anticancer activity. Methylseleninic acid (MSeA), the most commonly used selenium derivative in humans, has specific cytotoxic effects on several cancer cells. However, it is generally considered that HepG2 cells are insensitive to MSeA-induced death. In our current research, we found that the addition of PA increased the sensitivity of HepG2 cells to low-dose MSeA-induced apoptosis. The anticancer efficacy of the MSeA/PA combination was also demonstrated in a HepG2 xenograft model. Further experiments revealed that IRE1 inhibition significantly enhanced the PA-induced apoptosis, indicating the prosurvival function of IRE1 in PA treatment of HepG2 cells. The combination of PA and MSeA attenuated the IRE1 pathway and increased the expressions of phospha-eIF2α and GADD153/C/EBP homologous protein (CHOP), contributing to the PA/MSeA combination-induced mitochondria-dependent apoptosis in HepG2 cells. In addition, PA downregulated the expression of the glucose transporter GLUT1 and restricted glucose metabolism, thus promoting the apoptosis of tumor cells. Considering the lipotoxicity of PA, L02 human normal hepatocytes were used to evaluate the effect of MSeA on the lipotoxicity caused by PA. Interestingly, MSeA prevented PA-induced lipotoxicity in L02 cells. Our findings provided evidence that PA may be a promising and excellent sensitizer for improving the anticancer effect of MSeA in hepatoma chemotherapy.
Collapse
Affiliation(s)
- Han Zhang
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, College
of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing100080, China
| | - Yongchang Zheng
- Department
of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union
Medical College, Beijing100730, China
| | - Duolima Han
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, College
of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing100080, China
| | - Jizhou Lu
- Department
of Liver Surgery, The Third People’s
Hospital of Gansu Province, Chengguan
District, Lanzhou, Gansu 730030, China
| | - Shutao Yin
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, College
of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing100080, China
| | - Hongbo Hu
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, College
of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing100080, China
| | - Chong Zhao
- Beijing
Advanced Innovation Center for Food Nutrition and Human Health, College
of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing100080, China
| |
Collapse
|
5
|
Reversible protein aggregation as cytoprotective mechanism against heat stress. Curr Genet 2021; 67:849-855. [PMID: 34091720 PMCID: PMC8592950 DOI: 10.1007/s00294-021-01191-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023]
Abstract
Temperature fluctuation is one of the most frequent threats to which organisms are exposed in nature. The activation of gene expression programs that trigger the transcription of heat stress-protective genes is the main cellular response to resist high temperatures. In addition, reversible accumulation and compartmentalization of thermosensitive proteins in high-order molecular assemblies are emerging as critical mechanisms to ensure cellular protection upon heat stress. Here, we summarize representative examples of membrane-less intracellular bodies formed upon heat stress in yeasts and human cells and highlight how protein aggregation can be turned into a cytoprotective mechanism.
Collapse
|
6
|
Wright MT, Plate L. Revealing functional insights into ER proteostasis through proteomics and interactomics. Exp Cell Res 2020; 399:112417. [PMID: 33301765 DOI: 10.1016/j.yexcr.2020.112417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER), responsible for processing approximately one-third of the human proteome including most secreted and membrane proteins, plays a pivotal role in protein homeostasis (proteostasis). Dysregulation of ER proteostasis has been implicated in a number of disease states. As such, continued efforts are directed at elucidating mechanisms of ER protein quality control which are mediated by transient and dynamic protein-protein interactions with molecular chaperones, co-chaperones, protein folding and trafficking factors that take place in and around the ER. Technological advances in mass spectrometry have played a pivotal role in characterizing and understanding these protein-protein interactions that dictate protein quality control mechanisms. Here, we highlight the recent progress from mass spectrometry-based investigation of ER protein quality control in revealing the topological arrangement of the proteostasis network, stress response mechanisms that adjust the ER proteostasis capacity, and disease specific changes in proteostasis network engagement. We close by providing a brief outlook on underexplored areas of ER proteostasis where mass spectrometry is a tool uniquely primed to further expand our understanding of the regulation and coordination of protein quality control processes in diverse diseases.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
8
|
Joazeiro CAP. Mechanisms and functions of ribosome-associated protein quality control. Nat Rev Mol Cell Biol 2020; 20:368-383. [PMID: 30940912 DOI: 10.1038/s41580-019-0118-2] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stalling of ribosomes during protein synthesis results in the production of truncated polypeptides that can have deleterious effects on cells and therefore must be eliminated. In eukaryotes, this function is carried out by a dedicated surveillance mechanism known as ribosome-associated protein quality control (RQC). The E3 ubiquitin ligase Ltn1 (listerin in mammals) plays a key part in RQC by targeting the aberrant nascent polypeptides for proteasomal degradation. Consistent with having an important protein quality control function, mutations in listerin cause neurodegeneration in mice. Ltn1/listerin is part of the multisubunit RQC complex, and recent findings have revealed that the Rqc2 subunit of this complex catalyses the formation of carboxy-terminal alanine and threonine tails (CAT tails), which are extensions of nascent chains known to either facilitate substrate ubiquitylation and targeting for degradation or induce protein aggregation. RQC, originally described for quality control on ribosomes translating cytosolic proteins, is now known to also have a role on the surfaces of the endoplasmic reticulum and mitochondria. This Review describes our current knowledge on RQC mechanisms, highlighting key features of Ltn1/listerin action that provide a paradigm for understanding how E3 ligases operate in protein quality control in general, and discusses how defects in this pathway may compromise cellular function and lead to disease.
Collapse
Affiliation(s)
- Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany. .,Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA.
| |
Collapse
|
9
|
Widespread remodeling of proteome solubility in response to different protein homeostasis stresses. Proc Natl Acad Sci U S A 2020; 117:2422-2431. [PMID: 31964829 DOI: 10.1073/pnas.1912897117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington's disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
Collapse
|
10
|
Saavedra-García P, Martini F, Auner HW. Proteasome inhibition in multiple myeloma: lessons for other cancers. Am J Physiol Cell Physiol 2019; 318:C451-C462. [PMID: 31875696 DOI: 10.1152/ajpcell.00286.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular protein homeostasis (proteostasis) depends on the controlled degradation of proteins that are damaged or no longer required by the ubiquitin-proteasome system (UPS). The 26S proteasome is the principal executer of substrate-specific proteolysis in eukaryotic cells and regulates a myriad of cellular functions. Proteasome inhibitors were initially developed as chemical tools to study proteasomal function but rapidly became widely used anticancer drugs that are now used at all stages of treatment for the bone marrow cancer multiple myeloma (MM). Here, we review the mechanisms of action of proteasome inhibitors that underlie their preferential toxicity to MM cells, focusing on endoplasmic reticulum stress, depletion of amino acids, and effects on glucose and lipid metabolism. We also discuss mechanisms of resistance to proteasome inhibition such as autophagy and metabolic rewiring and what lessons we may learn from the success and failure of proteasome inhibition in MM for treating other cancers with proteostasis-targeting drugs.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Cancer Cell Metabolism Group, Hugh and Josseline Langmuir Centre for Myeloma Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Martini
- Department of Translational Research on New Technologies in Medicine and Surgery, Hematology Unit, Ospedale Santa Chiara, Pisa, Italy
| | - Holger W Auner
- Cancer Cell Metabolism Group, Hugh and Josseline Langmuir Centre for Myeloma Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Ferreira LMR, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM. Impact of Carcinogenic Chromium on the Cellular Response to Proteotoxic Stress. Int J Mol Sci 2019; 20:ijms20194901. [PMID: 31623305 PMCID: PMC6801751 DOI: 10.3390/ijms20194901] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response—an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Surgery and Diabetes Center and Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197 Cantanhede, Portugal.
| | - Margarida C Sobral
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Patrícia L Abreu
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal.
| | - Maria Carmen Alpoim
- Department of Life Sciences, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO) and CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - Ana M Urbano
- Department of Life Sciences, Molecular Physical Chemistry Research Unit and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
12
|
Draceni Y, Pechmann S. Pervasive convergent evolution and extreme phenotypes define chaperone requirements of protein homeostasis. Proc Natl Acad Sci U S A 2019; 116:20009-20014. [PMID: 31527276 PMCID: PMC6778244 DOI: 10.1073/pnas.1904611116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maintaining protein homeostasis is an essential requirement for cell and organismal viability. An elaborate regulatory system within cells, the protein homeostasis network, safeguards that proteins are correctly folded and functional. At the heart of this regulatory system lies a class of specialized protein quality control enzymes called chaperones that are tasked with assisting proteins in their folding, avoiding aggregation and degradation. Failure and decline of protein homeostasis are directly associated with conditions of aging and aging-related neurodegeneration. However, it is not clear what tips the balance of protein homeostasis and leads to onset of aging and diseases. Here, using a comparative genomics approach we report general principles of maintaining protein homeostasis across the eukaryotic tree of life. Expanding a previous study of 16 eukaryotes to the quantitative analysis of 216 eukaryotic genomes, we find a strong correlation between the composition of eukaryotic chaperone networks and genome complexity that is distinct for different species kingdoms. Organisms with pronounced phenotypes clearly buck this trend. Northobranchius furzeri, the shortest-lived vertebrate and a widely used model for fragile protein homeostasis, is found to be chaperone limited while Heterocephalus glaber as the longest-lived rodent and thus an especially robust organism is characterized by above-average numbers of chaperones. Strikingly, the relative size of chaperone networks is found to generally correlate with longevity in Metazoa. Our results thus indicate that the balance in protein homeostasis may be a key variable in explaining organismal robustness.
Collapse
Affiliation(s)
- Yasmine Draceni
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sebastian Pechmann
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
15
|
Claes Z, Jonkhout M, Crespillo-Casado A, Bollen M. The antibiotic robenidine exhibits guanabenz-like cytoprotective properties by a mechanism independent of protein phosphatase PP1:PPP1R15A. J Biol Chem 2019; 294:13478-13486. [PMID: 31337709 DOI: 10.1074/jbc.ra119.008857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
The aminoguanidine compound robenidine is widely used as an antibiotic for the control of coccidiosis, a protozoal infection in poultry and rabbits. Interestingly, robenidine is structurally similar to guanabenz (analogs), which are currently undergoing clinical trials as cytoprotective agents for the management of neurodegenerative diseases. Here we show that robenidine and guanabenz protect cells from a tunicamycin-induced unfolded protein response to a similar degree. Both compounds also reduced the tumor necrosis factor α-induced activation of NF-κB. The cytoprotective effects of guanabenz (analogs) have been explained previously by their ability to maintain eIF2α phosphorylation by allosterically inhibiting protein phosphatase PP1:PPP1R15A. However, using a novel split-luciferase-based protein-protein interaction assay, we demonstrate here that neither robenidine nor guanabenz disrupt the interaction between PPP1R15A and either PP1 or eIF2α in intact cells. Moreover, both drugs also inhibited the unfolded protein response in cells that expressed a nonphosphorylatable mutant (S51A) of eIF2α. Our results identify robenidine as a PP1:PPP1R15A-independent cytoprotective compound that holds potential for the management of protein misfolding-associated diseases.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Marloes Jonkhout
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Topf U, Uszczynska-Ratajczak B, Chacinska A. Mitochondrial stress-dependent regulation of cellular protein synthesis. J Cell Sci 2019; 132:132/8/jcs226258. [DOI: 10.1242/jcs.226258] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ABSTRACT
The production of newly synthesized proteins is vital for all cellular functions and is a determinant of cell growth and proliferation. The synthesis of polypeptide chains from mRNA molecules requires sophisticated machineries and mechanisms that need to be tightly regulated, and adjustable to current needs of the cell. Failures in the regulation of translation contribute to the loss of protein homeostasis, which can have deleterious effects on cellular function and organismal health. Unsurprisingly, the regulation of translation appears to be a crucial element in stress response mechanisms. This review provides an overview of mechanisms that modulate cytosolic protein synthesis upon cellular stress, with a focus on the attenuation of translation in response to mitochondrial stress. We then highlight links between mitochondrion-derived reactive oxygen species and the attenuation of reversible cytosolic translation through the oxidation of ribosomal proteins at their cysteine residues. We also discuss emerging concepts of how cellular mechanisms to stress are adapted, including the existence of alternative ribosomes and stress granules, and the regulation of co-translational import upon organelle stress.
Collapse
Affiliation(s)
- Ulrike Topf
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
| | | | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
- ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| |
Collapse
|
17
|
Chang TK, Lawrence DA, Lu M, Tan J, Harnoss JM, Marsters SA, Liu P, Sandoval W, Martin SE, Ashkenazi A. Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate. Mol Cell 2019; 71:629-636.e5. [PMID: 30118681 DOI: 10.1016/j.molcel.2018.06.038] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
The kinases PERK and IRE1 alleviate endoplasmic reticulum (ER) stress by orchestrating the unfolded protein response (UPR). If stress mitigation fails, PERK promotes cell death by activating pro-apoptotic genes, including death receptor 5 (DR5). Conversely, IRE1-which harbors both kinase and endoribonuclease (RNase) modules-blocks apoptosis through regulated IRE1-dependent decay (RIDD) of DR5 mRNA. Under irresolvable ER stress, PERK activity persists, whereas IRE1 paradoxically attenuates, by mechanisms that remain obscure. Here, we report that PERK governs IRE1's attenuation through a phosphatase known as RPAP2 (RNA polymerase II-associated protein 2). RPAP2 reverses IRE1 phosphorylation, oligomerization, and RNase activation. This inhibits IRE1-mediated adaptive events, including activation of the cytoprotective transcription factor XBP1s, and ER-associated degradation of unfolded proteins. Furthermore, RIDD termination by RPAP2 unleashes DR5-mediated caspase activation and drives cell death. Thus, PERK attenuates IRE1 via RPAP2 to abort failed ER-stress adaptation and trigger apoptosis.
Collapse
Affiliation(s)
- Tsun-Kai Chang
- Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - David A Lawrence
- Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Min Lu
- Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jenille Tan
- Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Scot A Marsters
- Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Peter Liu
- Microchemistry Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wendy Sandoval
- Microchemistry Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Scott E Martin
- Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
18
|
Hentilä J, Nissinen TA, Korkmaz A, Lensu S, Silvennoinen M, Pasternack A, Ritvos O, Atalay M, Hulmi JJ. Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver. Front Physiol 2019; 9:1917. [PMID: 30713500 PMCID: PMC6345696 DOI: 10.3389/fphys.2018.01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p < 0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 (p < 0.05), phosphorylated eIF2α (p < 0.01) and HSP47 (p < 0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p < 0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-eIF2α, HSP47, p-JNK; p < 0.05) and antioxidant GSH (p < 0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p < 0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p < 0.05), Beclin-1 (p < 0.01), and P62 (p < 0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-eIF2α and GRP78, increased (p < 0.05), whereas ATF4 was strongly decreased (p < 0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
Collapse
Affiliation(s)
- Jaakko Hentilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tuuli A Nissinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mika Silvennoinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
The split protein phosphatase system. Biochem J 2018; 475:3707-3723. [PMID: 30523060 PMCID: PMC6282683 DOI: 10.1042/bcj20170726] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022]
Abstract
Reversible phosphorylation of proteins is a post-translational modification that regulates all aspect of life through the antagonistic action of kinases and phosphatases. Protein kinases are well characterized, but protein phosphatases have been relatively neglected. Protein phosphatase 1 (PP1) catalyzes the dephosphorylation of a major fraction of phospho-serines and phospho-threonines in cells and thereby controls a broad range of cellular processes. In this review, I will discuss how phosphatases were discovered, how the view that they were unselective emerged and how recent findings have revealed their exquisite selectivity. Unlike kinases, PP1 phosphatases are obligatory heteromers composed of a catalytic subunit bound to one (or two) non-catalytic subunit(s). Based on an in-depth study of two holophosphatases, I propose the following: selective dephosphorylation depends on the assembly of two components, the catalytic subunit and the non-catalytic subunit, which serves as a high-affinity substrate receptor. Because functional complementation of the two modules is required to produce a selective holophosphatase, one can consider that they are split enzymes. The non-catalytic subunit was often referred to as a regulatory subunit, but it is, in fact, an essential component of the holoenzyme. In this model, a phosphatase and its array of mostly orphan substrate receptors constitute the split protein phosphatase system. The set of potentially generalizable principles outlined in this review may facilitate the study of these poorly understood enzymes and the identification of their physiological substrates.
Collapse
|
20
|
Loaiza S, Ferreira SA, Chinn TM, Kirby A, Tsolaki E, Dondi C, Parzych K, Strange AP, Bozec L, Bertazzo S, Hedegaard MAB, Gentleman E, Auner HW. An engineered, quantifiable in vitro model for analysing the effect of proteostasis-targeting drugs on tissue physical properties. Biomaterials 2018; 183:102-113. [PMID: 30153561 PMCID: PMC6145445 DOI: 10.1016/j.biomaterials.2018.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Cellular function depends on the maintenance of protein homeostasis (proteostasis) by regulated protein degradation. Chronic dysregulation of proteostasis is associated with neurodegenerative and age-related diseases, and drugs targeting components of the protein degradation apparatus are increasingly used in cancer therapies. However, as chronic imbalances rather than loss of function mediate their pathogenesis, research models that allow for the study of the complex effects of drugs on tissue properties in proteostasis-associated diseases are almost completely lacking. Here, to determine the functional effects of impaired proteostatic fine-tuning, we applied a combination of materials science characterisation techniques to a cell-derived, in vitro model of bone-like tissue formation in which we pharmacologically perturbed protein degradation. We show that low-level inhibition of VCP/p97 and the proteasome, two major components of the degradation machinery, have remarkably different effects on the bone-like material that human bone-marrow derived mesenchymal stromal cells (hMSC) form in vitro. Specifically, whilst proteasome inhibition mildly enhances tissue formation, Raman spectroscopic, atomic force microscopy-based indentation, and electron microscopy imaging reveal that VCP/p97 inhibition induces the formation of bone-like tissue that is softer, contains less protein, appears to have more crystalline mineral, and may involve aberrant micro- and ultra-structural tissue organisation. These observations contrast with findings from conventional osteogenic assays that failed to identify any effect on mineralisation. Taken together, these data suggest that mild proteostatic impairment in hMSC alters the bone-like material they form in ways that could explain some pathologies associated with VCP/p97-related diseases. They also demonstrate the utility of quantitative materials science approaches for tackling long-standing questions in biology and medicine, and could form the basis for preclinical drug testing platforms to develop therapies for diseases stemming from perturbed proteostasis or for cancer therapies targeting protein degradation. Our findings may also have important implications for the field of tissue engineering, as the manufacture of cell-derived biomaterial scaffolds may need to consider proteostasis to effectively replicate native tissues.
Collapse
Affiliation(s)
- Sandra Loaiza
- Cancer Cell Protein Metabolism Group, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Silvia A Ferreira
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Tamara M Chinn
- Cancer Cell Protein Metabolism Group, Department of Medicine, Imperial College London, London W12 0NN, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Alex Kirby
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Elena Tsolaki
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Camilla Dondi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Katarzyna Parzych
- Cancer Cell Protein Metabolism Group, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Adam P Strange
- Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Laurent Bozec
- Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London WC1X 8LD, UK; Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Martin A B Hedegaard
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK.
| | - Holger W Auner
- Cancer Cell Protein Metabolism Group, Department of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
21
|
Hentilä J, Ahtiainen JP, Paulsen G, Raastad T, Häkkinen K, Mero AA, Hulmi JJ. Autophagy is induced by resistance exercise in young men, but unfolded protein response is induced regardless of age. Acta Physiol (Oxf) 2018; 224:e13069. [PMID: 29608242 DOI: 10.1111/apha.13069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/12/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022]
Abstract
AIM Autophagy and unfolded protein response (UPR) appear to be important for skeletal muscle homoeostasis and may be altered by exercise. Our aim was to investigate the effects of resistance exercise and training on indicators of UPR and autophagy in healthy untrained young men (n = 12, 27 ± 4 years) and older men (n = 8, 61 ± 6 years) as well as in resistance-trained individuals (n = 15, 25 ± 5 years). METHODS Indicators of autophagy and UPR were investigated from the muscle biopsies after a single resistance exercise bout and after 21 weeks of resistance training. RESULTS Lipidated LC3II as an indicator of autophagosome content increased at 48 hours post-resistance exercise (P < .05) and after a resistance training period (P < .01) in untrained young men but not in older men. Several UPRER markers, typically induced by protein misfolding in endoplasmic reticulum, were increased at 48 hours post-resistance exercise in untrained young and older men (P < .05) but were unaltered after the 21-week resistance training period regardless of age. UPR was unchanged within the first few hours after the resistance exercise bout regardless of the training status. Changes in autophagy and UPRER indicators did not correlate with a resistance training-induced increase in muscle strength and size. CONCLUSION Autophagosome content is increased by resistance training in young previously untrained men, but this response may be blunted by ageing. However, unfolded protein response is induced by an unaccustomed resistance exercise bout in a delayed manner regardless of age.
Collapse
Affiliation(s)
- J. Hentilä
- Biology of Physical Activity; Neuromuscular Research Center; Faculty of Sport and Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - J. P. Ahtiainen
- Biology of Physical Activity; Neuromuscular Research Center; Faculty of Sport and Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - G. Paulsen
- The Norwegian Olympic and Paralympic Committee and Confederation of Sports; Oslo Norway
| | - T. Raastad
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - K. Häkkinen
- Biology of Physical Activity; Neuromuscular Research Center; Faculty of Sport and Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - A. A. Mero
- Biology of Physical Activity; Neuromuscular Research Center; Faculty of Sport and Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - J. J. Hulmi
- Biology of Physical Activity; Neuromuscular Research Center; Faculty of Sport and Health Sciences; University of Jyväskylä; Jyväskylä Finland
- Department of Physiology; Faculty of Medicine; University of Helsinki; Helsinki Finland
| |
Collapse
|
22
|
Cox D, Raeburn C, Sui X, Hatters DM. Protein aggregation in cell biology: An aggregomics perspective of health and disease. Semin Cell Dev Biol 2018; 99:40-54. [PMID: 29753879 DOI: 10.1016/j.semcdb.2018.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for cellular health and is governed by a network of quality control machinery comprising over 800 genes. When proteostasis becomes imbalanced, proteins can abnormally aggregate or become mislocalized. Inappropriate protein aggregation and proteostasis imbalance are two of the central pathological features of common neurodegenerative diseases including Alzheimer, Parkinson, Huntington, and motor neuron diseases. How aggregation contributes to the pathogenic mechanisms of disease remains incompletely understood. Here, we integrate some of the key and emerging ideas as to how protein aggregation relates to imbalanced proteostasis with an emphasis on Huntington disease as our area of main expertise. We propose the term "aggregomics" be coined in reference to how aggregation of particular proteins concomitantly influences the spatial organization and protein-protein interactions of the surrounding proteome. Meta-analysis of aggregated interactomes from various published datasets reveals chaperones and RNA-binding proteins are common components across various disease contexts. We conclude with an examination of therapeutic avenues targeting proteostasis mechanisms.
Collapse
Affiliation(s)
- Dezerae Cox
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Candice Raeburn
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Xiaojing Sui
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia
| | - Danny M Hatters
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Australia; Bio21 Molecular Science and Biotechnology Institute, Australia.
| |
Collapse
|
23
|
Alberti S, Carra S. Quality Control of Membraneless Organelles. J Mol Biol 2018; 430:4711-4729. [PMID: 29758260 DOI: 10.1016/j.jmb.2018.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Center for Neuroscience and Neurotechnology, 41125 Modena, Italy.
| |
Collapse
|
24
|
Bertolotti A. Importance of the subcellular location of protein deposits in neurodegenerative diseases. Curr Opin Neurobiol 2018; 51:127-133. [PMID: 29631171 DOI: 10.1016/j.conb.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/04/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease, Parkinson's, Huntington's, amyotrophic lateral sclerosis (ALS) and prion disorders are devastating neurodegenerative diseases of increasing prevalence in aging populations. Although clinically different, they share similar molecular features: the accumulation of one or two proteins in abnormal conformations inside or outside neurons. Enhancing protein quality control systems could be a useful strategy to neutralize the abnormal proteins causing neurodegenerative diseases. This review emphasizes the subcellular location of protein deposits in neurodegenerative diseases and the need to tailor strategies aimed at boosting protein quality control systems to the affected subcellular compartment. Inhibition of a protein phosphatase terminating the unfolded protein response will be discussed as a strategy to protect from diseases associated with misfolded proteins in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
25
|
Crespillo-Casado A, Claes Z, Choy MS, Peti W, Bollen M, Ron D. A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2α. J Biol Chem 2018; 293:7766-7776. [PMID: 29618508 PMCID: PMC5961032 DOI: 10.1074/jbc.ra118.002325] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
The integrated stress response (ISR) is regulated by kinases that phosphorylate the α subunit of translation initiation factor 2 and phosphatases that dephosphorylate it. Genetic and biochemical observations indicate that the eIF2αP-directed holophosphatase, a therapeutic target in diseases of protein misfolding, is comprised of a regulatory subunit, PPP1R15, and a catalytic subunit, protein phosphatase 1 (PP1). In mammals, there are two isoforms of the regulatory subunit, PPP1R15A and PPP1R15B, with overlapping roles in the essential function of eIF2αP dephosphorylation. However, conflicting reports have appeared regarding the requirement for an additional co-factor, G-actin, in enabling substrate-specific dephosphorylation by PPP1R15-containing PP1 holoenzymes. An additional concern relates to the sensitivity of the holoenzyme to the [(o-chlorobenzylidene)amino]guanidines Sephin1 or guanabenz, putative small-molecule proteostasis modulators. It has been suggested that the source and method of purification of the PP1 catalytic subunit and the presence or absence of an N-terminal repeat–containing region in the PPP1R15A regulatory subunit might influence the requirement for G-actin and sensitivity of the holoenzyme to inhibitors. We found that eIF2αP dephosphorylation by PP1 was moderately stimulated by repeat-containing PPP1R15A in an unphysiological low ionic strength buffer, whereas stimulation imparted by the co-presence of PPP1R15A and G-actin was observed under a broad range of conditions, low and physiological ionic strength, regardless of whether the PPP1R15A regulatory subunit had or lacked the N-terminal repeat–containing region and whether it was paired with native PP1 purified from rabbit muscle or recombinant PP1 purified from bacteria. Furthermore, none of the PPP1R15A-containing holophosphatases tested were inhibited by Sephin1 or guanabenz.
Collapse
Affiliation(s)
- Ana Crespillo-Casado
- From the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom,
| | - Zander Claes
- the Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium, and
| | - Meng S Choy
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041
| | - Wolfgang Peti
- the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041
| | - Mathieu Bollen
- the Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium, and
| | - David Ron
- From the Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom,
| |
Collapse
|
26
|
Xu HL, Tian FR, Xiao J, Chen PP, Xu J, Fan ZL, Yang JJ, Lu CT, Zhao YZ. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury. Int J Nanomedicine 2018; 13:681-694. [PMID: 29440894 PMCID: PMC5798566 DOI: 10.2147/ijn.s152246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI). Methods In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP), as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM) as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2)-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. Results Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis. Conclusion The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Fu-Rong Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Pian-Pian Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Zi-Liang Fan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Jing-Jing Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Cui-Tao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou.,Hainan Medical College, Haikou, China
| |
Collapse
|
27
|
A biosensor-based framework to measure latent proteostasis capacity. Nat Commun 2018; 9:287. [PMID: 29348634 PMCID: PMC5773518 DOI: 10.1038/s41467-017-02562-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
The pool of quality control proteins (QC) that maintains protein-folding homeostasis (proteostasis) is dynamic but can become depleted in human disease. A challenge has been in quantitatively defining the depth of the QC pool. With a new biosensor, flow cytometry-based methods and mathematical modeling we measure the QC capacity to act as holdases and suppress biosensor aggregation. The biosensor system comprises a series of barnase kernels with differing folding stability that engage primarily with HSP70 and HSP90 family proteins. Conditions of proteostasis stimulation and stress alter QC holdase activity and aggregation rates. The method reveals the HSP70 chaperone cycle to be rate limited by HSP70 holdase activity under normal conditions, but this is overcome by increasing levels of the BAG1 nucleotide exchange factor to HSPA1A or activation of the heat shock gene cluster by HSF1 overexpression. This scheme opens new paths for biosensors of disease and proteostasis systems. A pool of quality control proteins (QC) maintains the protein-folding homeostasis in the cell, but its quantitative analysis is challenging. Here the authors develop a FRET sensor based on the protein barnase, able to quantify QC holdase activity and its ability to suppress protein aggregation.
Collapse
|
28
|
Kopp MC, Nowak PR, Larburu N, Adams CJ, Ali MMU. In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress. eLife 2018; 7:e30257. [PMID: 29303481 PMCID: PMC5756023 DOI: 10.7554/elife.30257] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/21/2017] [Indexed: 12/05/2022] Open
Abstract
The unfolded protein response (UPR) is a key signaling system that regulates protein homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay that quantifies IRE1 luminal domain and BiP association and dissociation upon addition of misfolded proteins. Using this technique, we reassess our previous observations and extend mechanistic insight to cover other general ER misfolded protein substrates and their folded native state. Moreover, we evaluate the key BiP substrate-binding domain mutant V461F. The new experimental approach significantly enhances the evidence suggesting an allosteric model for UPR induction upon ER stress.
Collapse
Affiliation(s)
- Megan C Kopp
- Department of Life Sciences, Centre for Structural BiologyImperial College LondonLondonUnited Kingdom
| | - Piotr R Nowak
- Department of Life Sciences, Centre for Structural BiologyImperial College LondonLondonUnited Kingdom
| | - Natacha Larburu
- Department of Life Sciences, Centre for Structural BiologyImperial College LondonLondonUnited Kingdom
| | - Christopher J Adams
- Department of Life Sciences, Centre for Structural BiologyImperial College LondonLondonUnited Kingdom
| | - Maruf MU Ali
- Department of Life Sciences, Centre for Structural BiologyImperial College LondonLondonUnited Kingdom
| |
Collapse
|
29
|
Monaco G, La Rovere R, Karamanou S, Welkenhuyzen K, Ivanova H, Vandermarliere E, Di Martile M, Del Bufalo D, De Smedt H, Parys JB, Economou A, Bultynck G. A double point mutation at residues Ile14 and Val15 of Bcl-2 uncovers a role for the BH4 domain in both protein stability and function. FEBS J 2017; 285:127-145. [PMID: 29131545 DOI: 10.1111/febs.14324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 09/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
B-cell lymphoma 2 (Bcl-2) protein is the archetype apoptosis suppressor protein. The N-terminal Bcl-2-homology 4 (BH4) domain of Bcl-2 is required for the antiapoptotic function of this protein at the mitochondria and endoplasmic reticulum (ER). The involvement of the BH4 domain in Bcl-2's antiapoptotic functions has been proposed based on Gly-based substitutions of the Ile14/Val15 amino acids, two hydrophobic residues located in the center of Bcl-2's BH4 domain. Following this strategy, we recently showed that a BH4-domain-derived peptide in which Ile14 and Val15 have been replaced by Gly residues, was unable to dampen proapoptotic Ca2+ -release events from the ER. Here, we investigated the impact of these mutations on the overall structure, stability, and function of full-length Bcl-2 as a regulator of Ca2+ signaling and cell death. Our results indicate that full-length Bcl-2 Ile14Gly/Val15Gly, in contrast to wild-type Bcl-2, (a) displayed severely reduced structural stability and a shortened protein half-life; (b) failed to interact with Bcl-2-associated X protein (BAX), to inhibit the inositol 1,4,5-trisphosphate receptor (IP3 R) and to protect against Ca2+ -mediated apoptosis. We conclude that the hydrophobic face of Bcl-2's BH4 domain (Ile14, Val15) is an important structural regulatory element by affecting protein stability and turnover, thereby likely reducing Bcl-2's ability to modulate the function of its targets, like IP3 R and BAX. Therefore, Bcl-2 structure/function studies require pre-emptive and reliable determination of protein stability upon introduction of point mutations at the level of the BH4 domain.
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Hristina Ivanova
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Elien Vandermarliere
- Center for Medical Biotechnology, Department of Biochemistry, VIB-UGent, Ghent University, Belgium
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute (LKI), KU Leuven, Belgium
| |
Collapse
|
30
|
Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration. Prog Neurobiol 2017; 159:1-38. [DOI: 10.1016/j.pneurobio.2017.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/01/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
|
31
|
Kopp Y, Lang WH, Schuster TB, Martínez-Limón A, Hofbauer HF, Ernst R, Calloni G, Vabulas RM. CHIP as a membrane-shuttling proteostasis sensor. eLife 2017; 6:e29388. [PMID: 29091030 PMCID: PMC5665643 DOI: 10.7554/elife.29388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function).
Collapse
Affiliation(s)
- Yannick Kopp
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Wei-Han Lang
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Tobias B Schuster
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Adrián Martínez-Limón
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Harald F Hofbauer
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of BiochemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Robert Ernst
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of BiochemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - Giulia Calloni
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| | - R Martin Vabulas
- Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
- Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
32
|
Pilla E, Bertolotti A. Decoding the Protein Destruction Code: A Panoramic View. Mol Cell 2017; 63:915-7. [PMID: 27635757 DOI: 10.1016/j.molcel.2016.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome degradation is essential, but the intrinsic features of a protein that signals its destruction remain incompletely understood. In this issue of Molecular Cell, Geffen et al. (2016) report an unbiased and proteome-wide method that provided insights into the protein destruction signals and pathways.
Collapse
Affiliation(s)
- Esther Pilla
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
33
|
Sibilla C, Bertolotti A. Prion Properties of SOD1 in Amyotrophic Lateral Sclerosis and Potential Therapy. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a024141. [PMID: 28096265 DOI: 10.1101/cshperspect.a024141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressive neurodegenerative disease caused by the deterioration of motor neurons. The first symptoms of ALS always begin at a focal but variable site and consistently spread to neighboring regions, suggesting that neurodegeneration in ALS is an orderly and propagating process. Like other neurodegenerative diseases, misfolding of a specific protein is central to ALS. SOD1, the major constituent of the protein deposits in some familial and sporadic forms of ALS, propagates its misfolded conformation like prions, providing a plausible molecular basis for the focality and spreading of muscle weakness in ALS. Because protein misfolding is a common cause of diverse neurodegenerative diseases, strategies aimed at boosting a cell's ability to cope with misfolded proteins could lead to therapeutics to combat these devastating age-related proteinopathies.
Collapse
Affiliation(s)
- Caroline Sibilla
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
34
|
Slp1-Emp65: A Guardian Factor that Protects Folding Polypeptides from Promiscuous Degradation. Cell 2017; 171:346-357.e12. [DOI: 10.1016/j.cell.2017.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023]
|
35
|
Currais A, Fischer W, Maher P, Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J 2017; 31:5-10. [PMID: 28049155 DOI: 10.1096/fj.201601184] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Age is, by far, the greatest risk factor for Alzheimer's disease (AD), yet few AD drug candidates have been generated that target pathways specifically associated with the aging process itself. Two ubiquitous features of the aging brain are the intracellular accumulation of aggregated proteins and inflammation. As intraneuronal amyloid protein is detected before markers of inflammation, we argue that old, age-associated, aggregated proteins in neurons can induce inflammation, resulting in multiple forms of brain toxicities. The consequence is the increased risk of old, age-associated, neurodegenerative diseases. As most of these diseases are associated with the accumulation of aggregated proteins, it is possible that any therapeutic that reduces intracellular protein aggregation will benefit all.-Currais, A., Fischer, W., Maher, P., Schubert, D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain.
Collapse
Affiliation(s)
- Antonio Currais
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Wolfgang Fischer
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - David Schubert
- Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
36
|
Decoding the selectivity of eIF2α holophosphatases and PPP1R15A inhibitors. Nat Struct Mol Biol 2017; 24:708-716. [PMID: 28759048 DOI: 10.1038/nsmb.3443] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023]
Abstract
The reversible phosphorylation of proteins controls most cellular functions. Protein kinases have been popular drug targets, unlike phosphatases, which remain a drug discovery challenge. Guanabenz and Sephin1 are selective inhibitors of the phosphatase regulatory subunit PPP1R15A (R15A) that prolong the benefit of eIF2α phosphorylation, thereby protecting cells from proteostatic defects. In mice, Sephin1 prevents two neurodegenerative diseases, Charcot-Marie-Tooth 1B (CMT-1B) and SOD1-mediated amyotrophic lateral sclerosis (ALS). However, the molecular basis for R15A inhibition is unknown. Here we reconstituted human recombinant eIF2α holophosphatases, R15A-PP1 and R15B-PP1, whose activity depends on both the catalytic subunit PP1 (protein phosphatase 1) and either R15A or R15B. This system enabled the functional characterization of these holophosphatases and revealed that Guanabenz and Sephin1 induced a selective conformational change in R15A, detected by resistance to limited proteolysis. This altered the recruitment of eIF2α, preventing its dephosphorylation. This work demonstrates that regulatory subunits of phosphatases are valid drug targets and provides the molecular rationale to expand this concept to other phosphatases.
Collapse
|
37
|
Plate L, Wiseman RL. Regulating Secretory Proteostasis through the Unfolded Protein Response: From Function to Therapy. Trends Cell Biol 2017. [PMID: 28647092 DOI: 10.1016/j.tcb.2017.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imbalances in secretory proteostasis induced by genetic, environmental, or aging-related insults are pathologically associated with etiologically diverse protein misfolding diseases. To protect the secretory proteome from these insults, organisms evolved stress-responsive signaling pathways that regulate the composition and activity of biologic pathways involved in secretory proteostasis maintenance. The most prominent of these is the endoplasmic reticulum (ER) unfolded protein response (UPR), which functions to regulate ER proteostasis in response to ER stress. While the signaling mechanisms involved in UPR activation are well defined, the impact of UPR activation on secretory proteostasis is only now becoming clear. Here, we highlight recent reports defining how activation of select UPR signaling pathways influences proteostasis within the ER and downstream secretory environments. Furthermore, we describe recent evidence that highlights the therapeutic potential for targeting UPR signaling pathways to correct pathologic disruption in secretory proteostasis associated with diverse types of protein misfolding diseases.
Collapse
Affiliation(s)
- Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Malinovska L, Alberti S. Studying the Protein Quality Control System of D. discoideum Using Temperature-controlled Live Cell Imaging. J Vis Exp 2016. [PMID: 28060267 PMCID: PMC5226346 DOI: 10.3791/54730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The complex lifestyle of the social amoebae Dictyostelium discoideum makes it a valuable model for the study of various biological processes. Recently, we showed that D. discoideum is remarkably resilient to protein aggregation and can be used to gain insights into the cellular protein quality control system. However, the use of D. discoideum as a model system poses several challenges to microscopy-based experimental approaches, such as the high motility of the cells and their susceptibility to photo-toxicity. The latter proves to be especially challenging when studying protein homeostasis, as the phototoxic effects can induce a cellular stress response and thus alter to behavior of the protein quality control system. Temperature increase is a commonly used way to induce cellular stress. Here, we describe a temperature-controllable imaging protocol, which allows observing temperature-induced perturbations in D. discoideum. Moreover, when applied at normal growth temperature, this imaging protocol can also noticeably reduce photo-toxicity, thus allowing imaging with higher intensities. This can be particularly useful when imaging proteins with very low expression levels. Moreover, the high mobility of the cells often requires the acquisition of multiple fields of view to follow individual cells, and the number of fields needs to be balanced against the desired time interval and exposure time.
Collapse
Affiliation(s)
| | - Simon Alberti
- Max-Planck Institute for Molecular Cell Biology and Genetics;
| |
Collapse
|
39
|
Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility. PLoS Genet 2016; 12:e1006184. [PMID: 27448207 PMCID: PMC4957761 DOI: 10.1371/journal.pgen.1006184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. Most polypeptides by necessity must fold into three-dimensional structures in order to become functional proteins. Misfolding, either during or subsequent to initial folding, can result in toxic protein aggregation. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. One cause of misfolding is the presence of missense mutations, which account for over half of all the reported mutations in the Human Gene Mutation Database. Here we establish a model cytosolic protein substrate whose stability is temperature dependent. We then perform a flow cytometry based screen to identify factors that promote the degradation of our model substrate. We identified the E3 ubiquitin ligase Ubr1 and the prefoldin chaperone complex subunit Gim3. Prefoldin forms a “jellyfish-like” structure and aids in nascent protein folding and prevents protein aggregation. We show that prefoldin promotes protein degradation by maintaining substrate solubility. Our work adds to that of others highlighting the importance of the prefoldin complex in preventing potentially toxic protein aggregation.
Collapse
|
40
|
Injury to the nervous system: A look into the ER. Brain Res 2016; 1648:617-625. [PMID: 27117870 DOI: 10.1016/j.brainres.2016.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities that still lack an effective treatment. Although injury to the nervous system involves multiple and complex molecular factors, alteration to protein homeostasis is emerging as a relevant pathological mechanism. In particular, chronic endoplasmic reticulum (ER) stress is proposed as a possible driver of neuronal dysfunction in conditions such as spinal cord injury, stroke and damage to peripheral nerves. Importantly, manipulation of the unfolded protein response (UPR), a homeostatic pathway engaged by ER stress, has proved effective in improving cognitive and motor recovery after nervous system injury. Here we provide an overview on recent findings depicting a functional role of the UPR to the functional recovery after injury in the peripheral and central nervous systems. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
41
|
An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response. Proc Natl Acad Sci U S A 2015; 113:E117-26. [PMID: 26715744 DOI: 10.1073/pnas.1514076113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.
Collapse
|