1
|
Lopez-Nieto M, Sun Z, Relton E, Safakli R, Freibaum BD, Taylor JP, Ruggieri A, Smyrnias I, Locker N. Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. J Cell Sci 2025; 138:jcs263548. [PMID: 39463355 DOI: 10.1242/jcs.263548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
To rapidly adapt to harmful changes to their environment, cells activate the integrated stress response (ISR). This results in an adaptive transcriptional and translational rewiring, and the formation of biomolecular condensates named stress granules (SGs), to resolve stress. In addition to this first line of defence, the mitochondrial unfolded protein response (UPRmt) activates a specific transcriptional programme to maintain mitochondrial homeostasis. We present evidence that the SG formation and UPRmt pathways are intertwined and communicate. UPRmt induction results in eIF2α phosphorylation and the initial and transient formation of SGs, which subsequently disassemble. The induction of GADD34 (also known as PPP1R15A) during late UPRmt protects cells from prolonged stress by impairing further assembly of SGs. Furthermore, mitochondrial functions and cellular survival are enhanced during UPRmt activation when SGs are absent, suggesting that UPRmt-induced SGs have an adverse effect on mitochondrial homeostasis. These findings point to a novel crosstalk between SGs and the UPRmt that might contribute to restoring mitochondrial functions under stressful conditions.
Collapse
Affiliation(s)
- Marta Lopez-Nieto
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Zhaozhi Sun
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Emily Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Rahme Safakli
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Ioannis Smyrnias
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
2
|
Yang G, Wang Y, Guo J, Rui T. Connecting the Dots: Stress Granule and Cardiovascular Diseases. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10619-w. [PMID: 40229624 DOI: 10.1007/s12265-025-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic assemblies composed of mRNAs and RNA-binding proteins (RBPs) that transiently form to cope with various cellular stressors by halting mRNA translation and, consequently, protein synthesis. SG formation plays a crucial role in regulating multiple cellular processes, including cellular senescence, inflammatory responses, and adaptation to oxidative stress under both physiological and pathological conditions. Dysregulation of SG assembly and disassembly has been implicated in the pathogenesis of various diseases, including cardiovascular diseases (CVDs), cancer, viral and bacterial infections, and degenerative diseases. In this review, we survey the key aspects of SGs biogenesis and biological functions, with a particular focus on their causal involvement in CVDs. Furthermore, we summarized several SG-modulating compounds and discussed the therapeutic potential of small molecules targeting SG-related diseases in clinical settings.
Collapse
Affiliation(s)
- Gaowei Yang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Yiming Wang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Junfang Guo
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu, 212002, People's Republic of China.
| |
Collapse
|
3
|
Benedetto MM, Malcolm M, Bruera MG, Penazzi LG, Guido ME, Contín MA, Garbarino-Pico E. Stress Granule Induction in Rat Retinas Damaged by Constant LED Light. Invest Ophthalmol Vis Sci 2025; 66:38. [PMID: 39813056 PMCID: PMC11741064 DOI: 10.1167/iovs.66.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model. Methods Rat retinas were immunohistochemically analyzed for SG markers G3BP1 and eIF3, and SGs were also visualized by RNA fluorescence in situ hybridization. Additionally, SGs were induced in primary retinal cell and eyeball cultures using sodium arsenite. Light exposure experiments used LED lamps with a color temperature of 5500 K and 200 lux intensity for short-term or two- to eight-day exposures. Results SGs were predominantly detected in retinal ganglion cells (RGCs) and inner nuclear layer (INL) cells, with arsenite-induction verified in RGCs. SG abundance was higher in animals exposed to light for 2-8 days compared to light/dark cycle controls. RGCs consistently exhibited more SGs than INL cells, and INL cells more than outer nuclear layer (ONL) cells (Scheirer-Ray-Hare test: H = 13.2, P = 0.0103 for light condition, and H = 278.2, P < 0.00001 for retinal layer). These observations were consistent across four independent experiments, each with three animals per light condition. Conclusions This study characterizes SGs in the mammalian retina for the first time, with increased prevalence after excessive LED light exposure. RGCs and INL cells showed heightened SG formation, suggesting a potential protective mechanism against photodamage. Further investigations are warranted to elucidate the role of SGs in shielding against light stress and their implications in retinopathies.
Collapse
Affiliation(s)
- María M. Benedetto
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Melisa Malcolm
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Manuel G. Bruera
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura G. Penazzi
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mario E. Guido
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A. Contín
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
4
|
Fernandes MGF, Pernin F, Antel JP, Kennedy TE. From BBB to PPP: Bioenergetic requirements and challenges for oligodendrocytes in health and disease. J Neurochem 2025; 169:e16219. [PMID: 39253904 PMCID: PMC11657931 DOI: 10.1111/jnc.16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Mature myelinating oligodendrocytes, the cells that produce the myelin sheath that insulates axons in the central nervous system, have distinct energetic and metabolic requirements compared to neurons. Neurons require substantial energy to execute action potentials, while the energy needs of oligodendrocytes are directed toward building the lipid-rich components of myelin and supporting neuronal metabolism by transferring glycolytic products to axons as additional fuel. The utilization of energy metabolites in the brain parenchyma is tightly regulated to meet the needs of different cell types. Disruption of the supply of metabolites can lead to stress and oligodendrocyte injury, contributing to various neurological disorders, including some demyelinating diseases. Understanding the physiological properties, structures, and mechanisms involved in oligodendrocyte energy metabolism, as well as the relationship between oligodendrocytes and neighboring cells, is crucial to investigate the underlying pathophysiology caused by metabolic impairment in these disorders. In this review, we describe the particular physiological properties of oligodendrocyte energy metabolism and the response of oligodendrocytes to metabolic stress. We delineate the relationship between oligodendrocytes and other cells in the context of the neurovascular unit, and the regulation of metabolite supply according to energetic needs. We focus on the specific bioenergetic requirements of oligodendrocytes and address the disruption of metabolic energy in demyelinating diseases. We encourage further studies to increase understanding of the significance of metabolic stress on oligodendrocyte injury, to support the development of novel therapeutic approaches for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Milton Guilherme Forestieri Fernandes
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Florian Pernin
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jack P. Antel
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Timothy E. Kennedy
- Neuroimmunological Diseases and Glia Biology Research Group, Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
5
|
Adachi Y, Williams AM, Masuda M, Taketani Y, Anderson PJ, Ivanov P. Chronic stress antagonizes formation of Stress Granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620814. [PMID: 39554104 PMCID: PMC11565828 DOI: 10.1101/2024.10.29.620814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chronic stress mediates cellular changes that can contribute to human disease. However, fluctuations in RNA metabolism caused by chronic stress have been largely neglected in the field. Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates formed in response to stress-induced inhibition of mRNA translation and polysome disassembly. Despite the broad interest in SG assembly and disassembly in response to acute stress, SG assembly in response to chronic stress has not been extensively investigated. In this study, we show that cells pre-conditioned with low dose chronic (24-hour exposure) stresses such as oxidative stress, endoplasmic reticulum stress, mitochondrial stress, and starvation, fail to assemble SGs in response to acute stress. While translation is drastically decreased by acute stress in pre-conditioned cells, polysome profiling analysis reveals the partial preservation of polysomes resistant to puromycin-induced disassembly. We showed that chronic stress slows down the rate of mRNA translation at the elongation phase and triggers phosphorylation of translation elongation factor eEF2. Polysome profiling followed by RNase treatment confirmed that chronic stress induces ribosome stalling. Chronic stress-induced ribosome stalling is distinct from ribosome collisions that are known to trigger a specific stress response pathway. In summary, chronic stress triggers ribosome stalling, which blocks polysome disassembly and SG formation by subsequent acute stress. Significant statements Stress granules (SGs) are dynamic cytoplasmic biocondensates assembled in response to stress-induced inhibition of mRNA translation and polysome disassembly. SGs have been proposed to contribute to the survival of cells exposed to toxic conditions. Although the mechanisms of SG assembly and disassembly in the acute stress response are well understood, the role of SGs in modulating the response to chronic stress is unclear. Here, we show that human cells pre-conditioned with chronic stress fail to assemble SGs in response to acute stress despite inhibition of mRNA translation. Mechanistically, chronic stress induces ribosome stalling, which prevents polysome disassembly and subsequent SG formation. This finding suggests that chronically stressed or diseased human cells may have a dysfunctional SG response that could inhibit cell survival and promote disease.
Collapse
|
6
|
Dogan A, Severcan F, Tuzlaci A, Guvenc BH. Comparison of human breast milk vs commercial formula-induced early trophic enteral nutrition during postoperative prolonged starvation in an animal model. Sci Rep 2024; 14:21610. [PMID: 39294167 PMCID: PMC11410799 DOI: 10.1038/s41598-024-67863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/16/2024] [Indexed: 09/20/2024] Open
Abstract
The present study aimed to characterize the changes in macromolecular composition and structure in ileal tissue induced by postoperative prolonged starvation (PS), human breast milk feeding (HM) and commercial formula feeding (CF) for 48 and 72 h (h). Forty-two Wistar albino rats underwent an ileal transection and primary anastomosis and were then divided into six subgroups. Two groups of seven rats were food-deprived for 48 and 72 h with free access to water only in metabolic cages (48 h PS, 72 h PS). Then, two groups of seven rats received early enteral trophic nutrition (EEN) either using HM, and CF at 48 h post-operation (48 h HM, 48 h CF). The other two groups of seven rats received the same trophic enteral nutrition at 72 h post-operation (72 h HM, 72 h CF). An additional seven rats were fed normal rat chow (control), after which the ileal tissues were harvested and freeze-dried overnight. Then sample spectra were recorded by Fourier transform infrared (FTIR) spectroscopy. PS at 48 and 72 h resulted in an increase in the concentration of lipids and a decrease in the concentration of proteins. CF and HM trophic feeding induced a decrease in membrane fluidity and an increase in lipid order. Ileal tissues showed similar compositional and structural changes in lipids and proteins in the PS and CF groups after 48 and 72 h. A marked decrease in nucleic acid concentration was seen in CF at 48 h compared to HM. The human milk feeding groups did not induce any significant alterations and showed compositional and structural data similar to the controls. In conclusion, EEN application seems to be safer when introduced at 48 h rather than 72 h and time of this nutrition is crucial to maintain ileum structure and therefore immunity and well-being. HM-induced trophic nutrition is seen to protect the ileal tissue from significant alterations within lipid and protein compositions, whereas CF caused notable changes. HM is absolutely the best nutritional source for gut health in this animal model.
Collapse
Affiliation(s)
- Ayca Dogan
- Department of Physiology, Faculty of Medicine, Altinbas University, 34147, Istanbul, Turkey.
| | - Feride Severcan
- Department of Biophysics, Faculty of Medicine, Altinbas University, 34147, Istanbul, Turkey
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Ayse Tuzlaci
- Department of Pediatric Surgery, Faculty of Medicine, Kocaeli University, 41001, Kocaeli, Turkey
| | - B Haluk Guvenc
- Department of Pediatric Surgery, Zonguldak Bulent Ecevit University Health Application and Research Center, 67630, Zonguldak, Turkey
| |
Collapse
|
7
|
Tomimoto N, Takasaki T, Sugiura R. Arsenite treatment induces Hsp90 aggregatesdistinct from conventional stress granules in fission yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:242-253. [PMID: 39040524 PMCID: PMC11261669 DOI: 10.15698/mic2024.07.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Various stress conditions, such as heat stress (HS) and oxidative stress, can cause biomolecular condensates represented by stress granules (SGs) via liquid-liquid phase separation. We have previously shown that Hsp90 forms aggregates in response to HS and that Hsp90 aggregates transiently co-localize with SGs as visualized by Pabp. Here, we showed that arsenite, one of the well-described SG-inducing stimuli, induces Hsp90 aggregates distinct from conventional SGs in fission yeast. Arsenite induced Hsp90 granules in a dose-dependent manner, and these granules were significantly diminished by the co-treatment with a ROS scavenger N-acetyl cysteine (NAC), indicating that ROS are required for the formation of Hsp90 granules upon arsenite stress. Notably, Hsp90 granules induced by arsenite do not overlap with conventional SGs as represented by eIF4G or Pabp, while HS-induced Hsp90 granules co-localize with SGs. Nrd1, an RNA-binding protein known as a HS-induced SG component, was recruited into Hsp90 aggregates but not to the conventional SGs upon arsenite stress. The non-phosphorylatable eIF2α mutants significantly delayed the Hsp90 granule formation upon arsenite treatment. Importantly, inhibition of Hsp90 by geldanamycin impaired the Hsp90 granule formation and reduced the arsenite tolerance. Collectively, arsenite stimulates two types of distinct aggregates, namely conventional SGs and a novel type of aggregates containing Hsp90 and Nrd1, wherein Hsp90 plays a role as a center for aggregation, and stress-specific compartmentalization of biomolecular condensates.
Collapse
Affiliation(s)
- Naofumi Tomimoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai UniversityHigashiosaka, Osaka 577-8502Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai UniversityHigashiosaka, Osaka 577-8502Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai UniversityHigashiosaka, Osaka 577-8502Japan
| |
Collapse
|
8
|
Angel M, Fleshler E, Atrash MK, Kinor N, Benichou JC, Shav-Tal Y. Nuclear RNA-related processes modulate the assembly of cytoplasmic RNA granules. Nucleic Acids Res 2024; 52:5356-5375. [PMID: 38366783 PMCID: PMC11109975 DOI: 10.1093/nar/gkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm is sufficient for SG assembly, and that the assembly of these SGs requires the activation of stress-associated protein synthesis pathways. Moreover, we show that adding an excess of mRNA to cells that do not have active splicing, and therefore have low levels of cytoplasmic mRNAs, promotes SG formation under stress conditions. These findings emphasize the importance of the cytoplasmic abundance of newly transcribed mRNAs in the assembly of SGs.
Collapse
Affiliation(s)
- Mor Angel
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eden Fleshler
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mohammad Khaled Atrash
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noa Kinor
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
9
|
Puig-Segui MS, Decker CJ, Barlit H, Labunskyy VM, Parker R, Puig S. Regulation of translation in response to iron deficiency in human cells. Sci Rep 2024; 14:8451. [PMID: 38605136 PMCID: PMC11009288 DOI: 10.1038/s41598-024-59003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.
Collapse
Affiliation(s)
- Mireia S Puig-Segui
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Carolyn J Decker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Hanna Barlit
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Catedrático Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
10
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Pernin F, Cui QL, Mohammadnia A, Fernandes MGF, Hall JA, Srour M, Dudley RWR, Zandee SEJ, Klement W, Prat A, Salapa HE, Levin MC, Moore GRW, Kennedy TE, Vande Velde C, Antel JP. Regulation of stress granule formation in human oligodendrocytes. Nat Commun 2024; 15:1524. [PMID: 38374028 PMCID: PMC10876533 DOI: 10.1038/s41467-024-45746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.
Collapse
Affiliation(s)
- Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Milton G F Fernandes
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University Health Centre, Montreal, QC, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Roy W R Dudley
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, Canada
| | - Stephanie E J Zandee
- Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Wendy Klement
- Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Hannah E Salapa
- Cameco Multiple Sclerosis Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Cameco Multiple Sclerosis Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - G R Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Timothy E Kennedy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Abstract
The capacity of cells to organize complex biochemical reactions in intracellular space is a fundamental organizational principle of life. Key to this organization is the compartmentalization of the cytoplasm into distinct organelles, which is frequently achieved through intracellular membranes. Recent evidence, however, has added a new layer of flexibility to cellular compartmentalization. As such, in response to specific stimuli, liquid-liquid phase separations can lead to the rapid rearrangements of the cytoplasm to form membraneless organelles. Stress granules (SGs) are one such type of organelle that form specifically when cells are faced with stress stimuli, to aid cells in coping with stress. Inherently, altered SG formation has been linked to the pathogenesis of diseases associated with stress and inflammatory conditions, including cancer. Exciting discoveries have indicated an intimate link between SGs and tumorigenesis. Several pro-tumorigenic signaling molecules including the RAS oncogene, mTOR, and histone deacetylase 6 (HDAC6) have been shown to upregulate SG formation. Based on these studies, SGs have emerged as structures that can integrate oncogenic signaling and tumor-associated stress stimuli to enhance cancer cell fitness. In addition, growing evidence over the past decade suggests that SGs function not only to regulate the switch between survival and cell death, but also contribute to cancer cell proliferation, invasion, metastasis, and drug resistance. Although much remains to be learned about the role of SGs in tumorigenesis, these studies highlight SGs as a key regulatory hub in cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Min-Seok Song
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elda Grabocka
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Cabral AJ, Costello DC, Farny NG. The enigma of ultraviolet radiation stress granules: Research challenges and new perspectives. Front Mol Biosci 2022; 9:1066650. [PMID: 36533077 PMCID: PMC9751325 DOI: 10.3389/fmolb.2022.1066650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 01/16/2025] Open
Abstract
Stress granules (SGs) are non-membrane bound cytoplasmic condensates that form in response to a variety of different stressors. Canonical SGs are thought to have a cytoprotective role, reallocating cellular resources during stress by activation of the integrated stress response (ISR) to inhibit translation and avoid apoptosis. However, different stresses result in compositionally distinct, non-canonical SG formation that is likely pro-apoptotic, though the exact function(s) of both SGs subtypes remain unclear. A unique non-canonical SG subtype is triggered upon exposure to ultraviolet (UV) radiation. While it is generally agreed that UV SGs are bona fide SGs due to their dependence upon the core SG nucleating protein Ras GTPase-activating protein-binding protein 1 (G3BP1), the localization of other key components of UV SGs are unknown or under debate. Further, the dynamics of UV SGs are not known, though unique properties such as cell cycle dependence have been observed. This Perspective compiles the available information on SG subtypes and on UV SGs in particular in an attempt to understand the formation, dynamics, and function of these mysterious stress-specific complexes. We identify key gaps in knowledge related to UV SGs, and examine the unique aspects of their formation. We propose that more thorough knowledge of the distinct properties of UV SGs will lead to new avenues of understanding of the function of SGs, as well as their roles in disease.
Collapse
Affiliation(s)
| | | | - Natalie G. Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
14
|
Wang T, Tian X, Kim HB, Jang Y, Huang Z, Na CH, Wang J. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. Nat Commun 2022; 13:5584. [PMID: 36151083 PMCID: PMC9508253 DOI: 10.1038/s41467-022-33079-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/26/2022] [Indexed: 12/13/2022] Open
Abstract
Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases. Stress granules are associated with neurodegenerative diseases. Here, Wang et al. found intracellular energy deficiencies trigger a unique type of granules and disrupt granule disassembly through 4EBP1/eIF4A.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Xibin Tian
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Han Byeol Kim
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yura Jang
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhiyuan Huang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Jeon P, Ham HJ, Park S, Lee JA. Regulation of Cellular Ribonucleoprotein Granules: From Assembly to Degradation via Post-translational Modification. Cells 2022; 11:cells11132063. [PMID: 35805146 PMCID: PMC9265587 DOI: 10.3390/cells11132063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cells possess membraneless ribonucleoprotein (RNP) granules, including stress granules, processing bodies, Cajal bodies, or paraspeckles, that play physiological or pathological roles. RNP granules contain RNA and numerous RNA-binding proteins, transiently formed through the liquid–liquid phase separation. The assembly or disassembly of numerous RNP granules is strongly controlled to maintain their homeostasis and perform their cellular functions properly. Normal RNA granules are reversibly assembled, whereas abnormal RNP granules accumulate and associate with various neurodegenerative diseases. This review summarizes current studies on the physiological or pathological roles of post-translational modifications of various cellular RNP granules and discusses the therapeutic methods in curing diseases related to abnormal RNP granules by autophagy.
Collapse
|
17
|
Schwed-Gross A, Hamiel H, Faber GP, Angel M, Ben-Yishay R, Benichou JIC, Ishay-Ronen D, Shav-Tal Y. Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics leading to cell death. J Cell Sci 2022; 135:276097. [PMID: 35713120 PMCID: PMC9450892 DOI: 10.1242/jcs.259629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) can assemble in cancer cells upon chemotoxic stress. Glucocorticoids function during stress responses and are administered with chemotherapies. The roles of glucocorticoids in SG assembly and disassembly pathways are unknown. We examined whether combining glucocorticoids such as cortisone with chemotherapies from the vinca alkaloid family, which dismantle the microtubule network, affects SG assembly and disassembly pathways and influences cell viability in cancer cells and human-derived organoids. Cortisone augmented SG formation when combined with vinorelbine (VRB). Live-cell imaging showed that cortisone increased SG assembly rates but reduced SG clearance rates after stress, by increasing protein residence times within the SGs. Mechanistically, VRB and cortisone signaled through the integrated stress response mediated by eIF2α (also known as EIF2S1), yet induced different kinases, with cortisone activating the GCN2 kinase (also known as EIF2AK4). Cortisone increased VRB-induced cell death and reduced the population of cells trapped in mitotic catastrophe. These effects were mediated by the core SG proteins G3BP1 and G3BP2. In conclusion, glucocorticoids induce SG assembly and cell death when administered with chemotherapies, suggesting that combining glucocorticoids with chemotherapies can enhance cancer cell chemosensitivity. Summary: Combining cortisone with the chemotherapy vinorelbine enhances the assembly of stress granules that are less likely to be cleared from the cells, augmenting vinorelbine-induced cell death.
Collapse
Affiliation(s)
- Avital Schwed-Gross
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hila Hamiel
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gabriel P Faber
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mor Angel
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rakefet Ben-Yishay
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
18
|
Eiermann N, Stoecklin G, Jovanovic B. Mitochondrial Inhibition by Sodium Azide Induces Assembly of eIF2α Phosphorylation-Independent Stress Granules in Mammalian Cells. Int J Mol Sci 2022; 23:5600. [PMID: 35628412 PMCID: PMC9142010 DOI: 10.3390/ijms23105600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial stress is involved in many pathological conditions and triggers the integrated stress response (ISR). The ISR is initiated by phosphorylation of the eukaryotic translation initiation factor (eIF) 2α and results in global inhibition of protein synthesis, while the production of specific proteins important for the stress response and recovery is favored. The stalled translation preinitiation complexes phase-separate together with local RNA binding proteins into cytoplasmic stress granules (SG), which are important for regulation of cell signaling and survival under stress conditions. Here we found that mitochondrial inhibition by sodium azide (NaN3) in mammalian cells leads to translational inhibition and formation of SGs, as previously shown in yeast. Although mammalian NaN3-induced SGs are very small, they still contain the canonical SG proteins Caprin 1, eIF4A, eIF4E, eIF4G and eIF3B. Similar to FCCP and oligomycine, other mitochodrial stressors that cause SG formation, NaN3-induced SGs are formed by an eIF2α phosphorylation-independent mechanisms. Finally, we discovered that as shown for arsenite (ASN), but unlike FCCP or heatshock stress, Thioredoxin 1 (Trx1) is required for formation of NaN3-induced SGs.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (G.S.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (G.S.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bogdan Jovanovic
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (G.S.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Sidibé H, Vande Velde C. Collective Learnings of Studies of Stress Granule Assembly and Composition. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2428:199-228. [PMID: 35171482 DOI: 10.1007/978-1-0716-1975-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stress granules have gained considerable exposure and interest in recent years. These micron-sized entities, composed of RNA and protein, form following a stress exposure and have been linked to several pathologies. Understanding stress granule function is paramount but has been arduous due to the membraneless nature of these organelles. Several new methodologies have recently been developed to catalogue the protein and RNA composition of stress granules. Collectively, this work has provided important insights to potential stress granule functions as well as molecular mechanisms for their assembly and disassembly. This chapter reviews the latest advancements in the understanding of stress granule dynamics and discusses the various protocols developed to study their composition.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal and CHUM Research Center, Montreal, QC, Canada.
| |
Collapse
|
20
|
Amen T, Guihur A, Zelent C, Ursache R, Wilting J, Kaganovich D. Resveratrol and related stilbene derivatives induce stress granules with distinct clearance kinetics. Mol Biol Cell 2021; 32:ar18. [PMID: 34432484 PMCID: PMC8693967 DOI: 10.1091/mbc.e21-02-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stress granules (SGs) are ribonucleoprotein functional condensates that form under stress conditions in all eukaryotic cells. Although their stress-survival function is far from clear, SGs have been implicated in the regulation of many vital cellular pathways. Consequently, SG dysfunction is thought to be a mechanistic point of origin for many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Additionally, SGs are thought to play a role in pathogenic pathways as diverse as viral infection and chemotherapy resistance. There is a growing consensus on the hypothesis that understanding the mechanistic regulation of SG physical properties is essential to understanding their function. Although the internal dynamics and condensation mechanisms of SGs have been broadly investigated, there have been fewer investigations into the timing of SG formation and clearance in live cells. Because the lifetime of SG persistence can be a key factor in their function and tendency toward pathological dysregulation, SG clearance mechanisms deserve particular attention. Here we show that resveratrol and its analogues piceatannol, pterostilbene, and 3,4,5,4'-tetramethoxystilbene induce G3BP-dependent SG formation with atypically rapid clearance kinetics. Resveratrol binds to G3BP, thereby reducing its protein-protein association valency. We suggest that altering G3BP valency is a pathway for the formation of uniquely transient SGs.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Christina Zelent
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073, Goettingen, Germany.,1Base Pharmaceuticals, Boston, MA, 02129, USA
| |
Collapse
|
21
|
Lenard AJ, Hutten S, Zhou Q, Usluer S, Zhang F, Bourgeois BMR, Dormann D, Madl T. Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation. Front Mol Biosci 2021; 8:689687. [PMID: 34738012 PMCID: PMC8562343 DOI: 10.3389/fmolb.2021.689687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.
Collapse
Affiliation(s)
- Aneta J. Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Saskia Hutten
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
| | - Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin M. R. Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
22
|
Mann JR, Donnelly CJ. RNA modulates physiological and neuropathological protein phase transitions. Neuron 2021; 109:2663-2681. [PMID: 34297914 PMCID: PMC8434763 DOI: 10.1016/j.neuron.2021.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Aggregation of RNA-binding proteins (RBPs) is a pathological hallmark of neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In these diseases, TDP-43 and FUS RBPs are depleted from the nuclear compartment, where they are normally localized, and found within cytoplasmic inclusions in degenerating regions of affected individuals' postmortem tissue. The mechanisms responsible for aggregation of these proteins has remained elusive, but recent studies suggest liquid-liquid phase separation (LLPS) might serve as a critical nucleation step in formation of pathological inclusions. The process of phase separation also underlies the formation and maintenance of several functional membraneless organelles (MLOs) throughout the cell, some of which contain TDP-43, FUS, and other disease-linked RBPs. One common ligand of disease-linked RBPs, RNA, is a major component of MLOs containing RBPs and has been demonstrated to be a strong modulator of RBP phase transitions. Although early evidence suggested a largely synergistic effect of RNA on RBP phase separation and MLO assembly, recent work indicates that RNA can also antagonize RBP phase behavior under certain physiological and pathological conditions. In this review, we describe the mechanisms underlying RNA-mediated phase transitions of RBPs and examine the molecular properties of these interactions, such as RNA length, sequence, and secondary structure, that mediate physiological or pathological LLPS.
Collapse
Affiliation(s)
- Jacob R Mann
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; LiveLikeLouCenter for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA; Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher J Donnelly
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; LiveLikeLouCenter for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA; Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegeneration, University of Pittsburgh, Pittsburgh PA 15213.
| |
Collapse
|
23
|
Amen T, Kaganovich D. Stress granules inhibit fatty acid oxidation by modulating mitochondrial permeability. Cell Rep 2021; 35:109237. [PMID: 34133922 PMCID: PMC8220302 DOI: 10.1016/j.celrep.2021.109237] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
The formation of stress granules (SGs) is an essential aspect of the cellular response to many kinds of stress, but its adaptive role is far from clear. SG dysfunction is implicated in aging-onset neurodegenerative diseases, prompting interest in their physiological function. Here, we report that during starvation stress, SGs interact with mitochondria and regulate metabolic remodeling. We show that SG formation leads to a downregulation of fatty acid β-oxidation (FAO) through the modulation of mitochondrial voltage-dependent anion channels (VDACs), which import fatty acids (FAs) into mitochondria. The subsequent decrease in FAO during long-term starvation reduces oxidative damage and rations FAs for longer use. Failure to form SGs, whether caused by the genetic deletion of SG components or an amyotrophic lateral sclerosis (ALS)-associated mutation, translates into an inability to downregulate FAO. Because metabolic dysfunction is a common pathological element of neurodegenerative diseases, including ALS, our findings provide a direction for studying the clinical relevance of SGs.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Daniel Kaganovich
- 1Base Pharmaceuticals, Boston, MA 02129, USA; Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
24
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
25
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
26
|
Amen T, Kaganovich D. Small Molecule Screen Reveals Joint Regulation of Stress Granule Formation and Lipid Droplet Biogenesis. Front Cell Dev Biol 2021; 8:606111. [PMID: 33972926 PMCID: PMC8105174 DOI: 10.3389/fcell.2020.606111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic regulation is a necessary component of all stress response pathways, because all different mechanisms of stress-adaptation place high-energy demands on the cell. Mechanisms that integrate diverse stress response pathways with their metabolic components are therefore of great interest, but few are known. We show that stress granule (SG) formation, a common adaptive response to a variety of stresses, is reciprocally regulated by the pathways inducing lipid droplet accumulation. Inability to upregulate lipid droplets reduces stress granule formation. Stress granule formation in turn drives lipid droplet clustering and fatty acid accumulation. Our findings reveal a novel connection between stress response pathways and new modifiers of stress granule formation.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,1Base Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
27
|
Begovich K, Vu AQ, Yeo G, Wilhelm JE. Conserved metabolite regulation of stress granule assembly via AdoMet. J Cell Biol 2021; 219:151916. [PMID: 32609300 PMCID: PMC7401819 DOI: 10.1083/jcb.201904141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are evolutionarily conserved condensates of ribonucleoproteins that assemble in response to metabolic stresses. Because aberrant SG formation is associated with amyotrophic lateral sclerosis (ALS), understanding the connection between metabolic activity and SG composition can provide therapeutic insights into neurodegeneration. Here, we identify 17 metabolic enzymes recruited to yeast SGs in response to physiological growth stress. Furthermore, the product of one of these enzymes, AdoMet, is a regulator of SG assembly and composition. Decreases in AdoMet levels increase SG formation, while chronic elevation of AdoMet produces SG remnants lacking proteins associated with the 5′ end of transcripts. Interestingly, acute elevation of AdoMet blocks SG formation in yeast and motor neurons. Treatment of ALS-derived motor neurons with AdoMet also suppresses the formation of TDP-43–positive SGs, a hallmark of ALS. Together, these results argue that AdoMet is an evolutionarily conserved regulator of SG composition and assembly with therapeutic potential in neurodegeneration.
Collapse
Affiliation(s)
- Kyle Begovich
- Howard Hughes Medical Institute, Summer Institute Marine Biological Laboratory, Woods Hole, MA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA.,Stem Cell Program, University of California, San Diego, La Jolla, CA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| | - Gene Yeo
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA.,Stem Cell Program, University of California, San Diego, La Jolla, CA.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA
| | - James E Wilhelm
- Howard Hughes Medical Institute, Summer Institute Marine Biological Laboratory, Woods Hole, MA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
28
|
Sekine Y, Houston R, Sekine S. Cellular metabolic stress responses via organelles. Exp Cell Res 2021; 400:112515. [PMID: 33582095 DOI: 10.1016/j.yexcr.2021.112515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/08/2023]
Abstract
Metabolite fluctuations following nutrient metabolism or environmental stresses impact various intracellular signaling networks and stress responses to maintain cellular and organismal homeostasis. It has been shown that subcellular organelles, such as the endoplasmic reticulum, the Golgi apparatus, lysosomes and mitochondria serve as crucial hubs linking alterations in metabolite levels to cellular responses. This role is coordinated by molecular machineries that are associated with the lipid membranes of organelles, which sense the fluctuations in specific metabolites and activate the appropriate signaling and effector molecules. Moreover, recent studies have demonstrated that membraneless organelles, such as the nucleolus and stress granules, are involved in the metabolic stress response. Metabolite-induced post-translational modifications appear to play an important role in this process. Here, we review the molecular mechanisms of metabolite sensing and metabolite-mediated stress responses through membrane-bound and membraneless organelles in mammalian cells.
Collapse
Affiliation(s)
- Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Mechanism and effect of stress granule formation in cancer and its potential roles in breast cancer therapy. Genes Dis 2021; 9:659-667. [PMID: 35782985 PMCID: PMC9243343 DOI: 10.1016/j.gendis.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Stress granules are non-membranous cytoplasmic foci induced by various stress conditions. It is a protective strategy used by cells to suppress overall translation during stress. In cancer cells, it was thought that the formation of stress granules could protect them from apoptosis and induces resistance towards anti-cancer drugs or radiation treatment which makes the stress granules a potential target for cancer treatment. However, most of our understanding of stress granules are still in the stage of molecular and cell biology, and a transitional gap for its actual effect on clinical settings remains. In this review, we summarize the mechanism and effect of stress granules formation in cancer and try to illuminate its potential applications in cancer therapy, using breast cancer as an example.
Collapse
|
30
|
Amen T, Kaganovich D. Quantitative photoconversion analysis of internal molecular dynamics in stress granules and other membraneless organelles in live cells. STAR Protoc 2020; 1:100217. [PMID: 33377110 PMCID: PMC7757677 DOI: 10.1016/j.xpro.2020.100217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photoconversion enables real-time labeling of protein sub-populations inside living cells, which can then be tracked with submicrometer resolution. Here, we detail the protocol of comparing protein dynamics inside membraneless organelles in live HEK293T cells using a CRISPR-Cas9 PABPC1-Dendra2 marker of stress granules. Measuring internal dynamics of membraneless organelles provides insight into their functional state, physical properties, and composition. Photoconversion has the advantage over other imaging techniques in that it is less phototoxic and allows for dual color tracking of proteins. For complete details on the use and execution of this protocol, please refer to Amen and Kaganovich (2020). Photoconversion microscopy enables the measurement of protein dynamics in stress granules Protocol describes the construction of CRISPR-Cas9 stress granule photoconversion marker Protocol can measure the internal dynamics of other membraneless organelles in live cells
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen 37073, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen 37073, Germany.,Base Pharmaceuticals, Boston, MA 02129, USA
| |
Collapse
|
31
|
Do TQT, Gaudreau-Lapierre A, Palii CG, Resende VMF, Campuzano D, Aeschimann CS, Brand M, Trinkle-Mulcahy L. A Nuclear Stress Pathway that Parallels Cytoplasmic Stress Granule Formation. iScience 2020; 23:101664. [PMID: 33134894 PMCID: PMC7586129 DOI: 10.1016/j.isci.2020.101664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Stress adaptation is exploited by cancer cells to survive and proliferate under adverse conditions. Survival pathways induced by stress are thus highly promising therapeutic targets. One key pathway involves formation of cytoplasmic stress granules, which regulate the location, stability, and translation of specific mRNAs. Here, we describe a transcriptional stress response that is triggered by similar stressors and characterized by accumulation of RepoMan (cell division cycle associated 2) at nuclear stress foci (nucSF). Formation of these structures is reversible, and they are distinct from known nuclear organelles and stress bodies. Immunofluorescence analysis revealed accumulation of heterochromatic markers, and increased association of RepoMan with the adenylate cyclase 2 (ADCY2) gene locus in stressed cells accompanied reduced levels of ADCY2 mRNA and protein. Quantitative comparison of the RepoMan interactome in stressed vs. unstressed cells identified condensin II as a nucSF factor, suggesting their functional association in the establishment and/or maintenance of these facultative heterochromatic domains.
Collapse
Affiliation(s)
- Tyler Quoc-Thai Do
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Antoine Gaudreau-Lapierre
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carmen G. Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Virginia Maria Ferreira Resende
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Denise Campuzano
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Claire Simada Aeschimann
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Majorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
32
|
Richardson A, Zentz ZA, Chambers AE, Sandwith SN, Reisinger MA, Saunders DW, Tompkins JD, Riggs AD, Routh ED, Rubenstein EM, Smaldino MA, Vaughn JP, Haney RA, Smaldino PJ. G-Quadruplex Helicase DHX36/G4R1 Engages Nuclear Lamina Proteins in Quiescent Breast Cancer Cells. ACS OMEGA 2020; 5:24916-24926. [PMID: 33015511 PMCID: PMC7528498 DOI: 10.1021/acsomega.0c03723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
G-quadruplexes (G4s) are nucleic acid structures found enriched within gene regulatory sequences. G4s control fundamental cellular processes, including replication, transcription, and translation. Proto-oncogenes are enriched with G4 sequences, while tumor-suppressor genes are depleted, suggesting roles for G4s in cell survival and proliferation. Specialized helicases participate in G4-mediated gene regulation via enzymatic unwinding activity. One such enzyme, DHX36/G4R1, is the major G4-helicase and is a master regulator of G4-DNAs and mRNAs. G4-resolution promotes the expression of proproliferative genes; as such, DHX36/G4R1 promotes cell proliferation. Little is known about how DHX36/G4R1 itself is regulated in nondividing cells. We hypothesized that DHX36/G4R1 protein binding partners are altered when a cell transitions from a dividing to a quiescent state. We found that DHX36/G4R1 co-purifies with a distinct set of proteins under quiescent conditions, which may represent a novel complex that regulates DHX36/G4R1 during cell cycle transitions and have implications for development and cancer.
Collapse
Affiliation(s)
- Adam.
E. Richardson
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Zachary. A. Zentz
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Antonio E. Chambers
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Siara N. Sandwith
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Michael A. Reisinger
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Destinee W. Saunders
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Joshua D. Tompkins
- Department
of Diabetes Complications and Metabolism, City of Hope, Duarte, California 91010, United States
| | - Arthur D. Riggs
- Department
of Diabetes Complications and Metabolism, City of Hope, Duarte, California 91010, United States
| | - Eric D. Routh
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M. Rubenstein
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Melissa A. Smaldino
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - James P. Vaughn
- NanoMedica
LLC, Winston-Salem, North Carolina 27101, United States
| | - Robert A. Haney
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| | - Philip J. Smaldino
- Department
of Biology, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
33
|
Fasnall Induces Atypically Transient Stress Granules Independently of FASN Inhibition. iScience 2020; 23:101550. [PMID: 33083719 PMCID: PMC7516299 DOI: 10.1016/j.isci.2020.101550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Stress Granule formation has been linked to the resistance of some cancer cells to chemotherapeutic intervention. A number of studies have proposed that certain anti-tumor compounds promote cancer cell survival by inducing Stress Granule formation, leading to increased cellular fitness and apoptosis avoidance. Here we show that a potent fatty acid synthase inhibitor, fasnall, known for its anti-tumor capabilities, triggers the formation of atypical Stress Granules, independently of fatty acid synthase inhibition, characterized by high internal mobility and rapid turnover.
Collapse
|
34
|
Begovich K, Wilhelm JE. An In Vitro Assembly System Identifies Roles for RNA Nucleation and ATP in Yeast Stress Granule Formation. Mol Cell 2020; 79:991-1007.e4. [PMID: 32780990 DOI: 10.1016/j.molcel.2020.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
Stress granules (SGs) are condensates of mRNPs that form in response to stress. SGs arise by multivalent protein-protein, protein-RNA, and RNA-RNA interactions. However, the role of RNA-RNA interactions in SG assembly remains understudied. Here, we describe a yeast SG reconstitution system that faithfully recapitulates SG assembly in response to trigger RNAs. SGs assembled by stem-loop RNA triggers are ATP-sensitive, regulated by helicase/chaperone activity, and exhibit the hallmarks of maturation observed for SG proteins that phase-separate in vitro. Additionally, the fraction of total RNA that phase-separates in vitro is sufficient to trigger SG formation. However, condensation of NFT1 mRNA, an enriched transcript in this population, can only assemble an incomplete SG. These results suggest that networks of distinct transcripts are required to form a canonical SG and provide a platform for dissecting the interplay between the transcriptome and ATP-dependent remodeling in SG formation.
Collapse
Affiliation(s)
- Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute (HHMI) Summer Institute Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - James E Wilhelm
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute (HHMI) Summer Institute Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
35
|
Zhan Y, Wang H, Ning Y, Zheng H, Liu S, Yang Y, Zhou M, Fan S. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. Am J Cancer Res 2020; 10:2226-2241. [PMID: 32905441 PMCID: PMC7471355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023] Open
Abstract
The assembly of stress granules (SGs) is a conserved mechanism to regulate protein synthesis under cell stress, where the translation of global protein is silenced and selective protein synthesis for survival maintains. SG formation confers survival advantages and chemotherapeutic resistance to malignant cells. Targeting SG assembly may represent a potential treatment strategy to overcome the primary and acquired chemotherapeutic resistance and enhance curative effect. We conduct a comprehensive review of the published literatures focusing on the drugs that potentially induce SGs and the related mechanism, retrospect the relationship between SGs and drug resistance related proteins, illuminate the regulated pathways and potential targets for SG assembly, and discuss future directions of overcoming the resistance to chemotherapy.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Ming Zhou
- Cancer Research Institute Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
36
|
Libner CD, Salapa HE, Levin MC. The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. Int J Mol Sci 2020; 21:E4571. [PMID: 32604997 PMCID: PMC7369711 DOI: 10.3390/ijms21134571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.
Collapse
Affiliation(s)
- Cole D. Libner
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Hannah E. Salapa
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Michael C. Levin
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| |
Collapse
|
37
|
Kuo C, You G, Jian Y, Chen T, Siao Y, Hsu A, Ching T. AMPK-mediated formation of stress granules is required for dietary restriction-induced longevity in Caenorhabditis elegans. Aging Cell 2020; 19:e13157. [PMID: 32432401 PMCID: PMC7294782 DOI: 10.1111/acel.13157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/07/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Stress granules (SGs) are nonmembranous organelles that are dynamically assembled and disassembled in response to various stressors. Under stressed conditions, polyadenylated mRNAs and translation factors are sequestrated in SGs to promote global repression of protein synthesis. It has been previously demonstrated that SG formation enhances cell survival and stress resistance. However, the physiological role of SGs in organismal aging and longevity regulation remains unclear. In this study, we used TIAR‐1::GFP and GTBP‐1::GFP as markers to monitor the formation of SGs in Caenorhabditis elegans. We found that, in addition to acute heat stress, SG formation could also be triggered by dietary changes, such as starvation and dietary restriction (DR). We found that HSF‐1 is required for the SG formation in response to acute heat shock and starvation but not DR, whereas the AMPK‐eEF2K signaling is required for starvation and DR‐induced SG formation but not heat shock. Moreover, our data suggest that this AMPK‐eEF2K pathway‐mediated SG formation is required for lifespan extension by DR, but dispensable for the longevity by reduced insulin/IGF‐1 signaling. Collectively, our findings unveil a novel role of SG formation in DR‐induced longevity.
Collapse
Affiliation(s)
- Chen‐Ting Kuo
- Institute of Biopharmaceutical Sciences Yang‐Ming University Taipei Taiwan
| | - Guan‐Ting You
- Institute of Biopharmaceutical Sciences Yang‐Ming University Taipei Taiwan
| | - Ying‐Jie Jian
- Institute of Biopharmaceutical Sciences Yang‐Ming University Taipei Taiwan
| | - Ting‐Shin Chen
- Institute of Biopharmaceutical Sciences Yang‐Ming University Taipei Taiwan
| | - Yu‐Chen Siao
- Institute of Biochemistry and Molecular Biology National Yang‐Ming University Taipei Taiwan
| | - Ao‐Lin Hsu
- Institute of Biochemistry and Molecular Biology National Yang‐Ming University Taipei Taiwan
- Research Center for Healthy Aging and Institute of New Drug Development China Medical University Taichung Taiwan
- Division of Geriatric and Palliative Medicine Department of Internal Medicine University of Michigan Ann Arbor MI USA
| | - Tsui‐Ting Ching
- Institute of Biopharmaceutical Sciences Yang‐Ming University Taipei Taiwan
| |
Collapse
|
38
|
Phillips AH, Kriwacki RW. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr Opin Struct Biol 2020; 60:1-6. [DOI: 10.1016/j.sbi.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
|
39
|
El‐Naggar AM, Somasekharan SP, Wang Y, Cheng H, Negri GL, Pan M, Wang XQ, Delaidelli A, Rafn B, Cran J, Zhang F, Zhang H, Colborne S, Gleave M, Mandinova A, Kedersha N, Hughes CS, Surdez D, Delattre O, Wang Y, Huntsman DG, Morin GB, Sorensen PH. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 2019; 20:e48375. [PMID: 31668005 PMCID: PMC6893361 DOI: 10.15252/embr.201948375] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
Outcomes for metastatic Ewing sarcoma and osteosarcoma are dismal and have not changed for decades. Oxidative stress attenuates melanoma metastasis, and melanoma cells must reduce oxidative stress to metastasize. We explored this in sarcomas by screening for oxidative stress sensitizers, which identified the class I HDAC inhibitor MS-275 as enhancing vulnerability to reactive oxygen species (ROS) in sarcoma cells. Mechanistically, MS-275 inhibits YB-1 deacetylation, decreasing its binding to 5'-UTRs of NFE2L2 encoding the antioxidant factor NRF2, thereby reducing NFE2L2 translation and synthesis of NRF2 to increase cellular ROS. By global acetylomics, MS-275 promotes rapid acetylation of the YB-1 RNA-binding protein at lysine-81, blocking binding and translational activation of NFE2L2, as well as known YB-1 mRNA targets, HIF1A, and the stress granule nucleator, G3BP1. MS-275 dramatically reduces sarcoma metastasis in vivo, but an MS-275-resistant YB-1K81-to-alanine mutant restores metastatic capacity and NRF2, HIF1α, and G3BP1 synthesis in MS-275-treated mice. These studies describe a novel function for MS-275 through enhanced YB-1 acetylation, thus inhibiting YB-1 translational control of key cytoprotective factors and its pro-metastatic activity.
Collapse
Affiliation(s)
- Amal M El‐Naggar
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
- Department of PathologyFaculty of MedicineMenoufia UniversityShibin El KomEgypt
| | | | - Yemin Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Melvin Pan
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Xue Qi Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Alberto Delaidelli
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Bo Rafn
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Jordan Cran
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Fan Zhang
- Vancouver Prostate CentreVancouverBCCanada
| | - Haifeng Zhang
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Anna Mandinova
- Brigham and Women's HospitalHarvard UniversityBostonMAUSA
| | - Nancy Kedersha
- Massachusetts General HospitalHarvard UniversityBostonMAUSA
| | - Christopher S Hughes
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | | | - David G Huntsman
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Gregg B Morin
- Michael Smith Genome Sciences CentreVancouverBCCanada
| | - Poul H Sorensen
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| |
Collapse
|
40
|
Nutritional psychoneuroimmunology: Is the inflammasome a critical convergence point for stress and nutritional dysregulation? Curr Opin Behav Sci 2019; 28:20-24. [PMID: 31667204 DOI: 10.1016/j.cobeha.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psychoneuroimmunology (PNI) aims to elucidate mechanisms by which the immune system can influence behavior. Given the complexity of the brain, studies using inbred rodents have shed critical insight into the presumed vagaries of the human condition. This is particularly true for stress modeling where adverse stimuli, conditions and/or interactions elicit patterned behavioral reactions that can translate across species. As example, sickness behaviors are as easily recognized in mice as they are in humans, and a family pet. Recently, nutrition has gained prominence as a regulator of brain function. Once perceived as mostly a peripheral player, except when manifest at extremes like starvation or gluttony, nutritional and/or metabolic stress is now recognized as a worrisome contributor to poor mental health especially in those who suffer from food insecurity or overnutrition. In this review, we will explore emerging areas of rodent research that demonstrate the impact of nutritional status on the stressed brain. Our overall goal is to implicate inflammasome activation as a critical convergence point for stress and nutritional dysregulation. In doing so, we will present results from studies focused on macronutrient, micronutrient and dietary bioactives so as to encourage innovative investigation into the emerging field of nutritional PNI.
Collapse
|
41
|
van Leeuwen W, Rabouille C. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells. Traffic 2019; 20:623-638. [PMID: 31152627 PMCID: PMC6771618 DOI: 10.1111/tra.12669] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
Abstract
In cells at steady state, two forms of cell compartmentalization coexist: membrane-bound organelles and phase-separated membraneless organelles that are present in both the nucleus and the cytoplasm. Strikingly, cellular stress is a strong inducer of the reversible membraneless compartments referred to as stress assemblies. Stress assemblies play key roles in survival during cell stress and in thriving of cells upon stress relief. The two best studied stress assemblies are the RNA-based processing-bodies (P-bodies) and stress granules that form in response to oxidative, endoplasmic reticulum (ER), osmotic and nutrient stress as well as many others. Interestingly, P-bodies and stress granules are heterogeneous with respect to both the pathways that lead to their formation and their protein and RNA content. Furthermore, in yeast and Drosophila, nutrient stress also leads to the formation of many other types of prosurvival cytoplasmic stress assemblies, such as metabolic enzymes foci, proteasome storage granules, EIF2B bodies, U-bodies and Sec bodies, some of which are not RNA-based. Nutrient stress leads to a drop in cytoplasmic pH, which combined with posttranslational modifications of granule contents, induces phase separation.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciencesand University Medical Center UtrechtUtrechtthe Netherlands
- Department of Biomedical Science of Cells and SystemsUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
42
|
Hoch-Kraft P, Trotter J, Gonsior C. Missing in Action: Dysfunctional RNA Metabolism in Oligodendroglial Cells as a Contributor to Neurodegenerative Diseases? Neurochem Res 2019; 45:566-579. [PMID: 30843138 DOI: 10.1007/s11064-019-02763-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
The formation of myelin around axons by oligodendrocytes (OL) poses an enormous synthetic and energy challenge for the glial cell. Local translation of transcripts, including the mRNA for the essential myelin protein Myelin Basic Protein (MBP) at the site of myelin deposition has been recognised as an efficient mechanism to assure proper myelin sheath assembly. Oligodendroglial precursor cells (OPCs) form synapses with neurons and may localise many additional mRNAs in a similar fashion to synapses between neurons. In some diseases in which demyelination occurs, an abundance of OPCs is present but there is a failure to efficiently remyelinate and to synthesise MBP. This compromises axonal survival and function. OPCs are especially sensitive to cellular stress as occurring in neurodegenerative diseases, which can impinge on their ability to translate mRNAs into protein. Stress causes the build up of cytoplasmic stress granules (SG) in which many RNAs are sequestered and translationally stalled until the stress ceases. Chronic stress in particular could convert this initially protective reaction of the cell into damage, as persistence of SG may lead to pathological aggregate formation or long-term translation block of SG-associated RNAs. The recent recognition that many neurodegenerative diseases often exhibit an early white matter pathology with a proliferation of surviving OPCs, renders a study of the stress-associated processes in oligodendrocytes and OPCs especially relevant. Here, we discuss a potential dysfunction of RNA regulation in myelin diseases such as Multiple Sclerosis (MS) and Vanishing white matter disease (VWM) and potential contributions of OL dysfunction to neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Fragile X syndrome (FXS).
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany
| | - Jacqueline Trotter
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany
| | - Constantin Gonsior
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany.
| |
Collapse
|
43
|
Hofweber M, Dormann D. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 2018; 294:7137-7150. [PMID: 30587571 DOI: 10.1074/jbc.tm118.001189] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membrane-less organelles consisting of RNA-binding proteins (RBPs) and RNA. RNA granules form through liquid-liquid phase separation (LLPS), whereby weak promiscuous interactions among RBPs and/or RNAs create a dense network of interacting macromolecules and drive the phase separation. Post-translational modifications (PTMs) of RBPs have emerged as important regulators of LLPS and RNP granule dynamics, as they can directly weaken or enhance the multivalent interactions between phase-separating macromolecules or can recruit or exclude certain macromolecules into or from condensates. Here, we review recent insights into how PTMs regulate phase separation and RNP granule dynamics, in particular arginine (Arg)-methylation and phosphorylation. We discuss how these PTMs regulate the phase behavior of prototypical RBPs and how, as "friend or foe," they might influence the assembly, disassembly, or material properties of cellular RNP granules, such as stress granules or amyloid-like condensates. We particularly highlight how PTMs control the phase separation and aggregation behavior of disease-linked RBPs. We also review how disruptions of PTMs might be involved in aberrant phase transitions and the formation of amyloid-like protein aggregates as observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mario Hofweber
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried.,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and
| | - Dorothee Dormann
- From the BioMedical Center, Cell Biology, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, .,the Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, and.,the Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| |
Collapse
|
44
|
Reineke LC, Neilson JR. Differences between acute and chronic stress granules, and how these differences may impact function in human disease. Biochem Pharmacol 2018; 162:123-131. [PMID: 30326201 PMCID: PMC6421087 DOI: 10.1016/j.bcp.2018.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Stress granules are macromolecular aggregates of mRNA and proteins assembling in response to stresses that promote the repression of protein synthesis. Most of the work characterizing stress granules has been done under acute stress conditions or during viral infection. Comparatively less work has been done to understand stress granule assembly during chronic stress, specifically regarding the composition and function of stress granules in this alternative context. Here, we describe key aspects of stress granule biology under acute stress, and how these stress granule hallmarks differ in the context of chronic stress conditions. We will provide perspective for future work aimed at further uncovering the form and function of both acute and chronic stress granules and discuss aspects of stress granule biology that have the potential to be exploited in human disease.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|