1
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutierrez-Uzquiza A, Fuster G, Bragado P. Role of semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co-receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Liu H, Dang R, Zhang W, Hong J, Li X. SNARE proteins: Core engines of membrane fusion in cancer. Biochim Biophys Acta Rev Cancer 2024:189148. [PMID: 38960006 DOI: 10.1016/j.bbcan.2024.189148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.
Collapse
Affiliation(s)
- Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
4
|
Rabas N, Palmer S, Mitchell L, Ismail S, Gohlke A, Riley JS, Tait SW, Gammage P, Soares LL, Macpherson IR, Norman JC. PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J Cell Biol 2021; 220:e202006049. [PMID: 34623384 PMCID: PMC8641410 DOI: 10.1083/jcb.202006049] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
The cystine-glutamate antiporter, xCT, supports a glutathione synthesis program enabling cancer cells to cope with metabolically stressful microenvironments. Up-regulated xCT, in combination with glutaminolysis, leads to increased extracellular glutamate, which promotes invasive behavior by activating metabotropic glutamate receptor 3 (mGluR3). Here we show that activation of mGluR3 in breast cancer cells activates Rab27-dependent release of extracellular vesicles (EVs), which can transfer invasive characteristics to "recipient" tumor cells. These EVs contain mitochondrial DNA (mtDNA), which is packaged via a PINK1-dependent mechanism. We highlight mtDNA as a key EV cargo necessary and sufficient for intercellular transfer of invasive behavior by activating Toll-like receptor 9 in recipient cells, and this involves increased endosomal trafficking of pro-invasive receptors. We propose that an EV-mediated mechanism, through which altered cellular metabolism in one cell influences endosomal trafficking in other cells, is key to generation and dissemination of pro-invasive microenvironments during mammary carcinoma progression.
Collapse
Affiliation(s)
| | - Sarah Palmer
- Beatson Institute for Cancer Research, Glasgow, UK
| | | | | | | | - Joel S. Riley
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W.G. Tait
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Payam Gammage
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber Soares
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Iain R. Macpherson
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jim C. Norman
- Beatson Institute for Cancer Research, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Pradhan AJ, Lu D, Parisi LR, Shen S, Berhane IA, Galster SL, Bynum K, Monje-Galvan V, Gokcumen O, Chemler SR, Qu J, Kay JG, Atilla-Gokcumen GE. Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chem Biol 2021; 28:1298-1309.e7. [PMID: 33848465 DOI: 10.1016/j.chembiol.2021.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023]
Abstract
Necroptosis is a form of cell death characterized by receptor-interacting protein kinase activity and plasma membrane permeabilization via mixed-lineage kinase-like protein (MLKL). This permeabilization is responsible for the inflammatory properties of necroptosis. We previously showed that very long chain fatty acids (VLCFAs) are functionally involved in necroptosis, potentially through protein fatty acylation. Here, we define the scope of protein acylation by saturated VLCFAs during necroptosis. We show that MLKL and phosphoMLKL, key for membrane permeabilization, are exclusively acylated during necroptosis. Reducing the levels of VLCFAs decreases their membrane recruitment, suggesting that acylation by VLCFAs contributes to their membrane localization. Acylation of phosphoMLKL occurs downstream of phosphorylation and oligomerization and appears to be, in part, mediated by ZDHHC5 (a palmitoyl transferase). We also show that disruption of endosomal trafficking increases cell viability during necroptosis, possibly by preventing recruitment, or removal, of phosphoMLKL from the plasma membrane.
Collapse
Affiliation(s)
- Apoorva J Pradhan
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Daniel Lu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Laura R Parisi
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Ilyas A Berhane
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Samuel L Galster
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kiana Bynum
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Sherry R Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Jason G Kay
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
6
|
Pilliod J, Desjardins A, Pernègre C, Jamann H, Larochelle C, Fon EA, Leclerc N. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J Biol Chem 2021; 295:17827-17841. [PMID: 33454017 DOI: 10.1074/jbc.ra120.013553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/03/2020] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease (AD), tau, a microtubule-associated protein (MAP), becomes hyperphosphorylated, aggregates, and accumulates in the somato-dendritic compartment of neurons. In parallel to its intracellular accumulation in AD, tau is also released in the extracellular space, as revealed by its increased presence in cerebrospinal fluid (CSF). Consistent with this, recent studies, including ours, have reported that neurons secrete tau, and several therapeutic strategies aim to prevent the intracellular tau accumulation. Previously, we reported that late endosomes were implicated in tau secretion. Here, we explore the possibility of preventing intracellular tau accumulation by increasing tau secretion. Using neuronal models, we investigated whether overexpression of the vesicle-associated membrane protein 8 (VAMP8), an R-SNARE found on late endosomes, could increase tau secretion. The overexpression of VAMP8 significantly increased tau secretion, decreasing its intracellular levels in the neuroblastoma (N2a) cell line. Increased tau secretion by VAMP8 was also observed in murine hippocampal slices. The intracellular reduction of tau by VAMP8 overexpression correlated to a decrease of acetylated tubulin induced by tau overexpression in N2a cells. VAMP8 staining was preferentially found on late endosomes in N2a cells. Using total internal reflection fluorescence (TIRF) microscopy, the fusion of VAMP8-positive vesicles with the plasma membrane was correlated to the depletion of tau in the cytoplasm. Finally, overexpression of VAMP8 reduced the intracellular accumulation of tau mutants linked to frontotemporal dementia with parkinsonism and α-synuclein by increasing their secretion. Collectively, the present data indicate that VAMP8 could be used to increase tau and α-synuclein clearance to prevent their intracellular accumulation.
Collapse
Affiliation(s)
- Julie Pilliod
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Alexandre Desjardins
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Hélène Jamann
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Catherine Larochelle
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
7
|
Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation. Sci Rep 2020; 10:2259. [PMID: 32042057 PMCID: PMC7010782 DOI: 10.1038/s41598-020-58264-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/08/2020] [Indexed: 11/08/2022] Open
Abstract
Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase.
Collapse
|
8
|
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, Ravandi A, Stanton E, Slutsky AS, Dos Santos CC, Romaschin A, Marshall JC, Addison C, Malone S, Heyland D, Scheltens P, Killestein J, Teunissen C, Diamandis EP, Siu KWM, Marshall JG. The plasma peptides of breast versus ovarian cancer. Clin Proteomics 2019; 16:43. [PMID: 31889940 PMCID: PMC6927194 DOI: 10.1186/s12014-019-9262-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer's and multiple sclerosis along with the institution-matched normal and control samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma samples in a step gradient of acetonitrile, and collected over preparative C18 for LC-ESI-MS/MS with a set of LTQ XL linear quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were significantly enriched in proteins that showed a complex set of previously established functional and structural relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer. Conclusion There was striking agreement between the breast cancer plasma peptides and proteins discovered by LC-ESI-MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discovered by LC-ESI-MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.
Collapse
Affiliation(s)
- Jaimie Dufresne
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Pete Bowden
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Thanusi Thavarajah
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Angelique Florentinus-Mefailoski
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Zhuo Zhen Chen
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Monika Tucholska
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Tenzin Norzin
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Margaret Truc Ho
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Morla Phan
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Nargiz Mohamed
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada
| | - Amir Ravandi
- 2Institute of Cardiovascular Sciences, St. Boniface Hospital Research Center, University of Manitoba, Winnipeg, Canada
| | - Eric Stanton
- 3Division of Cardiology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Arthur S Slutsky
- 4St. Michael's Hospital, Keenan Chair in Medicine, Professor of Medicine, Surgery & Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Claudia C Dos Santos
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Alexander Romaschin
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - John C Marshall
- 5St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Christina Addison
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Shawn Malone
- 6Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Daren Heyland
- 7Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Canada
| | - Philip Scheltens
- 8Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- 9MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- 10Neurochemistry Lab and Biobank, Dept of Clinical Chemsitry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - K W M Siu
- 12University of Windsor, Windsor, Canada
| | - John G Marshall
- 1Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON Canada.,13International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (formerly CRP Sante Luxembourg), Strassen, Luxembourg
| |
Collapse
|
9
|
Wang M, Wang W, Ding J, Wang J, Zhang J. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling. Thorac Cancer 2019; 11:379-388. [PMID: 31841274 PMCID: PMC6997001 DOI: 10.1111/1759-7714.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rab GTPases play a key role in regulating intercellular vesicle trafficking in both exo- and endocytic pathways. Recent studies have reported that Rab small GTPases and the associated regulatory proteins and effectors are involved in many cancers. The purpose of this study was to investigate the biological role of Rab17 in non-small cell lung cancer (NSCLC) and the relative mechanism. METHODS Rab17 expression in human NSCLC cell lines and tissues was evaluated using real-time PCR (RT-PCR), western blot and immunohistochemical (IHC) staining. NSCLC cell lines with RAB17 stable knockdown were generated to explore its function in vitro and in vivo. Additionally, we investigated the potential mechanism of Rab17 by identifying the expression levels of STAT3/HIF-1α/VEGF pathway using western blot analysis. RESULTS Decreased Rab17 expression was correlated with poor overall survival in NSCLC patients. The functional assays showed that knockdown of Rab17 could promote tumorigenic properties of NSCLC cells in vitro and in vivo, including enhanced cell proliferation, colony formation, invasion and migration, angiogenesis and tumor xenograft growth, and suppressed apoptosis. Moreover, Rab17 downregulation decreased epithelial marker E-cadherin and increased mesenchymal markers Vimentin and β-catenin, suggesting knockdown of Rab17 induced epithelial-mesenchymal transition (EMT). CONCLUSION Downregulation of Rab17 promotes cell invasion and enhances tumorigenicity in part through the STAT3/HIF-1α/VEGF pathway, which may represent a novel potential therapeutic target.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendong Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmin Ding
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiashun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. Proc Natl Acad Sci U S A 2019; 116:1279-1288. [PMID: 30610172 PMCID: PMC6347675 DOI: 10.1073/pnas.1812588116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxins exploit numerous pathways of their host cells to gain cellular entry and promote intoxication. Therefore, studying the action of toxins allows us to better understand basic mechanisms in cell biology. In this study, we found that ZDHHC5, an enzyme that adds a lipid posttranslational modification to cysteines of proteins, is responsible for allowing anthrax toxin to enter cells. This enzyme acts on proprotein convertases that are needed to cleave these toxins to their active forms. ZDHHC5 does not affect the enzymatic activity of these proteases, but allows them to encounter the toxin by favoring their partitioning in microdomains on the cell surface, domains where the toxin has previously been shown to preferentially reside. The protein acyl transferase ZDHHC5 was recently proposed to regulate trafficking in the endocytic pathway. Therefore, we explored the function of this enzyme in controlling the action of bacterial toxins. We found that ZDHHC5 activity is required for two very different toxins: the anthrax lethal toxin and the pore-forming toxin aerolysin. Both of these toxins have precursor forms, the protoxins, which can use the proprotein convertases Furin and PC7 for activation. We show that ZDHHC5 indeed affects the processing of the protoxins to their active forms. We found that Furin and PC7 can both be S-palmitoylated and are substrates of ZDHHC5. The impact of ZDHHC5 on Furin/PC7-mediated anthrax toxin cleavage is dual, having an indirect and a direct component. First, ZDHHC5 affects the homeostasis and trafficking of a subset of cellular proteins, including Furin and PC7, presumably by affecting the endocytic/recycling pathway. Second, while not inhibiting the protease activity per se, ZDHHC5-mediated Furin/PC7 palmitoylation is required for the cleavage of the anthrax toxin. Finally, we show that palmitoylation of Furin and PC7 promotes their association with plasma membrane microdomains. Both the receptor-bound toxin and the convertases are of very low abundance at the cell surface. Their encounter is unlikely on reasonable time scales. This work indicates that palmitoylation drives their encounter in specific domains, allowing processing and thereby intoxication of the cell.
Collapse
|
11
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
12
|
Yuan M, Liao J, Luo J, Cui M, Jin F. Significance of Vesicle-Associated Membrane Protein 8 Expression in Predicting Survival in Breast Cancer. J Breast Cancer 2018; 21:399-405. [PMID: 30607161 PMCID: PMC6310720 DOI: 10.4048/jbc.2018.21.e57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose Vesicle-associated membrane protein 8 (VAMP8) is a soluble N-ethylmaleimide-sensitive factor receptor protein that participates in autophagy by directly regulating autophagosome membrane fusion and has been reported to be involved in tumor progression. Nevertheless, the expression and prognostic value of VAMP8 in breast cancer (BC) remain unknown. This study aimed to evaluate the clinical significance and biological function of VAMP8 in BC. Methods A total of 112 BC samples and 30 normal mammary gland samples were collected. The expression of VAMP8 was assessed in both BC tissues and normal mammary gland tissues via a two-step immunohistochemical detection method. Results The expression of VAMP8 in BC tissues was significantly higher than that in normal breast tissues. Furthermore, increased VAMP8 expression was significantly correlated with tumor size (p=0.007), lymph node metastasis (p=0.024) and recurrence (p=0.001). Patients with high VAMP8 expression had significantly lower cumulative recurrence-free survival and overall survival (p<0.001 for both) than patients with low VAMP8 expression. In multivariate logistic regression and Cox regression analyses, lymph node metastasis and VAMP8 expression were independent prognostic factors for BC. Conclusion VAMP8 is significantly upregulated in human BC tissues and can thus be a practical and potentially effective surrogate marker for survival in BC patients.
Collapse
Affiliation(s)
- Mengci Yuan
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianhua Liao
- Department of General Surgery, Zhejiang Hospital, Hangzhou, China
| | - Ji Luo
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyao Cui
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Division of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Hiester BG, Becker MI, Bowen AB, Schwartz SL, Kennedy MJ. Mechanisms and Role of Dendritic Membrane Trafficking for Long-Term Potentiation. Front Cell Neurosci 2018; 12:391. [PMID: 30425622 PMCID: PMC6218485 DOI: 10.3389/fncel.2018.00391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/11/2018] [Indexed: 01/19/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synapses is a major form of plasticity for learning and memory in the central nervous system. While the molecular mechanisms of LTP have been debated for decades, there is consensus that LTP induction activates membrane trafficking pathways within dendrites that are essential for synapse growth and strengthening. Current models suggest that key molecules for synaptic potentiation are sequestered within intracellular organelles, which are mobilized by synaptic activity to fuse with the plasma membrane following LTP induction. While the identity of the factors mobilized to the plasma membrane during LTP remain obscure, the field has narrowly focused on AMPA-type glutamate receptors. Here, we review recent literature and present new experimental data from our lab investigating whether AMPA receptors trafficked from intracellular organelles directly contribute to synaptic strengthening during LTP. We propose a modified model where membrane trafficking delivers distinct factors that are required to maintain synapse growth and AMPA receptor incorporation following LTP. Finally, we pose several fundamental questions that may guide further inquiry into the role of membrane trafficking for synaptic plasticity.
Collapse
Affiliation(s)
- Brian G Hiester
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew I Becker
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron B Bowen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Samantha L Schwartz
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
14
|
VAMP8, a vesicle-SNARE required for RAB37-mediated exocytosis, possesses a tumor metastasis suppressor function. Cancer Lett 2018; 437:79-88. [PMID: 30165196 DOI: 10.1016/j.canlet.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
Abstract
We previously identified a metastasis suppressor RAB37 small GTPase that regulated exocytosis of tissue inhibitor of metalloproteinases 1 (TIMP1) to suppress lung cancer metastasis. Here, we show that vesicle-associated membrane protein 8 (VAMP8), a v-SNARE (vesicle soluble N-ethylmaleimide-sensitive factor activating protein receptor), interacts with RAB37 and drives the secretion of TIMP1 to inhibit tumor metastases. Confocal and total internal reflection fluorescence microscopic images demonstrated that VAMP8 co-localized with RAB37 and facilitated trafficking of RAB37-TIMP1 vesicles. Reconstitution experiments using tail-vein injection and lung-to-lung metastasis in mice showed that VAMP8 was essential for RAB37-regulated vesicle trafficking of TIMP1 to suppress cancer metastasis. Lung cancer patients with low VAMP8 showed distant metastasis, poor overall survival and progression-free survival. Importantly, multivariate Cox regression analysis indicated that patients with low VAMP8/low RAB37 expression profile showed significantly high risk of death (hazard ratio = 3.42, P < 0.001) even after adjusting for tumor metastasis parameter. Our findings reveal that VAMP8 is a novel v-SNARE crucial for RAB37-mediated exocytic transport of TIMP1 to suppress lung tumor metastasis. VAMP8 possesses a tumor metastasis suppressor function with a prognostic value in lung cancer.
Collapse
|
15
|
Martinez-Martin N, Marcandalli J, Huang CS, Arthur CP, Perotti M, Foglierini M, Ho H, Dosey AM, Shriver S, Payandeh J, Leitner A, Lanzavecchia A, Perez L, Ciferri C. An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell 2018; 174:1158-1171.e19. [PMID: 30057110 DOI: 10.1016/j.cell.2018.06.028] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 02/09/2023]
Abstract
Characterizing cell surface receptors mediating viral infection is critical for understanding viral tropism and developing antiviral therapies. Nevertheless, due to challenges associated with detecting protein interactions on the cell surface, the host receptors of many human pathogens remain unknown. Here, we build a library consisting of most single transmembrane human receptors and implement a workflow for unbiased and high-sensitivity detection of receptor-ligand interactions. We apply this technology to elucidate the long-sought receptor of human cytomegalovirus (HCMV), the leading viral cause of congenital birth defects. We identify neuropilin-2 (Nrp2) as the receptor for HCMV-pentamer infection in epithelial/endothelial cells and uncover additional HCMV interactors. Using a combination of biochemistry, cell-based assays, and electron microscopy, we characterize the pentamer-Nrp2 interaction and determine the architecture of the pentamer-Nrp2 complex. This work represents an important approach to the study of host-pathogen interactions and provides a framework for understanding HCMV infection, neutralization, and the development of novel anti-HCMV therapies.
Collapse
Affiliation(s)
| | - Jessica Marcandalli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | | - Michela Perotti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Mathilde Foglierini
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Hoangdung Ho
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Annie M Dosey
- Structural Biology, Genentech, South San Francisco, CA, USA
| | | | - Jian Payandeh
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Antonio Lanzavecchia
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Laurent Perez
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Claudio Ciferri
- Structural Biology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|