1
|
Huang X, Yao J, Liu L, Luo Y, Yang A. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy 2022; 18:2020-2035. [PMID: 35072587 PMCID: PMC9397461 DOI: 10.1080/15548627.2022.2025572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved intracellular degradation pathway that maintains cellular homeostasis. Over the past two decades, a series of scientific breakthroughs have helped explain autophagy-related molecular mechanisms and physiological functions. This tremendous progress continues to depend largely on powerful research methods, specifically, various autophagy marker Atg8-PE protein-based methods for studying membrane dynamics and monitoring autophagic activity. Recently, several biochemical approaches have been successfully developed to produce the lipidated protein Atg8-PE or its mimics in vitro, including enzyme-mediated reconstitution systems, chemically defined reconstitution systems, cell-free lipidation systems and protein chemical synthesis. These approaches have contributed important insights into the mechanisms underlying Atg8-mediated membrane dynamics and protein-protein interactions, creating a new perspective in autophagy studies. In this review, we comprehensively summarize Atg8-PE protein-based in vitro biochemical approaches and recent advances to facilitate a better understanding of autophagy mechanisms. In addition, we highlight the advantages and disadvantages of various Atg8-PE protein-based approaches to provide general guidance for their use in studying autophagy.Abbreviations: ATG: autophagy related; ATP: adenosine triphosphate; COPII: coat protein complex II; DGS-NTA: 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt); DPPE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; E. coli: Escherichia coli; EPL: expressed protein ligation; ERGIC: ER-Golgi intermediate compartment; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; GUVs: giant unilamellar vesicles; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MBP: maltose binding protein; MEFs: mouse embryonic fibroblasts; MESNa: 2-mercaptoethanesulfonic acid sodium salt; NCL: native chemical ligation; NTA: nitrilotriacetic acid; PE: phosphatidylethanolamine; PS: phosphatidylserine; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SPPS: solid-phase peptide synthesis; TEV: tobacco etch virus; WT: wild-type.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China,CONTACT Aimin Yang School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Hollenstein DM, Licheva M, Konradi N, Schweida D, Mancilla H, Mari M, Reggiori F, Kraft C. Spatial control of avidity regulates initiation and progression of selective autophagy. Nat Commun 2021; 12:7194. [PMID: 34893607 PMCID: PMC8664900 DOI: 10.1038/s41467-021-27420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/17/2021] [Indexed: 11/11/2022] Open
Abstract
Autophagosomes form at the endoplasmic reticulum in mammals, and between the vacuole and the endoplasmic reticulum in yeast. However, the roles of these sites and the mechanisms regulating autophagosome formation are incompletely understood. Vac8 is required for autophagy and recruits the Atg1 kinase complex to the vacuole. Here we show that Vac8 acts as a central hub to nucleate the phagophore assembly site at the vacuolar membrane during selective autophagy. Vac8 directly recruits the cargo complex via the Atg11 scaffold. In addition, Vac8 recruits the phosphatidylinositol 3-kinase complex independently of autophagy. Cargo-dependent clustering and Vac8-dependent sequestering of these early autophagy factors, along with local Atg1 activation, promote phagophore assembly site assembly at the vacuole. Importantly, ectopic Vac8 redirects autophagosome formation to the nuclear membrane, indicating that the vacuolar membrane is not specifically required. We propose that multiple avidity-driven interactions drive the initiation and progression of selective autophagy.
Collapse
Affiliation(s)
- David M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicole Konradi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - David Schweida
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Maresh ME, Chen P, Hazbun TR, Trader DJ. A Yeast Chronological Lifespan Assay to Assess Activity of Proteasome Stimulators. Chembiochem 2021; 22:2553-2560. [PMID: 34043860 PMCID: PMC8478123 DOI: 10.1002/cbic.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Aging is characterized by changes in several cellular processes, including dysregulation of proteostasis. Current research has shown long-lived rodents display elevated proteasome activity throughout life and proteasome dysfunction is linked to shorter lifespans in a transgenic mouse model. The ubiquitin proteasome system (UPS) is one of the main pathways leading to cellular protein clearance and quality maintenance. Reduction in proteasome activity is associated with aging and its related pathologies. Small molecule stimulators of the proteasome have been proposed to help alleviate cellular stress related to unwanted protein accumulation. Here we have described the development of techniques to monitor the impact of proteasome stimulation in wild-type yeast and a strain that has impaired proteasome expression. We validated our chronological lifespan assay using both types of yeast with a variety of small molecule stimulators at different concentrations. By modifying the media conditions for the yeast, molecules can be evaluated for their potential to increase chronological lifespan in five days. Additionally, our assay conditions can be used to monitor the activity of proteasome stimulators in modulating the degradation of a YFP-α-synuclein fusion protein produced by yeast. We anticipate these methods to be valuable for those wishing to study the impact of increasing proteasome-mediated degradation of proteins in a eukaryotic model organism.
Collapse
Affiliation(s)
- Marianne E. Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
4
|
Wu Y, Fu A, Yossifon G. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906682. [PMID: 32363783 DOI: 10.1002/smll.201906682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Self-propelling micromotors are emerging as a promising microscale tool for single-cell analysis. The authors have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active ("self-propelling") metallo-dielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, the application of the mobile floating microelectrode to trap and transport cell organelles in a selective and releasable manner is successfully extended. This selectivity is driven by the different dielectrophoretic (DEP) potential wells on the JP surface that is controlled by the frequency of the electric field, along with the hydrodynamic shearing and size of the trapped organelles. Such selective and directed loading enables purification of targeted organelles of interest from a mixed biological sample while their dynamic release enables their harvesting for further analysis such as gene/RNA sequencing or proteomics. Moreover, the electro-deformation of the trapped nucleus is shown to be in correlation with the DEP force and hence, can act as a promising label-free biomechanical marker. Hence, the active carrier constitutes an important and novel ex vivo platform for manipulation and mechanical probing of subcellular components of potential for single cell analysis.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Afu Fu
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|