1
|
Laval F, Coppin G, Twizere JC, Vidal M. Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease. Int J Mol Sci 2023; 24:9179. [PMID: 37298131 PMCID: PMC10252790 DOI: 10.3390/ijms24119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Understanding how genetic variation affects phenotypes represents a major challenge, particularly in the context of human disease. Although numerous disease-associated genes have been identified, the clinical significance of most human variants remains unknown. Despite unparalleled advances in genomics, functional assays often lack sufficient throughput, hindering efficient variant functionalization. There is a critical need for the development of more potent, high-throughput methods for characterizing human genetic variants. Here, we review how yeast helps tackle this challenge, both as a valuable model organism and as an experimental tool for investigating the molecular basis of phenotypic perturbation upon genetic variation. In systems biology, yeast has played a pivotal role as a highly scalable platform which has allowed us to gain extensive genetic and molecular knowledge, including the construction of comprehensive interactome maps at the proteome scale for various organisms. By leveraging interactome networks, one can view biology from a systems perspective, unravel the molecular mechanisms underlying genetic diseases, and identify therapeutic targets. The use of yeast to assess the molecular impacts of genetic variants, including those associated with viral interactions, cancer, and rare and complex diseases, has the potential to bridge the gap between genotype and phenotype, opening the door for precision medicine approaches and therapeutic development.
Collapse
Affiliation(s)
- Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Georges Coppin
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Coronas-Serna JM, Valenti M, Del Val E, Fernández-Acero T, Rodríguez-Escudero I, Mingo J, Luna S, Torices L, Pulido R, Molina M, Cid VJ. Modeling human disease in yeast: recreating the PI3K-PTEN-Akt signaling pathway in Saccharomyces cerevisiae. Int Microbiol 2019; 23:75-87. [PMID: 31218536 DOI: 10.1007/s10123-019-00082-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The yeast Saccharomyces cerevisiae is a model organism that has been thoroughly exploited to understand the universal mechanisms that govern signaling pathways. Due to its ease of manipulation, humanized yeast models that successfully reproduce the function of human genes permit the development of highly efficient genetic approaches for molecular studies. Of special interest are those pathways related to human disease that are conserved from yeast to mammals. However, it is also possible to engineer yeast cells to implement functions that are naturally absent in fungi. Along the years, we have reconstructed several aspects of the mammalian phosphatidylinositol 3-kinase (PI3K) pathway in S. cerevisiae. Here, we briefly review the use of S. cerevisiae as a tool to study human oncogenes and tumor suppressors, and we present an overview of the models applied to the study of the PI3K oncoproteins, the tumor suppressor PTEN, and the Akt protein kinase. We discuss the application of these models to study the basic functional properties of these signaling proteins, the functional assessment of their clinically relevant variants, and the design of feasible platforms for drug discovery.
Collapse
Affiliation(s)
- Julia María Coronas-Serna
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Marta Valenti
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Elba Del Val
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Sandra Luna
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|