1
|
Chien MH, Hung WY, Lai TC, Tsai CH, Lee KL, Hsieh FK, Lee WJ, Chang JH. The off‑target effect of loratadine triggers autophagy‑mediated apoptosis in lung adenocarcinoma cells by deactivating JNK, p38, and STAT3 signaling through both PP2A‑dependent and independent pathways. Int J Mol Med 2025; 55:54. [PMID: 39886963 PMCID: PMC11819771 DOI: 10.3892/ijmm.2025.5495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2025] Open
Abstract
Lung adenocarcinoma (LUAD) is a typical inflammation‑associated cancer, and anti‑inflammatory medications can be valuable in cancer therapy. Loratadine, a histamine receptor H1 (HRH1) antagonist, shows both anti‑inflammatory and anticancer properties. The present study aimed to evaluate impacts of loratadine on LUAD cells as well as in a LUAD xenograft mouse model, and explore underlying mechanisms. Mechanistic investigations were conducted through using western blotting, flow cytometry, immunohistochemistry, acridine orange staining, TUNEL assays, and in silico analyses of loratadine‑modulated genes in LUAD specimens. It was observed that loratadine inhibited LUAD cell proliferation and colony formation by inducing autophagy‑mediated apoptotic cell death independently of HRH1. In a LUAD xenograft model, loratadine decreased tumor proliferation and angiogenesis while enhancing autophagy and apoptosis. Mechanistically, loratadine induced protein phosphatase 2A (PP2A) activation to deactivate c‑Jun N‑terminal kinase (JNK)1/2 and p38 in H23 and PC9 LUAD cells. Additionally, loratadine inhibited signal transducer and activator of transcription 3 (STAT3) activation via a PP2A‑independent pathway. Furthermore, the combination of loratadine with inhibitors for JNK, p38 and STAT3 all enhanced proliferation inhibition of loratadine alone in both cell lines. In the clinic, patients with LUAD expressing high PP2A had favorable prognoses. The present study suggests that loratadine can be used as a PP2A activator for LUAD treatment, and the combination of repurposing loratadine with inhibitors of STAT3, JNK and p38 would be an effectively strategy for inhibiting LUAD growth.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Tsung-Ching Lai
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
| | - Ching Han Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kai-Ling Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C
| | - Feng-Koo Hsieh
- The Genome Engineering and Stem Cell Center, School of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Jer-Hwa Chang
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan, R.O.C
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| |
Collapse
|
2
|
Lee W, An G, Kim J, Lee H, Song G, Lim W, Jeong W. Evaluation of thiobencarb herbicide-induced cytotoxicity mediated via disruption of calcium homeostasis in bovine mammary glands: A comprehensive in vitro and in silico study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106267. [PMID: 40015859 DOI: 10.1016/j.pestbp.2024.106267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 12/17/2024] [Indexed: 03/01/2025]
Abstract
In contemporary agriculture, the predominant strategy for managing perennial weeds within agroecosystems involves the extensive use of herbicides. Thiobencarb is widely employed to control gramineous weeds during rice cultivation. This herbicide is commonly found in terrestrial environments and agricultural products. The harmful potential of thiobencarb has been reported, along with its adverse effects in exposed species. However, few studies have explored thiobencarb toxicity, specifically in dairy cows, despite the possibility of ingestion through soil residues. Exposure to xenobiotics can reduce the viability or impair the function of bovine mammary epithelial cells (BMECs), leading to compromised immune function and reduced milk production. Despite the known cytotoxicity of thiobencarb, its specific effects on BMECs remain unclear. Herein, we aimed to investigate the effect of thiobencarb on milk production by examining its toxic effects and underlying mechanisms in BMECs. We assessed the cytotoxic effects of thiobencarb and analyzed various cellular responses upon exposure. Thiobencarb-induced apoptosis was associated with disrupted calcium homeostasis. Additionally, thiobencarb modulated AKT/MAPK proteins and increased mRNA levels of genes related to the inflammatory response. Furthermore, treatment of BMECs with thiobencarb suppressed the expression of genes related to milk production, including those encoding superoxide dismutase, tight junctions, and casein. Finally, we conducted an in silico molecular docking analysis to evaluate the binding affinity between thiobencarb and target proteins.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, San Diego, CA, United States; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung 25601, Republic of Korea.
| |
Collapse
|
3
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Azevedo EDAN, Morais CNLD. Zika virus: Critical crosstalk between pathogenesis, cytopathic effects, and macroautophagy. J Cell Biochem 2024; 125:e30438. [PMID: 37334850 DOI: 10.1002/jcb.30438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Strategic Technologies Center of Northeast (CETENE), Recife, Pernambuco, Brazil
| | | | - Elisa de Almeida Neves Azevedo
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
4
|
Somasundaram P, Farley MM, Rudy MA, Sigal K, Asencor AI, Stefanoff DG, Shah M, Goli P, Heo J, Wang S, Tran NM, Watkins TA. Coordinated stimulation of axon regenerative and neurodegenerative transcriptional programs by ATF4 following optic nerve injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.29.534798. [PMID: 37034690 PMCID: PMC10081193 DOI: 10.1101/2023.03.29.534798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stress signaling is important for determining the fates of neurons following axonal insults. Previously we showed that the stress-responsive kinase PERK contributes to injury-induced neurodegeneration (Larhammar et al., 2017). Here we show that PERK acts primarily through Activating Transcription Factor-4 (ATF4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve damage. Using conditional knockout mice, we find an extensive PERK/ATF4-dependent transcriptional response that includes canonical ATF4 target genes and modest contributions by C/EBP Homologous Protein (CHOP). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that orchestrates regenerative and apoptotic responses. Accordingly, neuronal knockout of ATF4 recapitulates the neuroprotection afforded by PERK deficiency, and PERK or ATF4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor PTEN. These findings reveal an integral role for PERK/ATF4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.
Collapse
|
5
|
Liao S, Wang Q, Chen S, Huang Q, Zhou L, Liu H, He S, Zhou Z. Mito-LND and (E)-Akt inhibitor-IV: novel compounds inducing endoplasmic reticulum stress and ROS accumulation against hepatocellular carcinoma. J Transl Med 2024; 22:792. [PMID: 39198815 PMCID: PMC11351498 DOI: 10.1186/s12967-024-05545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. Although multi-kinase inhibitors can prolong the overall survival of late-stage HCC patients, the emergence of drug resistance diminishes these benefits, ultimately resulting in treatment failure. Therefore, there is an urgent need for novel and effective drugs to impede the progression of liver cancer. METHODS This study employed a concentration gradient increment method to establish acquired sorafenib or regorafenib-resistant SNU-449 cells. Cell viability was assessed using the cell counting kit-8 assay. A library of 793 bioactive small molecules related to metabolism screened compounds targeting both parental and drug-resistant cells. The screened compounds will be added to both the HCC parental cells and the drug-resistant cells, followed by a comprehensive assessment. Intracellular adenosine triphosphate (ATP) levels were quantified using kits. Flow cytometry was applied to assess cell apoptosis and reactive oxygen species (ROS). Real-time quantitative PCR studied relative gene expression, and western blot analysis assessed protein expression changes in HCC parental and drug-resistant cells. A xenograft model in vivo evaluated Mito-LND and (E)-Akt inhibitor-IV effects on liver tumors, with hematoxylin and eosin staining for tissue structure and immunohistochemistry staining for endoplasmic reticulum stress protein expression. RESULTS From the compound library, we screened out two novel compounds, Mito-LND and (E)-Akt inhibitor-IV, which could potently kill both parental cells and drug-resistant cells. Mito-LND could significantly suppress proliferation and induce apoptosis in HCC parental and drug-resistant cells by upregulating glycolytic intermediates and downregulating those of the tricarboxylic acid (TCA) cycle, thereby decreasing ATP production and increasing ROS. (E)-Akt inhibitor-IV achieved comparable results by reducing glycolytic intermediates, increasing TCA cycle intermediates, and decreasing ATP synthesis and ROS levels. Both compounds trigger apoptosis in HCC cells through the interplay of the AMPK/MAPK pathway and the endoplasmic reticulum stress response. In vivo assays also showed that these two compounds could significantly inhibit the growth of HCC cells and induce endoplasmic reticulum stress. CONCLUSION Through high throughput screening, we identified that Mito-LND and (E)-Akt inhibitor-IV are two novel compounds against both parental and drug-resistant HCC cells, which could offer new strategies for HCC patients.
Collapse
Affiliation(s)
- Siqi Liao
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingliang Wang
- The Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyuan Chen
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qixuan Huang
- The Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongtao Liu
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhihang Zhou
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Cassandri M, Porrazzo A, Pomella S, Noce B, Zwergel C, Aiello FA, Vulcano F, Milazzo L, Camero S, Pajalunga D, Spada M, Manzi V, Gravina GL, Codenotti S, Piccione M, Tomaciello M, Signore M, Barillari G, Marchese C, Fanzani A, De Angelis B, Quintarelli C, Vakoc CR, Chen EY, Megiorni F, Locatelli F, Valente S, Mai A, Rota R, Marampon F. HDAC3 genetic and pharmacologic inhibition radiosensitizes fusion positive rhabdomyosarcoma by promoting DNA double-strand breaks. Cell Death Discov 2024; 10:351. [PMID: 39107280 PMCID: PMC11303816 DOI: 10.1038/s41420-024-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
Radiotherapy (RT) plays a critical role in the management of rhabdomyosarcoma (RMS), the prevalent soft tissue sarcoma in childhood. The high risk PAX3-FOXO1 fusion-positive subtype (FP-RMS) is often resistant to RT. We have recently demonstrated that inhibition of class-I histone deacetylases (HDACs) radiosensitizes FP-RMS both in vitro and in vivo. However, HDAC inhibitors exhibited limited success on solid tumors in human clinical trials, at least in part due to the presence of off-target effects. Hence, identifying specific HDAC isoforms that can be targeted to radiosensitize FP-RMS is imperative. We, here, found that only HDAC3 silencing, among all class-I HDACs screened by siRNA, radiosensitizes FP-RMS cells by inhibiting colony formation. Thus, we dissected the effects of HDAC3 depletion using CRISPR/Cas9-dependent HDAC3 knock-out (KO) in FP-RMS cells, which resulted in Endoplasmatic Reticulum Stress activation, ERK inactivation, PARP1- and caspase-dependent apoptosis and reduced stemness when combined with irradiation compared to single treatments. HDAC3 loss-of-function increased DNA damage in irradiated cells augmenting H2AX phosphorylation and DNA double-strand breaks (DSBs) and counteracting irradiation-dependent activation of ATM and DNA-Pkcs as well as Rad51 protein induction. Moreover, HDAC3 depletion hampers FP-RMS tumor growth in vivo and maximally inhibits the growth of irradiated tumors compared to single approaches. We, then, developed a new HDAC3 inhibitor, MC4448, which showed specific cell anti-tumor effects and mirrors the radiosensitizing effects of HDAC3 depletion in vitro synergizing with ERKs inhibition. Overall, our findings dissect the pro-survival role of HDAC3 in FP-RMS and suggest HDAC3 genetic or pharmacologic inhibition as a new promising strategy to overcome radioresistance in this tumor.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Antonella Aiello
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Camero
- Department of Life Sciences, Health and Health Professions, Link Campus University, Rome, Italy
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria Manzi
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Piccione
- Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Miriam Tomaciello
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Biagio De Angelis
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, "Sapienza" University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Al Otaibi A, Al Shaikh Mubarak S, Al Hejji F, Almasaud A, Al Jami H, Iqbal J, Al Qarni A, Harbi NKA, Bakillah A. Thapsigargin and Tunicamycin Block SARS-CoV-2 Entry into Host Cells via Differential Modulation of Unfolded Protein Response (UPR), AKT Signaling, and Apoptosis. Cells 2024; 13:769. [PMID: 38727305 PMCID: PMC11083125 DOI: 10.3390/cells13090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Abeer Al Otaibi
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Sindiyan Al Shaikh Mubarak
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Fatimah Al Hejji
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
| | - Abdulrahman Almasaud
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Haya Al Jami
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Naif Khalaf Al Harbi
- Vaccine Development Unit, Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia; (A.A.); (H.A.J.); (N.K.A.H.)
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 31982, Saudi Arabia; (A.A.O.); (S.A.S.M.); (F.A.H.); (J.I.); (A.A.Q.)
- Biomedical Research Department, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
8
|
Win S, Than TA, Kaplowitz N. Mitochondrial P-JNK target, SAB (SH3BP5), in regulation of cell death. Front Cell Dev Biol 2024; 12:1359152. [PMID: 38559813 PMCID: PMC10978662 DOI: 10.3389/fcell.2024.1359152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death occurs in various circumstances, such as homeostasis, stress response, and defense, via specific pathways and mechanisms that are regulated by specific activator-induced signal transductions. Among them, Jun N-terminal kinases (JNKs) participate in various aspects, and the recent discovery of JNKs and mitochondrial protein SAB interaction in signal regulation of cell death completes our understanding of the mechanism of sustained activation of JNK (P-JNK), which leads to triggering of the machinery of cell death. This understanding will lead the investigators to discover the modulators facilitating or preventing cell death for therapeutic application in acute or chronic diseases and cancer. We discuss here the mechanism and modulators of the JNK-SAB-ROS activation loop, which is the core component of mitochondria-dependent cell death, specifically apoptosis and mitochondrial permeability transition (MPT)-driven necrosis, and which may also contribute to cell death mechanisms of ferroptosis and pyroptosis. The discussion here is based on the results and evidence discovered from liver disease models, but the JNK-SAB-ROS activation loop to sustain JNK activation is universally applicable to various disease models where mitochondria and reactive oxygen species contribute to the mechanism of disease.
Collapse
Affiliation(s)
- Sanda Win
- *Correspondence: Sanda Win, ; Neil Kaplowitz,
| | | | - Neil Kaplowitz
- Department of Medicine, Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Mishra S, Gandhi D, Tiwari RR, Rajasekaran S. Beneficial role of kaempferol and its derivatives from different plant sources on respiratory diseases in experimental models. Inflammopharmacology 2023; 31:2311-2336. [PMID: 37410224 DOI: 10.1007/s10787-023-01282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
Respiratory illnesses impose a significant health burden and cause deaths worldwide. Despite many advanced strategies to improve patient outcomes, they are often less effective. There is still considerable room for improvement in the treatment of various respiratory diseases. In recent years, alternative medicinal agents derived from food plants have shown better beneficial effects against a wide variety of disease models, including cancer. In this regard, kaempferol (KMF) and its derivatives are the most commonly found dietary flavonols. They have been found to exhibit protective effects on multiple chronic diseases like diabetes, fibrosis, and so on. A few recent articles have reviewed the pharmacological actions of KMF in cancer, central nervous system diseases, and chronic inflammatory diseases. However, there is no comprehensive review that exists regarding the beneficial effects of KMF and its derivatives on both malignant- and non-malignant respiratory diseases. Many experimental studies reveal that KMF and its derivatives are helpful in managing a wide range of respiratory diseases, including acute lung injury, fibrosis, asthma, cancer, and chronic obstructive pulmonary disease, and their underlying molecular mechanisms. In addition, we also discussed the chemistry and sources, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, methods to enhance bioavailability, as well as our perspective on future research with KMF and its derivatives.
Collapse
Affiliation(s)
- Sehal Mishra
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Deepa Gandhi
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Rajnarayan R Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India.
| |
Collapse
|
10
|
Gong T, Si K, Liu H, Zhang X. Research advances in the role of MAPK cascade in regulation of cell growth, immunity, inflammation, and cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1721-1728. [PMID: 36748383 PMCID: PMC10930265 DOI: 10.11817/j.issn.1672-7347.2022.220155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade system is one of the highly conserved signal systems in eukaryotic cells, which participates in the regulation of many biological processes. Under the stimulation of different signals (such as cytokines, neurotransmitters, and hormones), MAPK cascade activates downstream targets and controls a variety of cellular processes, including growth, immunity, inflammation, and stress response. In different cells, the effects of MAPK cascade on cells vary with the stimuli and the duration of stimulation. MAPK cascade induces Th differentiation and participates in T cell receptor signal pathway and B cell receptor signal pathway. MAPK cascades regulate various cellular activities related to the occurrence and development of cancer. A thorough and systematic understanding of the specific regulatory effects of MAPK cascade on various cellular processes will provide theoretical guidance for treating various diseases.
Collapse
Affiliation(s)
- Tingting Gong
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kai Si
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety; Key Laboratory of Food Nutrition and Safety, Ministry of Education; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Hanson RL, Batchelor E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol Syst Biol 2022; 18:e11401. [PMID: 36472304 PMCID: PMC9724178 DOI: 10.15252/msb.202211401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
In response to different cellular stresses, the transcription factor p53 undergoes different dynamics. p53 dynamics, in turn, control cell fate. However, distinct stresses can generate the same p53 dynamics but different cell fate outcomes, suggesting integration of dynamic information from other pathways is important for cell fate regulation. To determine how MAPK activities affect p53-mediated responses to DNA breaks and oxidative stress, we simultaneously tracked p53 and either ERK, JNK, or p38 activities in single cells. While p53 dynamics were comparable between the stresses, cell fate outcomes were distinct. Combining MAPK dynamics with p53 dynamics was important for distinguishing between the stresses and for generating temporal ordering of cell fate pathways. Furthermore, cross-talk between MAPKs and p53 controlled the balance between proliferation and cell death. These findings provide insight into how cells integrate signaling pathways with distinct temporal patterns of activity to encode stress specificity and drive different cell fate decisions.
Collapse
Affiliation(s)
- Ryan L Hanson
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
| | - Eric Batchelor
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
12
|
Qu B, Liu X, Liang Y, Zheng K, Zhang C, Lu L. Salidroside in the Treatment of NAFLD/NASH. Chem Biodivers 2022; 19:e202200401. [PMID: 36210339 DOI: 10.1002/cbdv.202200401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest reason for chronic liver diseases in the world and is commonly related to the hepatic manifestation of the metabolic syndrome. Non-alcoholic steatohepatitis (NASH) is a deteriorating form of NAFLD, which can eventually develop into fibrosis, cirrhosis, and liver cancer. The reason for NAFLD/NASH development is complicated, such as liver lipid metabolism, oxidative stress, inflammatory response, apoptosis and autophagy, liver fibrosis and gut microbiota. Apart from bariatric surgery and lifestyle changes, officially approved drug therapy for NAFLD/NASH treatment is lacking. Salidroside (SDS) is a phenolic compound extensively distributed in the tubers of Rhodiola plants, which possesses many significant biological activities. This review summarized the related targets regulated by SDS in treating NAFLD/NASH. It is indicated that SDS could improve the status of NAFLD/NASH by ameliorating abnormal lipid metabolism, inhibiting oxidative stress, regulating apoptosis and autophagy, reducing inflammatory response, alleviating fibrosis and regulating gut microbiota. In conclusion, although the multiple bioactivities of SDS have been confirmed, the clinical data are inadequate and need to become the focus of attention in the later study.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Xuemao Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Yanjiao Liang
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Keke Zheng
- Department of Oncology Center, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chunling Zhang
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 127 Siliunan Road, Qingdao, 266042, China
| |
Collapse
|
13
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
14
|
Bordini M, Soglia F, Davoli R, Zappaterra M, Petracci M, Meluzzi A. Molecular Pathways and Key Genes Associated With Breast Width and Protein Content in White Striping and Wooden Breast Chicken Pectoral Muscle. Front Physiol 2022; 13:936768. [PMID: 35874513 PMCID: PMC9304951 DOI: 10.3389/fphys.2022.936768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Growth-related abnormalities affecting modern chickens, known as White Striping (WS) and Wooden Breast (WB), have been deeply investigated in the last decade. Nevertheless, their precise etiology remains unclear. The present study aimed at providing new insights into the molecular mechanisms involved in their onset by identifying clusters of co-expressed genes (i.e., modules) and key loci associated with phenotypes highly related to the occurrence of these muscular disorders. The data obtained by a Weighted Gene Co-expression Network Analysis (WGCNA) were investigated to identify hub genes associated with the parameters breast width (W) and total crude protein content (PC) of Pectoralis major muscles (PM) previously harvested from 12 fast-growing broilers (6 normal vs. 6 affected by WS/WB). W and PC can be considered markers of the high breast yield of modern broilers and the impaired composition of abnormal fillets, respectively. Among the identified modules, the turquoise (r = -0.90, p < 0.0001) and yellow2 (r = 0.91, p < 0.0001) were those most significantly related to PC and W, and therefore respectively named “protein content” and “width” modules. Functional analysis of the width module evidenced genes involved in the ubiquitin-mediated proteolysis and inflammatory response. GTPase activator activity, PI3K-Akt signaling pathway, collagen catabolic process, and blood vessel development have been detected among the most significant functional categories of the protein content module. The most interconnected hub genes detected for the width module encode for proteins implicated in the adaptive responses to oxidative stress (i.e., THRAP3 and PRPF40A), and a member of the inhibitor of apoptosis family (i.e., BIRC2) involved in contrasting apoptotic events related to the endoplasmic reticulum (ER)-stress. The protein content module showed hub genes coding for different types of collagens (such as COL6A3 and COL5A2), along with MMP2 and SPARC, which are implicated in Collagen type IV catabolism and biosynthesis. Taken together, the present findings suggested that an ER stress condition may underly the inflammatory responses and apoptotic events taking place within affected PM muscles. Moreover, these results support the hypothesis of a role of the Collagen type IV in the cascade of events leading to the occurrence of WS/WB and identify novel actors probably involved in their onset.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
IRE1α Inhibitors as a Promising Therapeutic Strategy in Blood Malignancies. Cancers (Basel) 2022; 14:cancers14102526. [PMID: 35626128 PMCID: PMC9139960 DOI: 10.3390/cancers14102526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Synthesis, folding, and structural maturation of proteins occur in the endoplasmic reticulum (ER). Accumulation of misfolded or unfolded proteins in the ER lumen contributes to the induction of ER stress and activation of the unfolded protein response (UPR) signaling pathway. Under ER stress, the UPR tries to maintain cellular homeostasis through different pathways, including the inositol-requiring enzyme 1 alpha (IRE1α)-dependent ones. IRE1α is located in an ER membrane, and it is evolutionarily the oldest UPR sensor. Activation of IRE1α via ER stress triggers the formation of the spliced form of XBP1 (XBP1s), which has been linked to a pro-survival effect in cancer cells. The role of IRE1α is critical for blood cancer cells, and it was found that the levels of IRE1α and XBP1s are elevated in various hematological malignancies. This review paper is focused on summarizing the latest knowledge about the role of IRE1α and on the assessment of the potential utility of IRE1α inhibitors in blood cancers.
Collapse
|
16
|
Golgi phosphoprotein 3 induces autophagy and epithelial-mesenchymal transition to promote metastasis in colon cancer. Cell Death Dis 2022; 8:76. [PMID: 35190555 PMCID: PMC8861175 DOI: 10.1038/s41420-022-00864-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
In this study, we aimed to investigate whether and how Golgi phosphoprotein 3 (GOLPH3) facilitates colon cancer metastasis via the regulation of autophagy and epithelial-mesenchymal transition (EMT). The role GOLPH3 plays in colon cancer metastasis was analyzed using western blotting, immunohistochemistry, transwell, wound-healing, and zebrafish assays. Autophagy and EMT were assessed via RNA-sequencing (RNA-seq) analysis, mRFP-GFP-LC3 reporter assays, and their related markers. Significant associations were found between colon cancer clinical and pathological stages and poor prognosis. GOLPH3 facilitates colon cancer metastasis, both in vitro and in vivo. RNA-seq analysis of GOLPH3-overexpressing and control cell models revealed that GOLPH3 enhances EMT and autophagy. Moreover, examination of autophagic, epithelial, and mesenchymal markers in GOLPH3-overexpressing, -silenced, and control cell lines revealed that GOLPH3 promotes EMT and autophagy. When autophagy was inhibited, GOLPH3-promoted metastasis and EMT were counteracted in vitro and in vivo. Using RNA-seq, PI3K/Akt signaling was identified as the key downstream pathway on which GOLPH3 acts. Mechanistically, we demonstrated that GOLPH3 stimulates autophagy and induces EMT via the suppression of the phosphorylation of protein kinase B (Akt) at Ser473. In summary, GOLPH3 induces autophagy and EMT, promoting metastasis in colon cancer. Beyond this, and in contrast to conventional perspectives, we discovered that GOLPH3 represses the phosphorylation of Akt at Ser473.
Collapse
|
17
|
Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. Cell Death Signaling From Endoplasmic Reticulum Stress: Plant-Specific and Conserved Features. FRONTIERS IN PLANT SCIENCE 2022; 13:835738. [PMID: 35185996 PMCID: PMC8850647 DOI: 10.3389/fpls.2022.835738] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
Collapse
|
18
|
Selective Activation of Endoplasmic Reticulum Stress by Reactive-Oxygen-Species-Mediated Ochratoxin A-Induced Apoptosis in Tubular Epithelial Cells. Int J Mol Sci 2021; 22:ijms222010951. [PMID: 34681610 PMCID: PMC8535626 DOI: 10.3390/ijms222010951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA), one of the major food-borne mycotoxins, impacts the health of humans and livestock by contaminating food and feed. However, the underlying mechanism of OTA nephrotoxicity remains unknown. This study demonstrated that OTA induced apoptosis through selective endoplasmic reticulum (ER) stress activation in human renal proximal tubular cells (HK-2). OTA increased ER-stress-related JNK and precursor caspase-4 cleavage apoptotic pathways. Further study revealed that OTA increased reactive oxygen species (ROS) levels, and N-acetyl cysteine (NAC) could reduce OTA-induced JNK-related apoptosis and ROS levels in HK-2 cells. Our results demonstrate that OTA induced ER stress-related apoptosis through an ROS-mediated pathway. This study provides new evidence to clarify the mechanism of OTA-induced nephrotoxicity.
Collapse
|
19
|
Jia F, Hu X, Kimura T, Tanaka N. Impact of Dietary Fat on the Progression of Liver Fibrosis: Lessons from Animal and Cell Studies. Int J Mol Sci 2021; 22:10303. [PMID: 34638640 PMCID: PMC8508674 DOI: 10.3390/ijms221910303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that a high-fat diet is one of the key contributors to the progression of liver fibrosis, and increasing studies are devoted to analyzing the different influences of diverse fat sources on the progression of non-alcoholic steatohepatitis. When we treated three types of isocaloric diets that are rich in cholesterol, saturated fatty acid (SFA) and trans fatty acid (TFA) with hepatitis C virus core gene transgenic mice that spontaneously developed hepatic steatosis without apparent fibrosis, TFA and cholesterol-rich diet, but not SFA-rich diet, displayed distinct hepatic fibrosis. This review summarizes the recent advances in animal and cell studies regarding the effects of these three types of fat on liver fibrogenesis.
Collapse
Affiliation(s)
- Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Xiao Hu
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050017, China;
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
20
|
Dicks N, Gutierrez K, Currin L, de Macedo MP, Glanzner WG, Mondadori RG, Michalak M, Agellon LB, Bordignon V. Tauroursodeoxycholic acid/TGR5 signaling promotes survival and early development of glucose-stressed porcine embryos†. Biol Reprod 2021; 105:76-86. [PMID: 33889948 PMCID: PMC8256098 DOI: 10.1093/biolre/ioab072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Conditions of impaired energy and nutrient homeostasis, such as diabetes and obesity, are associated with infertility. Hyperglycemia increases endoplasmic reticulum stress as well as oxidative stress and reduces embryo development and quality. Oxidative stress also causes deoxyribonucleic acid damage, which impairs embryo quality and development. The natural bile acid tauroursodeoxycholic acid reduces endoplasmic reticulum stress and rescues developmentally incompetent late-cleaving embryos, as well as embryos subjected to nuclear stress, suggesting the endoplasmic reticulum stress response, or unfolded protein response, and the genome damage response are linked. Tauroursodeoxycholic acid acts via the Takeda-G-protein-receptor-5 to alleviate nuclear stress in embryos. To evaluate the role of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling in embryo unfolded protein response, we used a model of glucose-induced endoplasmic reticulum stress. Embryo development was impaired by direct injection of tauroursodeoxycholic acid into parthenogenetically activated oocytes, whereas it was improved when tauroursodeoxycholic acid was added to the culture medium. Attenuation of the Takeda-G-protein-receptor-5 precluded the positive effect of tauroursodeoxycholic acid supplementation on development of parthenogenetically activated and fertilized embryos cultured under standard conditions and parthenogenetically activated embryos cultured with excess glucose. Moreover, attenuation of tauroursodeoxycholic acid/Takeda-G-protein-receptor-5 signaling induced endoplasmic reticulum stress, oxidative stress and cell survival genes, but decreased expression of pluripotency genes in parthenogenetically activated embryos cultured under excess glucose conditions. These data suggest that Takeda-G-protein-receptor-5 signaling pathways link the unfolded protein response and genome damage response. Furthermore, this study identifies Takeda-G-protein-receptor-5 signaling as a potential target for mitigating fertility issues caused by nutrient excess-associated blastomere stress and embryo death.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University, Quebec, Canada
| | | | - Luke Currin
- Department of Animal Science, McGill University, Quebec, Canada
| | | | | | - Rafael G Mondadori
- Department of Animal Science, McGill University, Quebec, Canada
- ReproPel, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Quebec, Canada
| | | |
Collapse
|
21
|
Novel function of N-acetyltransferase for microtubule stability and JNK signaling in Drosophila organ development. Proc Natl Acad Sci U S A 2021; 118:2010140118. [PMID: 33479178 DOI: 10.1073/pnas.2010140118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of microtubule stability is crucial for the maintenance of cell structure and function. While the acetylation of α-tubulin lysine 40 by acetylase has been implicated in the regulation of microtubule stability, the in vivo functions of N-terminal acetyltransferases (NATs) involved in the acetylation of N-terminal amino acids are not well known. Here, we identify an N-terminal acetyltransferase, Mnat9, that regulates cell signaling and microtubule stability in Drosophila Loss of Mnat9 causes severe developmental defects in multiple tissues. In the wing imaginal disc, Mnat9 RNAi leads to the ectopic activation of c-Jun N-terminal kinase (JNK) signaling and apoptotic cell death. These defects are suppressed by reducing the level of JNK signaling. Overexpression of Mnat9 can also inhibit JNK signaling. Mnat9 colocalizes with mitotic spindles, and its loss results in various spindle defects during mitosis in the syncytial embryo. Furthermore, overexpression of Mnat9 enhances microtubule stability. Mnat9 is physically associated with microtubules and shows a catalytic activity in acetylating N-terminal peptides of α- and β-tubulin in vitro. Cell death and tissue loss in Mnat9-depleted wing discs are restored by reducing the severing protein Spastin, suggesting that Mnat9 protects microtubules from its severing activity. Remarkably, Mnat9 mutated in the acetyl-CoA binding site is as functional as its wild-type form. We also find that human NAT9 can rescue Mnat9 RNAi phenotypes in flies, indicating their functional conservation. Taken together, we propose that Mnat9 is required for microtubule stability and regulation of JNK signaling to promote cell survival in developing Drosophila organs.
Collapse
|
22
|
Kong L, Huang H, Luan S, Liu H, Ye M, Wu F. Inhibition of ASIC1a-Mediated ERS Improves the Activation of HSCs and Copper Transport Under Copper Load. Front Pharmacol 2021; 12:653272. [PMID: 34135753 PMCID: PMC8201774 DOI: 10.3389/fphar.2021.653272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatolenticular degeneration (HLD) is an autosomal recessive genetic disease caused by the toxic accumulation of copper in the liver. Excessive copper will disrupt the redox balance in cells and tissues, causing ischemia, hypoxia, and inflammation. Acid-sensitive ion channel 1a is a cationic channel activated by extracellular acid and allowing Ca2+ and Na+ to flow into cells. Its expression appears in inflammation, arthritis, fibrotic tissue, and damaged environment, but its role in hepatolenticular degeneration has not been studied. This study established a Wistar rat model of high copper accumulation and used CuSO4 to induce the activation of HSC-T6 in an in vitro experiment. In vivo, Wistar rats were examined to determine the serum copper concentration, serum ALT and AST activities, and liver copper accumulation, and liver tissue HE staining and immunohistochemical analyses were conducted. The expression of ASIC1a, α-SMA, Collagen-Ι, GRP78, XBP1, ATP7B, and CCS were detected. Besides, immunofluorescence technology can detect the expression of the phosphorylated protein in vitro. It is suggested that ASIC1a is involved in the quality control of the endoplasmic reticulum, which degrades mutant ATP7B and increases the accumulation of copper. After blocking or silencing the expression of ASIC1a, ELISA can detect the level of inflammatory factors, the expression of endoplasmic reticulum stress-related factors, and ATP7B was improved in a higher copper environment reduction of copper deposition was observed in liver Timm’s staining. Collectively, we conclude that ASIC1a is involved in the HSC activation induced by copper accumulation and promotes the occurrence of hepatolenticular fibrosis.
Collapse
Affiliation(s)
- Lingjin Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Huiping Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Shaohua Luan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Hui Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Manping Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Fanrong Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Zhao H, Huang C, Luo Y, Yao X, Hu Y, Wang M, Chen X, Zeng J, Hu W, Wang J, Li R, Yao X. A Correlation Study of Prognostic Risk Prediction for Colorectal Cancer Based on Autophagy Signature Genes. Front Oncol 2021; 11:595099. [PMID: 34168974 PMCID: PMC8218632 DOI: 10.3389/fonc.2021.595099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy plays a complex role in tumors, sometimes promoting cancer cell survival and sometimes inducing apoptosis, and its role in the colorectal tumor microenvironment is controversial. The purpose of this study was to investigate the prognostic value of autophagy-related genes (ARGs) in colorectal cancer. We identified 37 differentially expressed autophagy-related genes by collecting TCGA colorectal tumor transcriptome data. A single-factor COX regression equation was used to identify 11 key prognostic genes, and a prognostic risk prediction model was constructed based on multifactor COX analysis. We classified patients into high and low risk groups according to prognostic risk parameters (p <0.001) and determined the prognostic value they possessed by survival analysis and the receiver operating characteristic (ROC) curve in the training and test sets of internal tests. In a multifactorial independent prognostic analysis, this risk value could be used as an independent prognostic indicator (HR=1.167, 95% CI=1.078-1.264, P<0.001) and was a robust predictor without any staging interference. To make it more applicable to clinical procedures, we constructed nomogram based on risk parameters and parameters of key clinical characteristics. The area under ROC curve for 3-year and 5-year survival rates were 0.735 and 0.718, respectively. These will better enable us to monitor patient prognosis, thus improve patient outcomes.
Collapse
Affiliation(s)
- Haibi Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuwen Luo
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoya Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China
| | - Yong Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China
| | - Muqing Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Xin Chen
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China.,Medical College, Shantou University, Shantou, China
| | - Jun Zeng
- Department of General Surgery, Baoan Central Hospital, The Fifth Affiliated Hospital of Shen Zhen University, Shen Zhen, China
| | - Weixian Hu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rongjiang Li
- Department of General Surgery, Baoan Central Hospital, The Fifth Affiliated Hospital of Shen Zhen University, Shen Zhen, China
| | - Xueqing Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Ganzhou Hospital (Ganzhou Municipal Hospital), Guangdong Provincial People's Hospital, Ganzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Medical College, Shantou University, Shantou, China
| |
Collapse
|
24
|
The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines 2021; 9:biomedicines9020156. [PMID: 33562589 PMCID: PMC7914947 DOI: 10.3390/biomedicines9020156] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions. Emerging evidence suggests that genetic or pharmacological modulation of IRE1 may have a significant impact on cell viability, and thus may be a promising step forward towards development of novel therapeutic strategies. In this review, we extensively describe the structural analysis of IRE1 molecule, the molecular dynamics associated with IRE1 activation, and interconnection between it and the other branches of the UPR with regard to its potential use as a therapeutic target. Detailed knowledge of the molecular characteristics of the IRE1 protein and its activation may allow the design of specific kinase or RNase modulators that may act as drug candidates.
Collapse
|
25
|
Thapsigargin-From Traditional Medicine to Anticancer Drug. Int J Mol Sci 2020; 22:ijms22010004. [PMID: 33374919 PMCID: PMC7792614 DOI: 10.3390/ijms22010004] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
A sesquiterpene lactone, thapsigargin, is a phytochemical found in the roots and fruits of Mediterranean plants from Thapsia L. species that have been used for centuries in folk medicine to treat rheumatic pain, lung diseases, and female infertility. More recently thapsigargin was found to be a potent cytotoxin that induces apoptosis by inhibiting the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump, which is necessary for cellular viability. This biological activity encouraged studies on the use of thapsigargin as a novel antineoplastic agent, which were, however, hampered due to high toxicity of this compound to normal cells. In this review, we summarized the recent knowledge on the biological activity and molecular mechanisms of thapsigargin action and advances in the synthesis of less-toxic thapsigargin derivatives that are being developed as novel anticancer drugs.
Collapse
|
26
|
Zhao T, Du J, Zeng H. Interplay between endoplasmic reticulum stress and non-coding RNAs in cancer. J Hematol Oncol 2020; 13:163. [PMID: 33267910 PMCID: PMC7709275 DOI: 10.1186/s13045-020-01002-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To survive, cancer cells are subjected to various internal and external adverse factors, including genetic mutations, hypoxia, nutritional deficiencies, and drug toxicity. All of these factors result in the accumulation of unfolded proteins in the endoplasmic reticulum, which leads to a condition termed endoplasmic reticulum stress (ER stress) and triggers the unfolded protein response (UPR). UPR downstream components strictly control transcription and translation reprogramming to ensure selective gene expression, including that of non-coding RNA (ncRNAs), to adapt to adverse environments. NcRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating target gene expression and protein translation, and their aberrant expression is related to tumor development. Dysregulation of ncRNAs is involved in the regulation of various cellular characteristics of cancer cells, including growth, apoptosis, metastasis, angiogenesis, drug sensitivity, and tumor stem cell properties. Notably, ncRNAs and ER stress can regulate each other and collaborate to determine the fate of tumor cells. Therefore, investigating the interaction between ER stress and ncRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we summarize the ER stress-triggered UPR signaling pathways involved in carcinogenesis followed by the mutual regulation of ER stress and ncRNAs in cancer, which provide further insights into the understanding of tumorigenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
27
|
Bashir S, Banday M, Qadri O, Bashir A, Hilal N, Nida-I-Fatima, Rader S, Fazili KM. The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci 2020; 265:118740. [PMID: 33188833 DOI: 10.1016/j.lfs.2020.118740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.
Collapse
Affiliation(s)
- Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ozaira Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nazia Hilal
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nida-I-Fatima
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Stephen Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
28
|
Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schröder M. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Mol Biol Cell 2020; 31:2597-2629. [PMID: 32877278 PMCID: PMC7851869 DOI: 10.1091/mbc.e18-01-0013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells. [Media: see text].
Collapse
Affiliation(s)
- Max Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Samantha Dainty
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Natalie Strudwick
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adina D. Mihai
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Jamie N. Watson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Robina Dendooven
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin Schröder
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| |
Collapse
|
29
|
Nomura Y, Sylvester CF, Nguyen LO, Kandeel M, Hirata Y, Mungrue IN, Oh-Hashi K. Characterization of the 5'-flanking region of the human and mouse CHAC1 genes. Biochem Biophys Rep 2020; 24:100834. [PMID: 33102815 PMCID: PMC7573368 DOI: 10.1016/j.bbrep.2020.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The Unfolded Protein Response pathway is a conserved signaling mechanism having important roles in cellular physiology and is perturbed accompanying disease. We previously identified the novel UPR target gene CHAC1, a direct target of ATF4, downstream of PERK-EIF2A and activated by the UPR pathway. CHAC1 enzyme directs catalysis of γ-linked glutamate bonds within specific molecular targets. CHAC1 is the first enzyme characterized that can catalyze intracellular glutathione degradation in eukaryotes, having implications for regulation of oxidative stress. DDIT3 (CHOP) is a terminal UPR transcription factor, regulated by ATF4 and an output promoting cell death signaling. Herein we examine the relationship of CHOP controlling CHAC1 transcription in humans and mice. We note parallel induction of CHOP and CHAC1 in human cells after agonist induced UPR. Expanding upon previous reports, we define transcriptional induction of CHAC1 in humans and mice driven by ATF4 through a synergistic relationship with conserved ATF/CRE and CARE DNA sequences of the CHAC1 promoter. Using this system, we also tested effects of CHOP on CHAC1 transcription, and binding at the CHAC1 ATF/CRE using IM-EMSA. These data indicate a novel inhibitory effect of CHOP on CHAC1 transcription, which was ablated in the absence of the ATF/CRE control element. While direct binding of ATF4 to CHAC1 promoter sequences was confirmed, binding of CHOP to the CHAC1 ATF/CRE was not evident at baseline or after UPR induction. These data reveal CHAC1 as a novel CHOP inhibited target gene, acting through an upstream ATF/CRE motif via an indirect mechanism.
Collapse
Affiliation(s)
- Yuki Nomura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Charity F Sylvester
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Lisa O Nguyen
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Hofuf, Alahsa, 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Imran N Mungrue
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901, Perdido St, New Orleans, LA, USA
| | - Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
30
|
Endoplasmic Reticulum Stress (ER Stress) and Unfolded Protein Response (UPR) Occur in a Rat Varicocele Testis Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5909306. [PMID: 32802266 PMCID: PMC7411497 DOI: 10.1155/2020/5909306] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Using a surgically induced varicocele rat model, we show here strong evidence that the misfolded/unfolded protein response that is part of the stress response of the endoplasmic reticulum (ER) is activated in the varicocele testis (VCL), leading to the induction of apoptosis. To support this hypothesis, it is observed that the spliced variant of the X-box protein 1 (XBP1s), resulting from the activation of the inositol-requiring enzyme 1 (IRE1) membrane sensor, is significantly more represented in VCL testicular extracts. The activation of the IRE1/XBP1s pathway is also supported by the observation that the VCL testes show an increase phosphorylation of the c-Jun-kinase (JNK) known to be one intermediate of this pathway and an increased level of caspase-3, the terminal apoptotic effector, partly explaining the apoptotic status of the VCL testis.
Collapse
|
31
|
Xiong Y, Wang Y, Xiong Y, Gao W, Teng L. Salidroside alleviated hypoxia-induced liver injury by inhibiting endoplasmic reticulum stress-mediated apoptosis via IRE1α/JNK pathway. Biochem Biophys Res Commun 2020; 529:335-340. [PMID: 32703432 DOI: 10.1016/j.bbrc.2020.06.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Endoplasmic reticulum (ER) stress and subsequent apoptosis played vital role in liver injury and dysfunction. The aim of this study was to investigate the protective effect and mechanism of salidroside on hypoxia induced liver injury both in vivo and in vitro. Male SD rats were exposed to hypobaric chamber to simulate high altitude hypoxia model. High altitude hypoxia led to significant liver injury and apoptosis, increased the expression levels of p-JNK, BAX and ER stress markers. Salidroside treatment significantly inhibited hypoxia induced ER stress by decreasing the protein expression of glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP) and phosphorylated inositol-requiring enzyme 1α (p-IRE1α). In addition, salidroside treatment also restrained the ER stress-mediated apoptotic pathway, as indicated by decreased pro-apoptotic proteins p-JNK, TRAF2, BAX, and cleaved caspase 9 and caspase 12, as well as upregulation of Bcl-2. Furthermore, in vitro study found that blocking IRE1α pathway using specific inhibitor STF-083010 subsequently reversed the protective effect of salidroside on liver apoptosis. Taken together, our findings revealed that salidroside exerts protective effects against hypoxia induced liver injury through inhibiting ER stress mediated apoptosis via IRE1α/JNK pathway.
Collapse
Affiliation(s)
- Yanlei Xiong
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College(PUMC), China
| | - Yueming Wang
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Yanlian Xiong
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, PR China
| | - Wei Gao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianghong Teng
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
32
|
Arisan ED, Rencuzogullari O, Keskin B, Grant GH, Uysal-Onganer P. Inhibition on JNK Mimics Silencing of Wnt-11 Mediated Cellular Response in Androgen-Independent Prostate Cancer Cells. BIOLOGY 2020; 9:biology9070142. [PMID: 32605008 PMCID: PMC7407974 DOI: 10.3390/biology9070142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and one of the leading causes of cancer death for men. The c-Jun N-terminal kinase (JNK) pathway is required for several cellular functions, such as survival, proliferation, differentiation, and migration. Wnt-11, a member of the Wnt family, has been identified for its upregulation in PCa; however, downstream signalling of Wnt-11 remains to be fully characterized. In this study, we investigated the role of the JNK pathway as a potential downstream factor for Wnt-11 signalling. For this purpose, LNCaP, DU145, and PC-3 PCa cells and normal epithelial PNT1A cells were treated with a specific JNK kinase inhibitor: JNKVIII. Our results showed that JNK inhibition decreased mitochondrial membrane potential and promoted cell death in a cell type-dependent manner. We found that JNK inhibition led to an increase in autophagy and prevented epithelial–mesenchymal transition (EMT) in independently growing androgen cells. JNK inhibition and the silencing of Wnt-11 showed similar responses in DU145 and PC-3 cells and decreased metastasis-related biomarkers, cell migration, and invasion. Overall, our results suggest that JNK signalling plays a significant role in the pathophysiology of PCa by mediating Wnt-11 induced signals. Our data highlights that both the JNK pathway and Wnt-11 could be a useful therapeutic target for the combinatory application of current PCa.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze-Kocaeli, Turkey;
| | - Ozge Rencuzogullari
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Buse Keskin
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
33
|
Duong MTH, Lee JH, Ahn HC. C-Jun N-terminal kinase inhibitors: Structural insight into kinase-inhibitor complexes. Comput Struct Biotechnol J 2020; 18:1440-1457. [PMID: 32637042 PMCID: PMC7327381 DOI: 10.1016/j.csbj.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of c-Jun N-terminal kinases (JNKs) plays an important role in physiological processes including neuronal function, immune activity, and development, and thus, JNKs have been a therapeutic target for various diseases such as neurodegenerative diseases, inflammation, and cancer. Efforts to develop JNK-specific inhibitors have been ongoing for several decades. In this process, the structures of JNK in complex with various inhibitors have contributed greatly to the design of novel compounds and to the elucidation of structure-activity relationships. Almost 100 JNK structures with various compounds have been determined. Here we summarize the information gained from these structures and classify the inhibitors into several groups based on the binding mode. These groups include inhibitors in the open conformation and closed conformation of the gatekeeper residue, non-ATP site binders, peptides, covalent inhibitors, and type II kinase inhibitors. Through this work, deep insight into the interaction of inhibitors with JNKs can be gained and this will be helpful for developing novel, potent, and selective inhibitors.
Collapse
Affiliation(s)
- Men Thi Hoai Duong
- Department of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, South Korea
| |
Collapse
|
34
|
Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H, Fang Z. Protein Palmitoylation Regulates Cell Survival by Modulating XBP1 Activity in Glioblastoma Multiforme. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:518-530. [PMID: 33024813 PMCID: PMC7525067 DOI: 10.1016/j.omto.2020.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM) almost invariably acquires an invasive phenotype, resulting in limited therapeutic options. Protein palmitoylation markedly affects tumorigenesis and malignant progression in GBM. The role of protein palmitoylation in GBM, however, has not been systematically reported. This study aimed to investigate the effect of protein palmitoylation on GBM cell survival and the cell cycle. In this study, most palmitoyltransferases were upregulated in GBM and its cell lines, and protein palmitoylation participated in signaling pathways controlling cell survival and the GBM cell cycle. Inhibition of protein palmitoylation with substrate-analog inhibitors, that is, 2-bromopalmitate, cerulenin, and tunicamycin, induced G2 cell cycle arrest and cell death in GBM cells through enhanced endoplasmic reticulum (ER) stress. These effects are primarily attributed to the palmitoylation inhibitors activating pro-apoptotic pathways and ER stress signals. Further analysis revealed was the accumulation of SUMOylated XBP1 (X-box binding protein 1) and its transcriptional repression, along with a reduction in XBP1 palmitoylation. Taken together, the present results indicate that protein palmitoylation plays an important role in the survival of GBM cells, further providing a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Xueran Chen, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| | - Hao Li
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Xiaoqing Fan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, Anhui 230001, China
- Department of Anesthesiology, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui 230001, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Huihui Ma
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 218, JiXi Road, Hefei, Anhui 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Zhiyou Fang, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| |
Collapse
|
35
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 727] [Impact Index Per Article: 145.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
36
|
Mariángelo JIE, Román B, Silvestri MA, Salas M, Vittone L, Said M, Mundiña‐Weilenmann C. Chemical chaperones improve the functional recovery of stunned myocardium by attenuating the endoplasmic reticulum stress. Acta Physiol (Oxf) 2020; 228:e13358. [PMID: 31385408 DOI: 10.1111/apha.13358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
AIM Myocardial ischaemia/reperfusion (I/R) produces structural and functional alterations depending on the duration of ischaemia. Brief ischaemia followed by reperfusion causes reversible contractile dysfunction (stunned heart) but long-lasting ischaemia followed by reperfusion can result in irreversible injury with cell death. Events during I/R can alter endoplasmic reticulum (ER) function leading to the accumulation of unfolded/misfolded proteins. The resulting ER stress induces activation of several signal transduction pathways, known as unfolded protein response (UPR). Experimental evidence shows that UPR contributes to cell death in irreversible I/R injury; however, there is still uncertainty for its occurrence in the stunned myocardium. This study investigated the ER stress response and its functional impact on the post-ischaemic cardiac performance of the stunned heart. METHODS Perfused rat hearts were subjected to 20 minutes of ischaemia followed by 30 minutes of reperfusion. UPR markers were evaluated by qRT-PCR and western blot. Post-ischaemic mechanical recovery was measured in absence and presence of two chemical chaperones: tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (4-PBA). RESULTS Analysis of mRNA and protein levels of various ER stress effectors demonstrated that different UPR signalling cascades, involving both pro-survival and pro-apoptotic pathways, are activated. Inhibition of the UPR with chemical chaperones improved the post-ischaemic recovery of cardiac mechanical function without affecting the I/R-induced increase in oxidative stress. CONCLUSION Our results suggest that prevention of ER stress by chemical chaperones could be a therapeutic tool to limit deterioration of the contractile function in clinical settings in which the phenomenon of myocardial stunning is present.
Collapse
Affiliation(s)
- Juan Ignacio Elio Mariángelo
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Bárbara Román
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - María Agustina Silvestri
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Margarita Salas
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| | - Cecilia Mundiña‐Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT‐CONICET La Plata, Facultad de Ciencias Médicas Universidad Nacional de La Plata La Plata Argentina
| |
Collapse
|
37
|
Maeyashiki C, Melhem H, Hering L, Baebler K, Cosin-Roger J, Schefer F, Weder B, Hausmann M, Scharl M, Rogler G, de Vallière C, Ruiz PA. Activation of pH-Sensing Receptor OGR1 (GPR68) Induces ER Stress Via the IRE1α/JNK Pathway in an Intestinal Epithelial Cell Model. Sci Rep 2020; 10:1438. [PMID: 31996710 PMCID: PMC6989664 DOI: 10.1038/s41598-020-57657-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Proton-sensing ovarian cancer G-protein coupled receptor (OGR1) plays an important role in pH homeostasis. Acidosis occurs at sites of intestinal inflammation and can induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), an evolutionary mechanism that enables cells to cope with stressful conditions. ER stress activates autophagy, and both play important roles in gut homeostasis and contribute to the pathogenesis of inflammatory bowel disease (IBD). Using a human intestinal epithelial cell model, we investigated whether our previously observed protective effects of OGR1 deficiency in experimental colitis are associated with a differential regulation of ER stress, the UPR and autophagy. Caco-2 cells stably overexpressing OGR1 were subjected to an acidic pH shift. pH-dependent OGR1-mediated signalling led to a significant upregulation in the ER stress markers, binding immunoglobulin protein (BiP) and phospho-inositol required 1α (IRE1α), which was reversed by a novel OGR1 inhibitor and a c-Jun N-terminal kinase (JNK) inhibitor. Proton-activated OGR1-mediated signalling failed to induce apoptosis, but triggered accumulation of total microtubule-associated protein 1 A/1B-light chain 3, suggesting blockage of late stage autophagy. Our results show novel functions for OGR1 in the regulation of ER stress through the IRE1α-JNK signalling pathway, as well as blockage of autophagosomal degradation. OGR1 inhibition might represent a novel therapeutic approach in IBD.
Collapse
Affiliation(s)
- Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Schefer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Lindner P, Christensen SB, Nissen P, Møller JV, Engedal N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun Signal 2020; 18:12. [PMID: 31987044 PMCID: PMC6986015 DOI: 10.1186/s12964-019-0499-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cell death triggered by unmitigated endoplasmic reticulum (ER) stress plays an important role in physiology and disease, but the death-inducing signaling mechanisms are incompletely understood. To gain more insight into these mechanisms, the ER stressor thapsigargin (Tg) is an instrumental experimental tool. Additionally, Tg forms the basis for analog prodrugs designed for cell killing in targeted cancer therapy. Tg induces apoptosis via the unfolded protein response (UPR), but how apoptosis is initiated, and how individual effects of the various UPR components are integrated, is unclear. Furthermore, the role of autophagy and autophagy-related (ATG) proteins remains elusive. METHODS To systematically address these key questions, we analyzed the effects of Tg and therapeutically relevant Tg analogs in two human cancer cell lines of different origin (LNCaP prostate- and HCT116 colon cancer cells), using RNAi and inhibitory drugs to target death receptors, UPR components and ATG proteins, in combination with measurements of cell death by fluorescence imaging and propidium iodide staining, as well as real-time RT-PCR and western blotting to monitor caspase activity, expression of ATG proteins, UPR components, and downstream ER stress signaling. RESULTS In both cell lines, Tg-induced cell death depended on death receptor 5 and caspase-8. Optimal cytotoxicity involved a non-autophagic function of MAP1LC3B upstream of procaspase-8 cleavage. PERK, ATF4 and CHOP were required for Tg-induced cell death, but surprisingly acted in parallel rather than as a linear pathway; ATF4 and CHOP were independently required for Tg-mediated upregulation of death receptor 5 and MAP1LC3B proteins, whereas PERK acted via other pathways. Interestingly, IRE1 contributed to Tg-induced cell death in a cell type-specific manner. This was linked to an XBP1-dependent activation of c-Jun N-terminal kinase, which was pro-apoptotic in LNCaP but not HCT116 cells. Molecular requirements for cell death induction by therapy-relevant Tg analogs were identical to those observed with Tg. CONCLUSIONS Together, our results provide a new, integrated understanding of UPR signaling mechanisms and downstream mediators that induce cell death upon Tg-triggered, unmitigated ER stress. Video Abstract.
Collapse
Affiliation(s)
- Paula Lindner
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137, Blindern, N-0318 Oslo, Norway
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Poul Nissen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, P.O. Box 1137, Blindern, N-0318 Oslo, Norway
| |
Collapse
|
39
|
ER stress contributes to autophagy induction by adiponectin in macrophages: Implication in cell survival and suppression of inflammatory response. Cytokine 2019; 127:154959. [PMID: 31877413 DOI: 10.1016/j.cyto.2019.154959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Adiponectin, the most abundant adipokine, exhibits various physiological functions. In addition to its critical role in lipid metabolism, recent studies have demonstrated its potent anti-inflammatory and cytoprotective properties. Accumulating evidence suggests that autophagy plays a critical role in various biological responses by adiponectin. However, the underlying mechanisms remain elusive. Herein, we investigated the role of ER stress in adiponectin-induced autophagy and its functional roles in biological responses by adiponectin in macrophages. In this study, globular adiponectin (gAcrp) significantly increased the expression of various ER stress markers in both RAW 264.7 and primary peritoneal macrophages. In addition, inhibition of ER stress by treatment with tauroursodeoxycholic acid (TUDCA) or gene silencing of CHOP prominently suppressed gAcrp-induced autophagy. Treatment with gAcrp also induced significant increase in sestrin2 expression. Interestingly, knockdown of sestrin2 prevented autophagy induction and inhibition of ER stress abrogated sestrin2 induction by gAcrp, collectively implying that ER stress critically contributes to gAcrp-induced autophagy activation via sestrin2 induction. Moreover, pretreatment with TUDCA restored suppression of TNF-α and IL-1β expression and attenuated the enhanced viability of macrophages induced by gAcrp. Taken together, these findings indicate the potential role of ER stress in autophagy activation, modulation of inflammatory responses, and cell survival by gAcrp in macrophages.
Collapse
|
40
|
Dicks N, Gutierrez K, Currin L, Priotto de Macedo M, Glanzner W, Michalak M, Agellon LB, Bordignon V. Tauroursodeoxycholic acid acts via TGR5 receptor to facilitate DNA damage repair and improve early porcine embryo development. Mol Reprod Dev 2019; 87:161-173. [PMID: 31793725 DOI: 10.1002/mrd.23305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 01/23/2023]
Abstract
DNA damage associated with assisted reproductive technologies is an important factor affecting gamete fertility and embryo development. Activation of the TGR5 receptor by tauroursodeoxycholic acid (TUDCA) has been shown to reduce endoplasmic reticulum (ER) stress in embryos; however, its effect on genome damage responses (GDR) activation to facilitate DNA damage repair has not been examined. This study aimed to investigate the effect of TUDCA on DNA damage repair and embryo development. In a porcine model of ultraviolet light (UV)-induced nuclear stress, TUDCA reduced DNA damage and ER stress in developing embryos, as measured by γH2AX and glucose-regulated protein 78 immunofluorescence, respectively. TUDCA was equally able to rescue early embryo development. No difference in total cell number, DNA damage, or percentage of apoptotic cells, measured by cleaved caspase 3 immunofluorescence, was noted in embryos that reached the blastocyst stage. Interestingly, Dicer-substrate short interfering RNA-mediated disruption of TGR5 signaling abrogated the beneficial effects of TUDCA on UV-treated embryos. Quantitative PCR analysis revealed activation of the GDR, through increased messenger RNA abundance of DNAPK, 53BP1, and DNA ligase IV, as well as the ER stress response, through increased spliced XBP1 and X-linked inhibitor of apoptosis. Results from this study demonstrated that TUDCA activates TGR5-mediated signaling to reduce DNA damage and improve embryo development after UV exposure.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | - Werner Glanzner
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
41
|
Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. Int J Mol Sci 2019; 20:ijms20184354. [PMID: 31491919 PMCID: PMC6770252 DOI: 10.3390/ijms20184354] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer constitutes a grave problem nowadays in view of the fact that it has become one of the main causes of death worldwide. Poor clinical prognosis is presumably due to cancer cells metabolism as tumor microenvironment is affected by oxidative stress. This event triggers adequate cellular response and thereby creates appropriate conditions for further cancer progression. Endoplasmic reticulum (ER) stress occurs when the balance between an ability of the ER to fold and transfer proteins and the degradation of the misfolded ones become distorted. Since ER is an organelle relatively sensitive to oxidative damage, aforementioned conditions swiftly cause the activation of the unfolded protein response (UPR) signaling pathway. The output of the UPR, depending on numerous factors, may vary and switch between the pro-survival and the pro-apoptotic branch, and hence it displays opposing effects in deciding the fate of the cancer cell. The role of UPR-related proteins in tumorigenesis, such as binding the immunoglobulin protein (BiP) and inositol-requiring enzyme-1α (IRE1α), activating transcription factor 6 (ATF6) or the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), has already been specifically described so far. Nevertheless, due to the paradoxical outcomes of the UPR activation as well as gaps in current knowledge, it still needs to be further investigated. Herein we would like to elicit the actual link between neoplastic diseases and the UPR signaling pathway, considering its major branches and discussing its potential use in the development of a novel, anti-cancer, targeted therapy.
Collapse
|
42
|
PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway. Nat Commun 2019; 10:3185. [PMID: 31320625 PMCID: PMC6639383 DOI: 10.1038/s41467-019-11019-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive mechanism that aims at restoring ER homeostasis under severe environmental stress. Malignant cells are resistant to environmental stress, which is largely due to an activated UPR. However, the molecular mechanisms by which different UPR branches are selectively controlled in tumor cells are not clearly understood. Here, we provide evidence that PRKCSH, previously known as glucosidase II beta subunit, functions as a regulator for selective activation of the IRE1α branch of UPR. PRKCSH boosts ER stress–mediated autophosphorylation and oligomerization of IRE1α through mutual interaction. PRKCSH contributes to the induction of tumor-promoting factors and to tumor resistance to ER stress. Increased levels of PRKCSH in various tumor tissues are positively correlated with the expression of XBP1-target genes. Taken together, our data provide a molecular rationale for selective activation of the IRE1α branch in tumors and adaptation of tumor cells to severe environmental stress. Cancer cells utilise the unfolded protein response (UPR) to adapt to environmental and ER stress. Here, the authors show that the glycosidase II beta subunit, PRKSCH, protects cancer cells from ER stress, by interacting with IRE1α and activating the IRE1α-XBP1 branch of the UPR.
Collapse
|
43
|
Xu X, Wang M, Li JZ, Wei SD, Wu H, Lai X, Cao D, Ou ZB, Gong J. Tauroursodeoxycholic acid alleviates hepatic ischemia reperfusion injury by suppressing the function of Kupffer cells in mice. Biomed Pharmacother 2018; 106:1271-1281. [DOI: 10.1016/j.biopha.2018.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
|
44
|
Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Al-Asmari AF, Ansari MN, Al-Anazi WA, Bahashwan S, Almutairi MM, Alshammari M, Khan MR, Alsaad AM, Alotaibi MR. Apremilast prevent doxorubicin-induced apoptosis and inflammation in heart through inhibition of oxidative stress mediated activation of NF-κB signaling pathways. Pharmacol Rep 2018; 70:993-1000. [DOI: 10.1016/j.pharep.2018.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/01/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
|
45
|
Bohush A, Niewiadomska G, Filipek A. Role of Mitogen Activated Protein Kinase Signaling in Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19102973. [PMID: 30274251 PMCID: PMC6213537 DOI: 10.3390/ijms19102973] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by insufficient dopamine production due to the loss of 50% to 70% of dopaminergic neurons. A shortage of dopamine, which is predominantly produced by the dopaminergic neurons within the substantia nigra, causes clinical symptoms such as reduction of muscle mass, impaired body balance, akinesia, bradykinesia, tremors, postural instability, etc. Lastly, this can lead to a total loss of physical movement and death. Since no cure for PD has been developed up to now, researchers using cell cultures and animal models focus their work on searching for potential therapeutic targets in order to develop effective treatments. In recent years, genetic studies have prominently advocated for the role of improper protein phosphorylation caused by a dysfunction in kinases and/or phosphatases as an important player in progression and pathogenesis of PD. Thus, in this review, we focus on the role of selected MAP kinases such as JNKs, ERK1/2, and p38 MAP kinases in PD pathology.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
46
|
Hinzman CP, Baulch JE, Mehta KY, Gill K, Limoli CL, Cheema AK. Exposure to Ionizing Radiation Causes Endoplasmic Reticulum Stress in the Mouse Hippocampus. Radiat Res 2018; 190:483-493. [PMID: 30084740 DOI: 10.1667/rr15061.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well known that ionizing radiation-induced toxicity to normal tissue has functional consequences in the brain. However, the underlying molecular alterations have yet to be elucidated. We have previously reported cognitive impairments with concomitant changes in dendritic complexity, spine density and inflammation in mice at 6-24 weeks postirradiation. The goal of this study was to determine whether metabolic changes in the mouse hippocampus after whole-body (4 Gy) or cranial (9 Gy) X-ray irradiation might trigger some of the incipient changes contributing to the persisting pathology in the radiation-injured brain. Metabolomic and lipidomic profiling of hippocampal tissue revealed that radiation induced dyslipidemia in mice at two days and two weeks postirradiation. Strikingly, significant changes were also observed in metabolites of the hexosamine biosynthesis pathway, a finding that was further confirmed using orthogonal methodologies. We hypothesize that these changes in hexosamine metabolism could induce endoplasmic reticulum stress and contribute to radiation-induced cognitive impairments. Taken together, our results show that molecular phenotyping is a valuable approach to identify potentially detrimental pathway perturbations that manifest significantly earlier than gross structural and functional changes in the irradiated brain.
Collapse
Affiliation(s)
- Charles P Hinzman
- a Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Janet E Baulch
- c Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Khyati Y Mehta
- b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Kirandeep Gill
- b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Charles L Limoli
- c Department of Radiation Oncology, University of California, Irvine, California 92697
| | - Amrita K Cheema
- a Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057.,b Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
47
|
Zhang B, Gao C, Li Y, Wang M. D-chiro-inositol enriched Fagopyrum tataricum (L.) Gaench extract alleviates mitochondrial malfunction and inhibits ER stress/JNK associated inflammation in the endothelium. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:83-89. [PMID: 29225119 DOI: 10.1016/j.jep.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tartary buckwheat is a food medicine dual-use crop with healing effects on cardiovascular diseases and type2 diabetes. It has been proposed that endothelial dysfunction is the initial lesion in these diseases and it's associated with mitochondrial dysfunction, endoplasmic reticulum (ER) stress and inflammation. D-chiro-inositol (DCI) is a bioactive compound of Tartary buckwheat and is always deficit in type2 diabetes. However, it remains unknown whether DCI-enriched Tartary buckwheat extract can ameliorate mitochondrial dysfunction, ER stress and inflammation in the endothelium. MATERIAL AND METHODS Endothelial cells were treated with palmitic acid (PA) and mice were fed with high fat diet (HFD). The effects of DCI-enriched Tartary buckwheat bran extract (TBBE) on superoxide anion generation, dynamin-related protein 1 (Drp1), mitofusin2 (Mfn2), inositol-requiring enzyme-1α (IRE1α) and Jun n-terminal kinase (JNK) activation and inflammation in the endothelium against lipotoxicity were investigated. RESULTS In endothelial cells, TBBE significantly inhibited oxidative stress. Meanwhile, in HFD-fed mice and PA-induced cells, TBBE regulated Drp1 phosphorylation and inhibited its activation, implying the protective effect of TBBE on mitochondrial morphology. As a result, TBBE protected mitochondrial function. Additionally, TBBE inhibited ER stress and reduced the production of IL-6 and VCAM-1, associated with JNK pathway, thereby inhibiting the caspase-3 activation in vivo and in vitro. CONCLUSIONS Taken together, this study indicated the beneficial role of TBBE in endothelial inflammation, with emphasis on mitochondrial dysfunction, ER stress and JNK activation.
Collapse
Affiliation(s)
- Bobo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Caifeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunlong Li
- Institute of agricultural products processing, Shanxi Academy of Agriculture Sciences, Taiyuan 030031, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
48
|
Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 2017; 14:154. [PMID: 28768533 PMCID: PMC5541666 DOI: 10.1186/s12974-017-0928-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. Methods Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. Results In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1−/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1−/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1−/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. Conclusions Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0928-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Hans-Hermann Hoepken
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Bastian Roller
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Blas Morales-Gordo
- Department of Neurology, University Hospital San Cecilio, 18012, Granada, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Patrick N Harter
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Waetzig V, Belzer M, Haeusgen W, Boehm R, Cascorbi I, Herdegen T. Crosstalk control and limits of physiological c-Jun N-terminal kinase activity for cell viability and neurite stability in differentiated PC12 cells. Mol Cell Neurosci 2017; 82:12-22. [DOI: 10.1016/j.mcn.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/28/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022] Open
|
50
|
The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci Rep 2017; 7:45713. [PMID: 28374828 PMCID: PMC5379690 DOI: 10.1038/srep45713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Coral reefs are of major ecological and socio-economic interest. They are threatened by global warming and natural pressures such as solar ultraviolet radiation. While great efforts have been made to understand the physiological response of corals to these stresses, the signalling pathways involved in the immediate cellular response exhibited by corals remain largely unknown. Here, we demonstrate that c-Jun N-terminal kinase (JNK) activation is involved in the early response of corals to thermal and UV stress. Furthermore, we found that JNK activity is required to repress stress-induced reactive oxygen species (ROS) accumulation in both the coral Stylophora pistillata and human skin cells. We also show that inhibiting JNK activation under stress conditions leads to ROS accumulation, subsequent coral bleaching and cell death. Taken together, our results suggest that an ancestral response, involving the JNK pathway, is remarkably conserved from corals to human, protecting cells from the adverse environmental effects.
Collapse
|