1
|
Katow H, Ryoo HD. eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle. Dis Model Mech 2024; 17:dmm050729. [PMID: 39207054 PMCID: PMC11381931 DOI: 10.1242/dmm.050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.
Collapse
Affiliation(s)
- Hidetaka Katow
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Shanmugam R, Anderson R, Schiemann AH, Sattlegger E. Evidence that Xrn1 is in complex with Gcn1, and is required for full levels of eIF2α phosphorylation. Biochem J 2024; 481:481-498. [PMID: 38440860 PMCID: PMC11088878 DOI: 10.1042/bcj20220531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.
Collapse
Affiliation(s)
- Renuka Shanmugam
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Reuben Anderson
- School of Natural Sciences, Massey University, Auckland, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H. Schiemann
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Evelyn Sattlegger
- School of Natural Sciences, Massey University, Auckland, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Levy JL, Mirek ET, Rodriguez EM, Zalma B, Burns J, Jonsson WO, Sampath H, Staschke KA, Wek RC, Anthony TG. GCN2 is required to maintain core body temperature in mice during acute cold. Am J Physiol Endocrinol Metab 2023; 325:E624-E637. [PMID: 37792040 PMCID: PMC10864021 DOI: 10.1152/ajpendo.00181.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis. In alignment with our hypothesis, female and male mice lacking GCN2 failed to adequately increase energy expenditure and veered into torpor. Mice administered a small molecule inhibitor of GCN2 were also profoundly intolerant to acute cold stress. Gcn2 deletion also impeded liver-derived FGF21 but in males only. Within the brown adipose tissue (BAT), acute cold exposure increased ISR activation and its transcriptional execution in males and females. RNA sequencing in BAT identified transcripts that encode actomyosin mechanics and transmembrane transport as requiring GCN2 during cold exposure. These transcripts included class II myosin heavy chain and amino acid transporters, critical for maximal thermogenesis during cold stress. Importantly, Gcn2 deletion corresponded with higher circulating amino acids and lower intracellular amino acids in the BAT during cold stress. In conclusion, we identify a sex-independent role for GCN2 activation to support adaptive thermogenesis via uptake of amino acids into brown adipose.NEW & NOTEWORTHY This paper details the discovery that GCN2 activation is required in both male and female mice to maintain core body temperature during acute cold exposure. The results point to a novel role for GCN2 in supporting adaptive thermogenesis via amino acid transport and actomyosin mechanics in brown adipose tissue.
Collapse
Affiliation(s)
- Jordan L Levy
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Emily T Mirek
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Esther M Rodriguez
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Brian Zalma
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Jeffrey Burns
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - William O Jonsson
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Harini Sampath
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| |
Collapse
|
4
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Gasparski AN, Mason DE, Moissoglu K, Mili S. Regulation and outcomes of localized RNA translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1721. [PMID: 35166036 PMCID: PMC9787767 DOI: 10.1002/wrna.1721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/31/2022]
Abstract
Spatial segregation of mRNAs in the cytoplasm of cells is a well-known biological phenomenon that is widely observed in diverse species spanning different kingdoms of life. In mammalian cells, localization of mRNAs has been documented and studied quite extensively in highly polarized cells, most notably in neurons, where localized mRNAs function to direct protein production at sites that are quite distant from the soma. Recent studies have strikingly revealed that a large proportion of the cellular transcriptome exhibits polarized distributions even in cells that lack an obvious need for long-range transport, such as fibroblasts or epithelial cells. This review focuses on emerging concepts regarding the functional outcomes of mRNA targeting in the cytoplasm of such cells. We also discuss regulatory mechanisms controlling these events, with an emphasis on the role of cell mechanics and the organization of the cytoskeleton. This article is categorized under: Translation > Regulation RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Alexander N. Gasparski
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Devon E. Mason
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
6
|
Liu S, Matsui TS, Kang N, Deguchi S. Analysis of senescence-responsive stress fiber proteome reveals reorganization of stress fibers mediated by elongation factor eEF2 in HFF-1 cells. Mol Biol Cell 2021; 33:ar10. [PMID: 34705524 PMCID: PMC8886821 DOI: 10.1091/mbc.e21-05-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress fibers (SFs), which are actomyosin structures, reorganize in response to various cues to maintain cellular homeostasis. Currently, the protein components of SFs are only partially identified, limiting our understanding of their responses. Here we isolate SFs from human fibroblasts HFF-1 to determine with proteomic analysis the whole protein components and how they change with replicative senescence (RS), a state where cells decline in the ability to replicate after repeated divisions. We found that at least 135 proteins are associated with SFs, and 63 of them are up-regulated with RS, by which SFs become larger in size. Among them, we focused on eEF2 (eukaryotic translation elongation factor 2) as it exhibited on RS the most significant increase in abundance. We show that eEF2 is critical to the reorganization and stabilization of SFs in senescent fibroblasts. Our findings provide a novel molecular basis for SFs to be reinforced to resist cellular senescence.
Collapse
Affiliation(s)
- Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Na Kang
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| |
Collapse
|
7
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
8
|
Lyu X, Yang Q, Zhao F, Liu Y. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Nucleic Acids Res 2021; 49:9404-9423. [PMID: 34417614 PMCID: PMC8450115 DOI: 10.1093/nar/gkab729] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Essential cellular functions require efficient production of many large proteins but synthesis of large proteins encounters many obstacles in cells. Translational control is mostly known to be regulated at the initiation step. Whether translation elongation process can feedback to regulate initiation efficiency is unclear. Codon usage bias, a universal feature of all genomes, plays an important role in determining gene expression levels. Here, we discovered that there is a conserved but codon usage-dependent genome-wide negative correlation between protein abundance and CDS length. The codon usage effects on protein expression and ribosome flux on mRNAs are influenced by CDS length; optimal codon usage preferentially promotes production of large proteins. Translation of mRNAs with long CDS and non-optimal codon usage preferentially induces phosphorylation of initiation factor eIF2α, which inhibits translation initiation efficiency. Deletion of the eIF2α kinase CPC-3 (GCN2 homolog) in Neurospora preferentially up-regulates large proteins encoded by non-optimal codons. Surprisingly, CPC-3 also inhibits translation elongation rate in a codon usage and CDS length-dependent manner, resulting in slow elongation rates for long CDS mRNAs. Together, these results revealed a codon usage and CDS length-dependent feedback mechanism from translation elongation to regulate both translation initiation and elongation kinetics.
Collapse
Affiliation(s)
- Xueliang Lyu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.,State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
9
|
Ramesh R, Dautel M, Lee Y, Kim Y, Storey K, Gottfried S, Goss Kinzy T, Huh WK, Sattlegger E. Asp56 in actin is critical for the full activity of the amino acid starvation-responsive kinase Gcn2. FEBS Lett 2021; 595:1886-1901. [PMID: 34096057 DOI: 10.1002/1873-3468.14137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/09/2022]
Abstract
Eukaryotes harbour a conserved signalling pathway, called General Amino Acid Control (GAAC) in Saccharomyces cerevisiae, for overcoming amino acid starvation. Upon starvation, the protein kinase Gcn2, which phosphorylates the eukaryotic translation initiation factor eIF2α, becomes stimulated to trigger the GAAC response. Genetic studies suggest that Yih1, which is the yeast homolog of mammalian IMPACT and which binds monomeric actin, inhibits Gcn2 when released from actin. Here, we found that D56A substitution in actin (the act1-9 allele) leads to reduced eIF2α phosphorylation, suggesting that the Asp56 residue is required for full Gcn2 activation. In the act1-9 mutant, Yih1 overexpression further enhanced the sensitivity to amino acid starvation-inducing drugs and further impaired eIF2α phosphorylation, suggesting that Gcn2 inhibition was mediated via Yih1. The D56A substitution may impair the actin-Yih1 interaction, directly or indirectly, thereby increasing the amount of Yih1 available to inhibit Gcn2.
Collapse
Affiliation(s)
- Rashmi Ramesh
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Martina Dautel
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Yongook Lee
- School of Biological Sciences, Seoul National University, Korea
| | - Yeonsoo Kim
- School of Biological Sciences, Seoul National University, Korea
| | - Kirsty Storey
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Susanne Gottfried
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Terri Goss Kinzy
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Korea
| | - Evelyn Sattlegger
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.,Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Dahal B, Lehman CW, Akhrymuk I, Bracci NR, Panny L, Barrera MD, Bhalla N, Jacobs JL, Dinman JD, Kehn-Hall K. PERK Is Critical for Alphavirus Nonstructural Protein Translation. Viruses 2021; 13:892. [PMID: 34065980 PMCID: PMC8151226 DOI: 10.3390/v13050892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4-5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.
Collapse
Affiliation(s)
- Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | - Caitlin W. Lehman
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ivan Akhrymuk
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Nicole R. Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lauren Panny
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael D. Barrera
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | | | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Eleftheriadis T, Pissas G, Crespo M, Filippidis G, Antoniadis N, Liakopoulos V, Stefanidis I. The effect of anti‑HLA class I antibodies on the immunological properties of human glomerular endothelial cells and their modification by mTOR inhibition or GCN2 kinase activation. Mol Med Rep 2021; 23:355. [PMID: 33760196 PMCID: PMC7974416 DOI: 10.3892/mmr.2021.11994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 11/06/2022] Open
Abstract
In antibody‑mediated rejection (ABMR), the graft endothelium is at the forefront of the kidney transplant against the assault from the recipient's humoral immune system, and is a target of the latter. The present study investigated the effect of antibodies against human leukocyte antigen (HLA) class I (anti‑HLAI) on the immunological properties of human glomerular endothelial cells. Additionally, the effect of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) inhibitor (everolimus), or the general control nonderepressible 2 kinase (GCN2K) activator (halofuginone) on anti‑HLAI antibody‑mediated alterations was assessed. Cell integrity was examined, an lactate dehydrogenase (LDH) release assay was performed and cleaved caspase‑3 levels were determined. Furthermore, cell proliferation was analyzed by performing a bromodeoxyuridine assay and the cellular proteins involved in signal transduction or immune effector mechanisms were assessed via western blotting. IL‑8, monocyte chemoattractive protein‑1 (MCP‑1), von Willebrand factor (vWF) and transforming growth factor‑beta 1 (TGF‑β1) were assayed via ELISA. The results revealed that anti‑HLAI triggered integrin signaling, activated mTOR and GCN2K, preserved cell integrity and promoted cell proliferation. Additionally, by increasing intercellular adhesion molecule 1 (ICAM‑1), HLA‑DR, IL‑8 and MCP‑1 levels, anti‑HLAI enhanced the ability of immune cells to interact with endothelial cells thus facilitating graft rejection. Contrarily, by upregulating CD46 and CD59, anti‑HLAI rendered the endothelium less vulnerable to complement‑mediated injury. Finally, by enhancing vWF and TGF‑β1, anti‑HLAI may render the endothelium prothrombotic and facilitate fibrosis and graft failure, respectively. According to our results, mTORC1 inhibition and GCN2K activation may prove useful pharmaceutical targets, as they prevent cell proliferation and downregulate ICAM‑1, IL‑8, MCP‑1 and TGF‑β1. mTORC1 inhibition also decreases vWF.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Marta Crespo
- Nephrology Department, Hospital del Mar, Mar Health Park, Hospital del Mar Medical Research Institute, Barcelona 08003, Spain
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Nikolaos Antoniadis
- Organ Transplant Unit, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| |
Collapse
|
12
|
Harjes E, Jameson GB, Tu YH, Burr N, Loo TS, Goroncy AK, Edwards PJB, Harjes S, Munro B, Göbl C, Sattlegger E, Norris GE. Experimentally based structural model of Yih1 provides insight into its function in controlling the key translational regulator Gcn2. FEBS Lett 2020; 595:324-340. [PMID: 33156522 DOI: 10.1002/1873-3468.13990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Yeast impact homolog 1 (Yih1), or IMPACT in mammals, is part of a conserved regulatory module controlling the activity of General Control Nonderepressible 2 (Gcn2), a protein kinase that regulates protein synthesis. Yih1/IMPACT is implicated not only in many essential cellular processes, such as neuronal development, immune system regulation and the cell cycle, but also in cancer. Gcn2 must bind to Gcn1 in order to impair the initiation of protein translation. Yih1 hinders this key Gcn1-Gcn2 interaction by binding to Gcn1, thus preventing Gcn2-mediated inhibition of protein synthesis. Here, we solved the structures of the two domains of Saccharomyces cerevisiae Yih1 separately using Nuclear Magnetic Resonance and determined the relative positions of the two domains using a range of biophysical methods. Our findings support a compact structural model of Yih1 in which the residues required for Gcn1 binding are buried in the interface. This model strongly implies that Yih1 undergoes a large conformational rearrangement from a latent closed state to a primed open state to bind Gcn1. Our study provides structural insight into the interactions of Yih1 with partner molecules.
Collapse
Affiliation(s)
- Elena Harjes
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| | - Geoffrey B Jameson
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| | - Yi-Hsuan Tu
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Natalie Burr
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Trevor S Loo
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alexander K Goroncy
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J B Edwards
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Stefan Harjes
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Ben Munro
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Christoph Göbl
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Evelyn Sattlegger
- Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand.,School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Gillian E Norris
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Ramesh R, Sattlegger E. Domain II of the translation elongation factor eEF1A is required for Gcn2 kinase inhibition. FEBS Lett 2020; 594:2266-2281. [PMID: 32359173 DOI: 10.1002/1873-3468.13803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
The signalling pathway governing general control nonderepressible (Gcn)2 kinase allows cells to cope with amino acid shortage. Under starvation, Gcn2 phosphorylates the translation initiation factor eukaryotic translation initiation factor (eIF)2α, triggering downstream events that ultimately allow cells to cope with starvation. Under nutrient-replete conditions, the translation elongation factor eEF1A binds Gcn2 to contribute to keeping Gcn2 inactive. Here, we aimed to map the regions in eEF1A involved in binding and/or regulating Gcn2. We find that eEF1A amino acids 1-221 and 222-315, containing most of domains I and II, respectively, bind Gcn2 in vitro. Overexpression of eEF1A lacking or containing domain III impairs eIF2α phosphorylation. While the latter reduces growth under starvation similarly to eEF1A lacking domain I, the former enhances growth in a Gcn2-dependent manner. Our studies suggest that domain II is required for Gcn2 inhibition and that eEF1A lacking domain III mainly affects the Gcn2 response pathway downstream of Gcn2.
Collapse
Affiliation(s)
- Rashmi Ramesh
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Evelyn Sattlegger
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
14
|
Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc Natl Acad Sci U S A 2020; 117:8900-8911. [PMID: 32253314 DOI: 10.1073/pnas.1913788117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways that sense amino acid abundance are integral to tissue homeostasis and cellular defense. Our laboratory has previously shown that halofuginone (HF) inhibits the prolyl-tRNA synthetase catalytic activity of glutamyl-prolyl-tRNA synthetase (EPRS), thereby activating the amino acid response (AAR). We now show that HF treatment selectively inhibits inflammatory responses in diverse cell types and that these therapeutic benefits occur in cells that lack GCN2, the signature effector of the AAR. Depletion of arginine, histidine, or lysine from cultured fibroblast-like synoviocytes recapitulates key aspects of HF treatment, without utilizing GCN2 or mammalian target of rapamycin complex 1 pathway signaling. Like HF, the threonyl-tRNA synthetase inhibitor borrelidin suppresses the induction of tissue remodeling and inflammatory mediators in cytokine-stimulated fibroblast-like synoviocytes without GCN2, but both aminoacyl-tRNA synthetase (aaRS) inhibitors are sensitive to the removal of GCN1. GCN1, an upstream component of the AAR pathway, binds to ribosomes and is required for GCN2 activation. These observations indicate that aaRS inhibitors, like HF, can modulate inflammatory response without the AAR/GCN2 signaling cassette, and that GCN1 has a role that is distinct from its activation of GCN2. We propose that GCN1 participates in a previously unrecognized amino acid sensor pathway that branches from the canonical AAR.
Collapse
|
15
|
Carvill GL, Helbig KL, Myers CT, Scala M, Huether R, Lewis S, Kruer TN, Guida BS, Bakhtiari S, Sebe J, Tang S, Stickney H, Oktay SU, Bhandiwad AA, Ramsey K, Narayanan V, Feyma T, Rohena LO, Accogli A, Severino M, Hollingsworth G, Gill D, Depienne C, Nava C, Sadleir LG, Caruso PA, Lin AE, Jansen FE, Koeleman B, Brilstra E, Willemsen MH, Kleefstra T, Sa J, Mathieu ML, Perrin L, Lesca G, Striano P, Casari G, Scheffer IE, Raible D, Sattlegger E, Capra V, Padilla-Lopez S, Mefford HC, Kruer MC. Damaging de novo missense variants in EEF1A2 lead to a developmental and degenerative epileptic-dyskinetic encephalopathy. Hum Mutat 2020; 41:1263-1279. [PMID: 32196822 DOI: 10.1002/humu.24015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein-damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic-dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.
Collapse
Affiliation(s)
- Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, Illinois
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, Seattle, Washington
| | - Marcello Scala
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Robert Huether
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Sara Lewis
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Tyler N Kruer
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Brandon S Guida
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Joy Sebe
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Sha Tang
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Heather Stickney
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Sehribani Ulusoy Oktay
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Ashwin A Bhandiwad
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Timothy Feyma
- Department of Neurology, Gillette Children's Specialty Healthcare, St. Paul, Minnesota
| | - Luis O Rohena
- Department of Pediatrics, Division of Genetics, San Antonio Military Medical Center, San Antonio, Texas.,Department of Pediatrics, Long School of Medicine, University of Texas, San Antonio, Texas
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariasavina Severino
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy
| | - Georgina Hollingsworth
- Departments of Medicine and Paediatrics, University of Melbourne and Austin Health Royal Children's Hospital, Melbourne, Australia
| | - Deepak Gill
- Ty Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Christel Depienne
- INSERM UMR 975, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Nava
- INSERM UMR 975, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington South, New Zealand
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center, Utrecht, The Netherlands
| | - Bobby Koeleman
- Department of Pediatric Neurology, University Medical Center, Utrecht, The Netherlands
| | - Eva Brilstra
- Department of Genetics, Utrecht University, Utrecht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joaquim Sa
- Serviço de Genética Médica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Marie-Laure Mathieu
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Laurine Perrin
- Department of Paediatric Physical Medicine and Rehabilitation, CHU Saint-Etienne, Hôpital Bellevue, Saint-Étienne, France
| | - Gaetan Lesca
- CRNL Inserm U1028-CNRS UMR5292-Claude Bernard University Lyon 1, Lyon, France.,Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Pasquale Striano
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Giorgio Casari
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Ingrid E Scheffer
- Departments of Medicine and Paediatrics, University of Melbourne and Austin Health Royal Children's Hospital, Melbourne, Australia
| | - David Raible
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Evelyn Sattlegger
- School of Natural & Computational Sciences, Massey University, Auckland, New Zealand
| | - Valeria Capra
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy
| | - Sergio Padilla-Lopez
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, Seattle, Washington
| | - Michael C Kruer
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| |
Collapse
|
16
|
Pourcel L, Buron F, Arib G, Le Fourn V, Regamey A, Bodenmann I, Girod P, Mermod N. Influence of cytoskeleton organization on recombinant protein expression by CHO cells. Biotechnol Bioeng 2020; 117:1117-1126. [PMID: 31956990 PMCID: PMC7079171 DOI: 10.1002/bit.27277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
In this study, we assessed the importance of cytoskeleton organization in the mammalian cells used to produce therapeutic proteins. Two cytoskeletal genes, Actin alpha cardiac muscle 1 (ACTC1) and a guanosine triphosphate GTPase-activating protein (TAGAP), were found to be upregulated in highly productive therapeutic protein-expressing Chinese hamster ovary (CHO) cells selected by the deprivation of vitamin B5. We report here that the overexpression of the ACTC1 protein was able to improve significantly recombinant therapeutic production, as well as to decrease the levels of toxic lactate metabolic by-products. ACTC1 overexpression was accompanied by altered as well as decreased polymerized actin, which was associated with high protein production by CHO cell cultured in suspension. We suggest that the depolymerization of actin and the possible modulation of integrin signaling, as well as changes in basal metabolism, may be driving the increase of protein secretion by CHO cells.
Collapse
Affiliation(s)
- Lucille Pourcel
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | - Flavien Buron
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
17
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
18
|
Simpson LJ, Tzima E, Reader JS. Mechanical Forces and Their Effect on the Ribosome and Protein Translation Machinery. Cells 2020; 9:cells9030650. [PMID: 32156009 PMCID: PMC7140433 DOI: 10.3390/cells9030650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces acting on biological systems, at both the macroscopic and microscopic levels, play an important part in shaping cellular phenotypes. There is a growing realization that biomolecules that respond to force directly applied to them, or via mechano-sensitive signalling pathways, can produce profound changes to not only transcriptional pathways, but also in protein translation. Forces naturally occurring at the molecular level can impact the rate at which the bacterial ribosome translates messenger RNA (mRNA) transcripts and influence processes such as co-translational folding of a nascent protein as it exits the ribosome. In eukaryotes, force can also be transduced at the cellular level by the cytoskeleton, the cell’s internal filamentous network. The cytoskeleton closely associates with components of the translational machinery such as ribosomes and elongation factors and, as such, is a crucial determinant of localized protein translation. In this review we will give (1) a brief overview of protein translation in bacteria and eukaryotes and then discuss (2) how mechanical forces are directly involved with ribosomes during active protein synthesis and (3) how eukaryotic ribosomes and other protein translation machinery intimately associates with the mechanosensitive cytoskeleton network.
Collapse
|
19
|
Takase S, Kurokawa R, Kondoh Y, Honda K, Suzuki T, Kawahara T, Ikeda H, Dohmae N, Osada H, Shin-ya K, Kushiro T, Yoshida M, Matsumoto K. Mechanism of Action of Prethioviridamide, an Anticancer Ribosomally Synthesized and Post-Translationally Modified Peptide with a Polythioamide Structure. ACS Chem Biol 2019; 14:1819-1828. [PMID: 31365229 DOI: 10.1021/acschembio.9b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thioviridamide, prethioviridamide, and JBIR-140, which are ribosomally synthesized and post-translationally modified peptides (RiPPs) possessing five thioamide bonds, induce selective apoptosis in various cancer cells, especially those expressing the adenovirus oncogene E1A. However, the target protein of this unique family of bioactive compounds was previously unknown. To investigate the mechanism of action, we adopted a combined approach of genome-wide shRNA library screening, transcriptome profiling, and biochemical identification of prethioviridamide-binding proteins. An shRNA screen identified 63 genes involved in cell sensitivity to prethioviridamide, which included translation initiation factors, aminoacyl tRNA synthetases, and mitochondrial proteins. Transcriptome profiling and subsequent analysis revealed that prethioviridamide induces the integrated stress response (ISR) through the GCN2-ATF4 pathway, which is likely to cause cell death. Furthermore, we found that prethioviridamide binds and inhibits respiratory chain complex V (F1Fo-ATP synthase) in mitochondria, suggesting that inhibition of complex V leads to activation of the GCN2-ATF4 pathway. These results imply that the members of a unique family of RiPPs with polythioamide structure target mitochondria to induce the ISR.
Collapse
Affiliation(s)
- Shohei Takase
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Rumi Kurokawa
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Teppei Kawahara
- Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
| | - Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
- Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Duarte RR, Bachtel ND, Côtel MC, Lee SH, Selvackadunco S, Watson IA, Hovsepian GA, Troakes C, Breen GD, Nixon DF, Murray RM, Bray NJ, Eleftherianos I, Vernon AC, Powell TR, Srivastava DP. The Psychiatric Risk Gene NT5C2 Regulates Adenosine Monophosphate-Activated Protein Kinase Signaling and Protein Translation in Human Neural Progenitor Cells. Biol Psychiatry 2019; 86:120-130. [PMID: 31097295 PMCID: PMC6614717 DOI: 10.1016/j.biopsych.2019.03.977] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The 5'-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive. METHODS Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation. Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the climbing assay. RESULTS Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in Drosophila was associated with drastic climbing impairment. CONCLUSIONS We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2, describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells and its association with Drosophila melanogaster motility behavior.
Collapse
Affiliation(s)
- Rodrigo R.R. Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nathaniel D. Bachtel
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Marie-Caroline Côtel
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Sang H. Lee
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Sashika Selvackadunco
- Medical Research Council London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Iain A. Watson
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Gary A. Hovsepian
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Claire Troakes
- Medical Research Council London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Gerome D. Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, New York
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. Bray
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Anthony C. Vernon
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Timothy R. Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom,Address correspondence to Deepak P. Srivastava, Ph.D., Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, United Kingdom.
| |
Collapse
|
21
|
Pereira CM, Filev R, Dubiela FP, Brandão BB, Queiroz CM, Ludwig RG, Hipolide D, Longo BM, Mello LE, Mori MA, Castilho BA. The GCN2 inhibitor IMPACT contributes to diet-induced obesity and body temperature control. PLoS One 2019; 14:e0217287. [PMID: 31166980 PMCID: PMC6550387 DOI: 10.1371/journal.pone.0217287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
IMPACT, a highly conserved protein, is an inhibitor of the eIF2α kinase GCN2. In mammals, it is preferentially expressed in neurons. Knock-down of IMPACT expression in neuronal cells increases basal GCN2 activation and eIF2α phosphorylation and decreases translation initiation. In the mouse brain, IMPACT is particularly abundant in the hypothalamus. Here we describe that the lack of IMPACT in mice affects hypothalamic functions. Impact-/- mice (Imp-KO) are viable and have no apparent major phenotypic defect. The hypothalamus in these animals shows increased levels of eIF2α phosphorylation, as expected from the described role of IMPACT in inhibiting GCN2 and from its abundance in this brain region. When fed a normal chow, animals lacking IMPACT weight slightly less than wild-type mice. When fed a high-fat diet, Imp-KO animals gain substantially less weight due to lower food intake when compared to wild-type mice. STAT3 signaling was depressed in Imp-KO animals even though leptin levels were identical to the wild-type mice. This finding supports the observation that Imp-KO mice have defective thermoregulation upon fasting. This phenotype was partially dependent on GCN2, whereas the lean phenotype was independent of GCN2. Taken together, our results indicate that IMPACT contributes to GCN2-dependent and -independent mechanisms involved in the regulation of autonomic functions in response to energy availability.
Collapse
Affiliation(s)
- Catia M. Pereira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Filev
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Francisco P. Dubiela
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna B. Brandão
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio M. Queiroz
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Raissa G. Ludwig
- Department of Biochemistry and Tissue Biology, UNICAMP, Campinas, Brazil
| | - Debora Hipolide
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz M. Longo
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz E. Mello
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A. Mori
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
22
|
Almazán A, Ferrández-Roldán A, Albalat R, Cañestro C. Developmental atlas of appendicularian Oikopleura dioica actins provides new insights into the evolution of the notochord and the cardio-paraxial muscle in chordates. Dev Biol 2019; 448:260-270. [DOI: 10.1016/j.ydbio.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
|
23
|
Tomek P, Gore SK, Potts CL, Print CG, Black MA, Hallermayr A, Kilian M, Sattlegger E, Ching LM. Imprinted and ancient gene: a potential mediator of cancer cell survival during tryptophan deprivation. Cell Commun Signal 2018; 16:88. [PMID: 30466445 PMCID: PMC6251197 DOI: 10.1186/s12964-018-0301-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Depletion of tryptophan and the accumulation of tryptophan metabolites mediated by the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1), trigger immune cells to undergo apoptosis. However, cancer cells in the same microenvironment appear not to be affected. Mechanisms whereby cancer cells resist accelerated tryptophan degradation are not completely understood. We hypothesize that cancer cells co-opt IMPACT (the product of IMPrinted and AnCienT gene), to withstand periods of tryptophan deficiency. METHODS A range of bioinformatic techniques including correlation and gene set variation analyses was applied to genomic datasets of cancer (The Cancer Genome Atlas) and normal (Genotype Tissue Expression Project) tissues to investigate IMPACT's role in cancer. Survival of IMPACT-overexpressing GL261 glioma cells and their wild type counterparts cultured in low tryptophan media was assessed using fluorescence microscopy and MTT bio-reduction assay. Expression of the Integrated Stress Response proteins was measured using Western blotting. RESULTS We found IMPACT to be upregulated and frequently amplified in a broad range of clinical cancers relative to their non-malignant tissue counterparts. In a subset of clinical cancers, high IMPACT expression associated with decreased activity of pathways and genes involved in stress response and with increased activity of translational regulation such as the mTOR pathway. Experimental studies using the GL261 glioma line showed that cells engineered to overexpress IMPACT, gained a survival advantage over wild-type lines when cultured under limiting tryptophan concentrations. No significant difference in the expression of proteins in the Integrated Stress Response pathway was detected in tryptophan-deprived GL261 IMPACT-overexpressors compared to that in wild-type cells. IMPACT-overexpressing GL261 cells but not their wild-type counterparts, showed marked enlargement of their nuclei and cytoplasmic area when stressed by tryptophan deprivation. CONCLUSIONS The bioinformatics data together with our laboratory studies, support the hypothesis that IMPACT mediates a protective mechanism allowing cancer cells to overcome microenvironmental stresses such as tryptophan deficiency.
Collapse
Affiliation(s)
- Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Shanti K. Gore
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Chloe L. Potts
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ariane Hallermayr
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Medical Genetics Center (MGZ), Munich, Germany
| | - Michael Kilian
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Sattlegger
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Wek RC. Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harb Perspect Biol 2018; 10:a032870. [PMID: 29440070 PMCID: PMC6028073 DOI: 10.1101/cshperspect.a032870] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A central mechanism regulating translation initiation in response to environmental stress involves phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α causes inhibition of global translation, which conserves energy and facilitates reprogramming of gene expression and signaling pathways that help to restore protein homeostasis. Coincident with repression of protein synthesis, many gene transcripts involved in the stress response are not affected or are even preferentially translated in response to increased eIF2α phosphorylation by mechanisms involving upstream open reading frames (uORFs). This review highlights the mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF2α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease.
Collapse
Affiliation(s)
- Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| |
Collapse
|
25
|
Rodrigues LOCP, Graça RSF, Carneiro LAM. Integrated Stress Responses to Bacterial Pathogenesis Patterns. Front Immunol 2018; 9:1306. [PMID: 29930559 PMCID: PMC5999787 DOI: 10.3389/fimmu.2018.01306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
Activation of an appropriate innate immune response to bacterial infection is critical to limit microbial spread and generate cytokines and chemokines to instruct appropriate adaptive immune responses. Recognition of bacteria or bacterial products by pattern recognition molecules is crucial to initiate this response. However, it is increasingly clear that the context in which this recognition occurs can dictate the quality of the response and determine the outcome of an infection. The cross talk established between host and pathogen results in profound alterations on cellular homeostasis triggering specific cellular stress responses. In particular, the highly conserved integrated stress response (ISR) has been shown to shape the host response to bacterial pathogens by sensing cellular insults resulting from infection and modulating transcription of key genes, translation of new proteins and cell autonomous antimicrobial mechanisms such as autophagy. Here, we review the growing body of evidence demonstrating a role for the ISR as an integral part of the innate immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Larissa O C P Rodrigues
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S F Graça
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia A M Carneiro
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Silva RC, Castilho BA, Sattlegger E. A Rapid Extraction Method for mammalian cell cultures, suitable for quantitative immunoblotting analysis of proteins, including phosphorylated GCN2 and eIF2α. MethodsX 2017; 5:75-82. [PMID: 30619721 PMCID: PMC6314271 DOI: 10.1016/j.mex.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023] Open
Abstract
Many studies require the detection and relative quantitation of proteins from cell culture samples using immunoblotting. Limiting factors are the cost of protease inhibitors, the time required to break cells and generate samples, as well as the high risk of protein loss during cell breakage procedures. In addition, a common problem is the viscosity of lysed samples due to the released genomic DNA. As a consequence, the DNA needs to be broken down prior to denaturing polyacrylamide protein gel electrophoresis (SDS-PAGE), e.g. by passing the sample through a syringe gauge needle, sonication, or DNase treatment. In a quest to find a more cost-effective, fast, and yet robust procedure, we found that cell lysis, protein denaturation, and DNA fragmentation can be done in only two steps: harvesting followed by a simple non-laborious 2nd step. Similarly to many pre-existing cell breakage procedures, in our Rapid Protein Extraction (RPE) method, proteins liberated from cells are immediately exposed to a denaturing environment. However, advantages of our method are: •No breaking buffer is needed, instead proteins are liberated directly into the denaturing protein loading buffer used for SDS-PAGE. Consequently, our RPE method does not require any expensive inhibitors.•The RPE method does not involve post-lysis centrifugation steps; instead all cell material is dissolved during the 2nd step, the mixing-heat-treatment step which is new to this method. This prevents potential protein loss that may occur during centrifugation. In addition, this 2nd step simultaneously shears the genomic DNA, making an additional step for DNA fragmentation unnecessary.•The generated samples are suitable for high-quality quantitative immunoblotting. With our RPE method we successfully quantified the phosphorylated forms of protein kinase GCN2 and its substrate eIF2α. In fact, the western signals were stronger and with less background, as compared to samples generated with a pre-existing method.
Collapse
Affiliation(s)
- Richard C Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Evelyn Sattlegger
- Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
27
|
Hamey JJ, Wienert B, Quinlan KGR, Wilkins MR. METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Mol Cell Proteomics 2017; 16:2229-2242. [PMID: 28663172 DOI: 10.1074/mcp.m116.066308] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/28/2017] [Indexed: 02/03/2023] Open
Abstract
Lysine methylation is widespread on human proteins, however the enzymes that catalyze its addition remain largely unknown. This limits our capacity to study the function and regulation of this modification. Here we used the CRISPR/Cas9 system to knockout putative protein methyltransferases METTL21B and METTL23 in K562 cells, to determine if they methylate elongation factor eEF1A. The known eEF1A methyltransferase EEF1AKMT1 was also knocked out as a control. Targeted mass spectrometry revealed the loss of lysine 165 methylation upon knockout of METTL21B, and the expected loss of lysine 79 methylation on knockout of EEF1AKMT1 No loss of eEF1A methylation was seen in the METTL23 knockout. Recombinant METTL21B was shown in vitro to catalyze methylation on lysine 165 in eEF1A1 and eEF1A2, confirming it as the methyltransferase responsible for this methylation site. Proteomic analysis by SILAC revealed specific upregulation of large ribosomal subunit proteins in the METTL21B knockout, and changes to further processes related to eEF1A function in knockouts of both METTL21B and EEF1AKMT1 This indicates that the methylation of lysine 165 in human eEF1A has a very specific role. METTL21B exists only in vertebrates, with its target lysine showing similar evolutionary conservation. We suggest METTL21B be renamed eEF1A-KMT3. This is the first study to specifically generate CRISPR/Cas9 knockouts of putative protein methyltransferase genes, for substrate discovery and site mapping. Our approach should prove useful for the discovery of further novel methyltransferases, and more generally for the discovery of sites for other protein-modifying enzymes.
Collapse
Affiliation(s)
- Joshua J Hamey
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Beeke Wienert
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Kate G R Quinlan
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- From the ‡School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| |
Collapse
|