1
|
Zhou Y, Li Y, You H, Chen J, Wang B, Wen M, Zhang Y, Tang D, Shen Y, Yu H, Cheng Z. Kinesin-1-like protein PSS1 is essential for full-length homologous pairing and synapsis in rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:928-940. [PMID: 39283979 DOI: 10.1111/tpj.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The pairing and synapsis of homologous chromosomes are crucial for their correct segregation during meiosis. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex can recruit kinesin protein at the nuclear envelope, affecting telomere bouquet formation and homologous pairing. Kinesin-1-like protein Pollen Semi-Sterility1 (PSS1) plays a pivotal role in male meiotic chromosomal behavior and is essential for fertility in rice. However, its exact role in meiosis, especially as kinesin involved in homologous pairing and synapsis, has not been fully elucidated. Here, we generated three pss1 mutants by genome editing technology to dissect PSS1 biological functions in meiosis. The pss1 mutants exhibit alterations in the radial microtubule organization at pachytene and manifest a deficiency in telomere clustering, which is critical for full-length homologous pairing. We reveal that PSS1 serves as a key mediator between chromosomes and cytoskeleton, thereby regulating microtubule organization and transmitting the force to nuclei to facilitate homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Yue Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minsi Wen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yansong Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Okamoto T, Motose H, Takahashi T. Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube growth in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2023; 18:2281159. [PMID: 37965769 PMCID: PMC10653773 DOI: 10.1080/15592324.2023.2281159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Morphological response of cells to environment involves concerted rearrangements of microtubules and actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows attenuation in the temporal root growth reduction in response to mechanical stress. We found that a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are homozygous for one and heterozygous for the other revealed that these plants produce pollen grains with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with the wild type confirmed that the double mutation is not inherited paternally. These results suggest a critical and cooperative function of WDL5 and WDL6 in pollen tube growth.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Gonzalez JP, Frandsen KEH, Kesten C. The role of intrinsic disorder in binding of plant microtubule-associated proteins to the cytoskeleton. Cytoskeleton (Hoboken) 2023; 80:404-436. [PMID: 37578201 DOI: 10.1002/cm.21773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Microtubules (MTs) represent one of the main components of the eukaryotic cytoskeleton and support numerous critical cellular functions. MTs are in principle tube-like structures that can grow and shrink in a highly dynamic manner; a process largely controlled by microtubule-associated proteins (MAPs). Plant MAPs are a phylogenetically diverse group of proteins that nonetheless share many common biophysical characteristics and often contain large stretches of intrinsic protein disorder. These intrinsically disordered regions are determinants of many MAP-MT interactions, in which structural flexibility enables low-affinity protein-protein interactions that enable a fine-tuned regulation of MT cytoskeleton dynamics. Notably, intrinsic disorder is one of the major obstacles in functional and structural studies of MAPs and represents the principal present-day challenge to decipher how MAPs interact with MTs. Here, we review plant MAPs from an intrinsic protein disorder perspective, by providing a complete and up-to-date summary of all currently known members, and address the current and future challenges in functional and structural characterization of MAPs.
Collapse
Affiliation(s)
- Jordy Perez Gonzalez
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian E H Frandsen
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Christopher Kesten
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J. GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:675981. [PMID: 34305975 PMCID: PMC8293678 DOI: 10.3389/fpls.2021.675981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 06/01/2023]
Abstract
Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Sofiia Hlynska
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tomáš Pospíšil
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Dou L, He K, Peng J, Wang X, Mao T. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat Commun 2021; 12:2181. [PMID: 33846350 PMCID: PMC8041845 DOI: 10.1038/s41467-021-22455-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA.
Collapse
Affiliation(s)
- Liru Dou
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kaikai He
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jialin Peng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangfeng Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tonglin Mao
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Li Y, Deng M, Liu H, Li Y, Chen Y, Jia M, Xue H, Shao J, Zhao J, Qi Y, An L, Yu F, Liu X. ABNORMAL SHOOT 6 interacts with KATANIN 1 and SHADE AVOIDANCE 4 to promote cortical microtubule severing and ordering in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:646-661. [PMID: 32761943 DOI: 10.1111/jipb.13003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 05/14/2023]
Abstract
Plant interphase cortical microtubules (cMTs) mediate anisotropic cell expansion in response to environmental and developmental cues. In Arabidopsis thaliana, KATANIN 1 (KTN1), the p60 catalytic subunit of the conserved MT-severing enzyme katanin, is essential for cMT ordering and anisotropic cell expansion. However, the regulation of KTN1-mediated cMT severing and ordering remains unclear. In this work, we report that the Arabidopsis IQ67 DOMAIN (IQD) family gene ABNORMAL SHOOT 6 (ABS6) encodes a MT-associated protein. Overexpression of ABS6 leads to elongated cotyledons, directional pavement cell expansion, and highly ordered transverse cMT arrays. Genetic suppressor analysis revealed that ABS6-mediated cMT ordering is dependent on KTN1 and SHADE AVOIDANCE 4 (SAV4). Live imaging of cMT dynamics showed that both ABS6 and SAV4 function as positive regulators of cMT severing. Furthermore, ABS6 directly interacts with KTN1 and SAV4 and promotes their recruitment to the cMTs. Finally, analysis of loss-of-function mutant combinations showed that ABS6, SAV4, and KTN1 work together to ensure the robust ethylene response in the apical hook of dark-grown seedlings. Together, our findings establish ABS6 and SAV4 as positive regulators of cMT severing and ordering, and highlight the role of cMT dynamics in fine-tuning differential growth in plants.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Haofeng Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Hui Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R. Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules 2020; 10:E959. [PMID: 32630474 PMCID: PMC7355584 DOI: 10.3390/biom10060959] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants' growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants. The present review provides a comprehensive update on the prospects of ethylene signaling and its cross-talk with other phytohormones to regulate salinity stress tolerance in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal 731235, India;
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India;
| | - Nisha Nisha
- Department of Integrated Plant Protection, Plant Protection Institute, Faculty of Horticultural Sciences, Szent István University, Páter Károly utca 1, H-2100 Gödöllo, Hungary;
| | - Monika Keisham
- Department of Botany, University of Delhi, New Delhi 110007, India;
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium;
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
8
|
Cadavid IC, Guzman F, de Oliveira-Busatto L, de Almeida RMC, Margis R. Transcriptional analyses of two soybean cultivars under salt stress. Mol Biol Rep 2020; 47:2871-2888. [PMID: 32227253 DOI: 10.1007/s11033-020-05398-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/25/2020] [Indexed: 01/12/2023]
Abstract
Soybean is an economically important plant, and its production is affected in soils with high salinity levels. It is important to understand the adaptive mechanisms through which plants overcome this kind of stress and to identify potential genes for improving abiotic stress tolerance. RNA-Seq data of two Glycine max cultivars, a drought-sensitive (C08) and a tolerant (Conquista), subjected to different periods of salt stress were analyzed. The transcript expression profile was obtained using a transcriptogram approach, comparing both cultivars and different times of treatment. After 4 h of salt stress, Conquista cultivar had 1400 differentially expressed genes, 647 induced and 753 repressed. Comparative expression revealed that 719 genes share the same pattern of induction or repression between both cultivars. Among them, 393 genes were up- and 326 down-regulated. Salt stress also modified the expression of 54 isoforms of miRNAs in Conquista, by the maturation of 39 different pre-miRNAs. The predicted targets for 12 of those mature miRNAs also have matches with 15 differentially expressed genes from our analyses. We found genes involved in important pathways related to stress adaptation. Genes from both ABA and BR signaling pathways were modulated, with possible crosstalk between them, and with a likely post-transcriptional regulation by miRNAs. Genes related to ethylene biosynthesis, DNA repair, and plastid translation process were those that could be regulated by miRNA.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Frank Guzman
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Av. La Molina, 1981, Lima 12, Perú
| | - Luisa de Oliveira-Busatto
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rita M C de Almeida
- Instituto de Física, Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Nacional de Ciência E Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós Graduação Em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Rogerio Margis
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas (LGPP), Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves, 9500 - Prédio 43422, Laboratório 206, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Wang X, Ma Q, Wang R, Wang P, Liu Y, Mao T. Submergence stress-induced hypocotyl elongation through ethylene signaling-mediated regulation of cortical microtubules in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1067-1077. [PMID: 31638649 DOI: 10.1093/jxb/erz453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/29/2019] [Indexed: 05/21/2023]
Abstract
Plant growth is significantly altered in response to submergence stress. However, the molecular mechanisms used by seedlings in response to this stress, especially for hypocotyl growth, are largely unknown in terrestrial plants such as Arabidopsis thaliana. The microtubule cytoskeleton participates in plant cell growth, but it remains unclear whether submergence-mediated plant growth involves the microtubule cytoskeleton. We demonstrated that in Arabidopsis submergence induced underwater hypocotyl elongation through the activation of ethylene signaling, which modulated cortical microtubule reorganization. Submergence enhanced ethylene signaling, which then activated and stabilized its downstream transcription factor, phytochrome-interacting factor 3 (PIF3), to promote hypocotyl elongation. In particular, the regulation of microtubule organization was important for this physiological process. Microtubule-destabilizing protein 60 (MDP60), which was previously identified as a downstream effector of PIF3, played a positive role in submergence-induced hypocotyl elongation. Submergence induced MDP60 expression through ethylene signaling. The effects of submergence on hypocotyl elongation and cortical microtubule reorganization were suppressed in mdp60 mutants. These data suggest a potential mechanism by which submergence activates ethylene signaling to promote underwater hypocotyl elongation via alteration of the microtubule cytoskeleton in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Wang
- Zhengzhou Tabacco Research Institute, Zhengzhou, Henan, China
| | - Pan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Vavrdová T, Křenek P, Ovečka M, Šamajová O, Floková P, Illešová P, Šnaurová R, Šamaj J, Komis G. Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:693. [PMID: 32582243 PMCID: PMC7290007 DOI: 10.3389/fpls.2020.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Microtubule bundling is an essential mechanism underlying the biased organization of interphase and mitotic microtubular systems of eukaryotes in ordered arrays. Microtubule bundle formation can be exemplified in plants, where the formation of parallel microtubule systems in the cell cortex or the spindle midzone is largely owing to the microtubule crosslinking activity of a family of microtubule associated proteins, designated as MAP65s. Among the nine members of this family in Arabidopsis thaliana, MAP65-1 and MAP65-2 are ubiquitous and functionally redundant. Crosslinked microtubules can form high-order arrays, which are difficult to track using widefield or confocal laser scanning microscopy approaches. Here, we followed spatiotemporal patterns of MAP65-2 localization in hypocotyl cells of Arabidopsis stably expressing fluorescent protein fusions of MAP65-2 and tubulin. To circumvent imaging difficulties arising from the density of cortical microtubule bundles, we use different superresolution approaches including Airyscan confocal laser scanning microscopy (ACLSM), structured illumination microscopy (SIM), total internal reflection SIM (TIRF-SIM), and photoactivation localization microscopy (PALM). We provide insights into spatiotemporal relations between microtubules and MAP65-2 crossbridges by combining SIM and ACLSM. We obtain further details on MAP65-2 distribution by single molecule localization microscopy (SMLM) imaging of either mEos3.2-MAP65-2 stochastic photoconversion, or eGFP-MAP65-2 stochastic emission fluctuations under specific illumination conditions. Time-dependent dynamics of MAP65-2 were tracked at variable time resolution using SIM, TIRF-SIM, and ACLSM and post-acquisition kymograph analysis. ACLSM imaging further allowed to track end-wise dynamics of microtubules labeled with TUA6-GFP and to correlate them with concomitant fluctuations of MAP65-2 tagged with tagRFP. All different microscopy modules examined herein are accompanied by restrictions in either the spatial resolution achieved, or in the frame rates of image acquisition. PALM imaging is compromised by speed of acquisition. This limitation was partially compensated by exploiting emission fluctuations of eGFP which allowed much higher photon counts at substantially smaller time series compared to mEos3.2. SIM, TIRF-SIM, and ACLSM were the methods of choice to follow the dynamics of MAP65-2 in bundles of different complexity. Conclusively, the combination of different superresolution methods allowed for inferences on the distribution and dynamics of MAP65-2 within microtubule bundles of living A. thaliana cells.
Collapse
|
11
|
Falcioni R, Moriwaki T, Perez-Llorca M, Munné-Bosch S, Gibin MS, Sato F, Pelozo A, Pattaro MC, Giacomelli ME, Rüggeberg M, Antunes WC. Cell wall structure and composition is affected by light quality in tomato seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111745. [PMID: 31931381 DOI: 10.1016/j.jphotobiol.2019.111745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022]
Abstract
Light affects many aspects of cell development. Tomato seedlings growing at different light qualities (white, blue, green, red, far-red) and in the dark displayed alterations in cell wall structure and composition. A strong and negative correlation was found between cell wall thickness and hypocotyl growth. Cell walls was thicker under blue and white lights and thinner under far-red light and in the dark, while intermediate values was observed for red or green lights. Additionally, the inside layer surface of cell wall presented random deposited microfibrillae angles under far-red light and in the dark. However, longitudinal transmission electron microscopy indicates a high frequency of microfibrils close to parallels related to the elongation axis in the outer layer. This was confirmed by ultra-high resolution small angle X-ray scattering. These data suggest that cellulose microfibrils would be passively reoriented in the longitudinal direction. As the cell expands, the most recently deposited layers (inside) behave differentially oriented compared to older (outer) layers in the dark or under FR lights, agreeing with the multinet growth hypothesis. High Ca and pectin levels were found in the cell wall of seedlings growing under blue and white light, also contributing to the low extensibility of the cell wall. Low Ca and pectin contents were found in the dark and under far-red light. Auxins marginally stimulated growth in thin cell wall circumstances. Hypocotyl growth was stimulated by gibberellins under blue light.
Collapse
Affiliation(s)
- Renan Falcioni
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Biochemistry Laboratory, Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Thaise Moriwaki
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Perez-Llorca
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Mariana Sversut Gibin
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francielle Sato
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Andressa Pelozo
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Anatomy Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mariana Carmona Pattaro
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Ellen Giacomelli
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Markus Rüggeberg
- Wood Material Science, Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Schafmattstrasse 6, CH-8093 Zurich, Switzerland
| | - Werner Camargos Antunes
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
12
|
Takeda S, Ochiai K, Kagaya Y, Egusa W, Morimoto H, Sakazono S, Osaka M, Nabemoto M, Suzuki G, Watanabe M, Suwabe K. Abscisic acid-mediated developmental flexibility of stigmatic papillae in response to ambient humidity in Arabidopsis thaliana. Genes Genet Syst 2018; 93:209-220. [PMID: 30473573 DOI: 10.1266/ggs.18-00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Stigmatic papillae develop at the apex of the gynoecium and play an important role as a site of pollination. The papillae in Brassicaceae are of the dry and unicellular type, and more than 15,000 genes are expressed in the papillae; however, the molecular and physiological mechanisms of their development remain unknown. We found that the papillae in Arabidopsis thaliana change their length in response to altered ambient humidity: papillae of flowers incubated under high humidity elongated more than those under normal humidity conditions. Genetic analysis and transcriptome data suggest that an abscisic acid-mediated abiotic stress response mechanism regulates papilla length. Our data suggest a flexible regulation of papilla elongation at the post-anthesis stage, in response to abiotic stress, as an adaptation to environmental conditions.
Collapse
Affiliation(s)
- Seiji Takeda
- Laboratory of Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University.,Laboratory of Cell and Genome Biology, Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center
| | - Kohki Ochiai
- Laboratory of Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Yasuaki Kagaya
- Laboratory of Plant Functional Genomics, Life Science Research Center, Mie University.,Laboratory of Plant Functional Genomics, Graduate School of Regional Innovation Studies, Mie University
| | - Wataru Egusa
- Laboratory of Molecular Genetics and Breeding, Graduate School of Bioresources, Mie University
| | - Hiroaki Morimoto
- Laboratory of Molecular Genetics and Breeding, Graduate School of Bioresources, Mie University
| | - Satomi Sakazono
- Laboratory of Plant Molecular Breeding, Graduate School of Life Sciences, Tohoku University
| | - Masaaki Osaka
- Laboratory of Plant Molecular Breeding, Graduate School of Life Sciences, Tohoku University
| | - Moe Nabemoto
- Laboratory of Plant Molecular Breeding, Graduate School of Life Sciences, Tohoku University
| | - Go Suzuki
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University
| | - Masao Watanabe
- Laboratory of Plant Molecular Breeding, Graduate School of Life Sciences, Tohoku University
| | - Keita Suwabe
- Laboratory of Molecular Genetics and Breeding, Graduate School of Bioresources, Mie University
| |
Collapse
|
13
|
Yu Y, Huang R. Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:57. [PMID: 28174592 PMCID: PMC5258764 DOI: 10.3389/fpls.2017.00057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/10/2017] [Indexed: 05/21/2023]
Abstract
As an ideal model for studying ethylene effects on cell elongation, Arabidopsis hypocotyl growth is widely used due to the unique characteristic that ethylene stimulates hypocotyl elongation in the light but inhibits it in the dark. Although the contrasting effect of ethylene on hypocotyl growth has long been known, the molecular basis of this effect has only gradually been identified in recent years. In the light, ethylene promotes the expression of PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and the degradation of ELONGATED HYPOCOTYL 5 (HY5) protein, thus stimulating hypocotyl growth. In the dark, ETHYLENE RESPONSE FACTOR 1 (ERF1) and WAVE-DAMPENED 5 (WDL5) induced by ethylene are responsible for its inhibitory effect on hypocotyl elongation. Moreover, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and PHYTOCHROME B (phyB) mediate the light-suppressed ethylene response in different ways. Here, we review several pivotal advances associated with ethylene-regulated hypocotyl elongation, focusing on the integration of ethylene and light signaling during seedling emergence from the soil.
Collapse
Affiliation(s)
- Yanwen Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijing, China
- *Correspondence: Rongfeng Huang,
| |
Collapse
|
14
|
Higaki T. Quantitative evaluation of cytoskeletal organizations by microscopic image analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.5685/plmorphol.29.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|