1
|
Batyrova G, Taskozhina G, Umarova G, Umarov Y, Morenko M, Iriskulov B, Kudabayeva K, Bazargaliyev Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J Clin Med 2025; 14:1274. [PMID: 40004804 PMCID: PMC11856779 DOI: 10.3390/jcm14041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Selenium (Se) is a vital trace element for children, playing a crucial role in numerous physiological processes, including antioxidant defense, immune regulation, thyroid function, and bone metabolism. Emerging evidence highlights its potential impact on child development and growth while also underscoring the complexity of its mechanisms and the global variations in Se intake. The aim of this review is to comprehensively elucidate the significance of Se in various biological processes within the human body, with a focus on its role in child development and growth; its biochemical effects on the nervous system, thyroid function, immune system, and bone tissue; and the implications of Se deficiency and toxicity. This review integrates findings from experimental models, epidemiological studies, and clinical trials to explore Se's role in neurodevelopment, growth regulation, and immune competence in children. Selenoproteins, which regulate oxidative stress and thyroid hormone and bone metabolism, are essential for normal growth and cognitive development in children. Se deficiency and toxicity has been linked to impaired immune function, growth retardation, and decreased immune function. The findings underscore Se's influence on various biological pathways that are critical for healthy child development and its broader importance for child health. Public health strategies aimed at optimizing selenium intake may play a pivotal role in improving pediatric health outcomes worldwide.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulaim Taskozhina
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Yeskendir Umarov
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Marina Morenko
- Department of Children’s Diseases, Astana Medical University, Astana 010000, Kazakhstan;
| | - Bakhtiyar Iriskulov
- Department of Normal and Pathological Physiology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan;
| | - Khatimya Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| | - Yerlan Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| |
Collapse
|
2
|
Craig R, McIntosh K, Ho Ho K, McCulloch A, Riley C, Lawson C, Mackay SP, Paul A, Coats P, Plevin R. IL-1β stimulates a novel axis within the NFκB pathway in endothelial cells regulated by IKKα and TAK-1. Biochem Pharmacol 2025; 232:116736. [PMID: 39710275 DOI: 10.1016/j.bcp.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In this study we examined the activation of the non-canonical NFκB signalling pathway in endothelial cells. In HUVECs, LIGHT stimulated a delayed induction of serine 866/870 p100 phosphorylation linked to p52 NFκB formation. Surprisingly, the canonical ligand, IL-1β, stimulated a rapid phosphorylation or p100 which was not associated with p52 formation. Inhibition of IKKα activity, using DN-IKKα adenovirus, IKKα siRNA or a novel first-in-class selective IKKα inhibitor, SU1261, revealed IL-1β induced p100 phosphorylation to be dependent on IKKα. In contrast, IKKβ inhibition was found to be without effect. The NIK inhibitor, CW15337, did not affect IL-1β induced p100 phosphorylation however, both p100 and pIKKα/β phosphorylation was substantially reduced by inhibition of the upstream kinase TAK-1, suggesting phosphorylation of p100 is mediated by IKKα from within the canonical NEMO/IKKβ /IKKα complex. IL-1β also stimulated a rapid increase in nuclear translocation of p52, which was not affected by NIK inhibition, suggesting a source of p52 independent of p100 processing. Inhibition of TAK-1 abolished p52 and p65 nuclear translocation in response to IL-1β. SiRNA deletion or inhibition with dominant-negative virus of IKKα activity partially reduced p52 translocation, however pharmacological inhibition of IKKα was without effect. Inhibition of IKKβ abolished both p52 and p65 translocation. Taken together these results show that IL-1β stimulates a novel IKKα -dependent axis within the non-canonical NFκB pathway in endothelial cells which is NIK-independent and regulated by TAK-1. However, this pathway is not primarily responsible for the early nuclear translocation of p52, which is dependent on IKKβ. Elucidation of both these new pathways may be significant for NFκB biology within the endothelium.
Collapse
Affiliation(s)
- Rachel Craig
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Ka Ho Ho
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Riley
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Simon P Mackay
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Paul Coats
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
3
|
Wang Z, Cheng Y, Fan J, Luo R, Xu G, Ge S. Deletion of lymphotoxin-β receptor (LTβR) protects against acute kidney injury by PPARα pathway. Mol Med 2024; 30:254. [PMID: 39707217 DOI: 10.1186/s10020-024-01026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recent data has shown a considerable advancement in understanding the role of lymphotoxin-β receptor (LTβR) in inflammation. However, the functions and underlying mechanisms of LTβR in acute kidney injury (AKI) remain largely unknown. METHODS AKI was induced in mice by renal ischemia-reperfusion (I/R). HK-2 cells and primary renal tubular epithelial cells (RTECs) were subjected to hypoxia/reoxygenation (H/R) injury. The effects of LTβR depletion were examined in mice, as well as primary RTECs. Bone marrow chimeric mice was generated to determine whether the involvement of LTβR expression by parenchymal cells or bone marrow derived cells contributes to renal injury during AKI. RNA sequencing techniques were employed to investigate the mechanism via which LTβR signaling provides protection against I/R-induced AKI RESULTS: LTβR expression was downregulated both in vivo and in vitro models of AKI. Moreover, depletion of LTβR decreased renal damage and inflammation in I/R-induced AKI. We also found that LTβR deficient mice engrafted with wild type bone marrow had significantly less tubular damage, implying that LTβR in renal parenchymal cells may play dominant role in I/R-induced AKI. RNA sequencing indicated that the protective effect of LTβR deletion was associated with activation of PPARα signaling. Furthermore, upregulation of PPARα was observed upon depletion of LTβR. PPARα inhibitor, GW6471, aggravated the tubular damage and inflammation in LTβR-/- mice following I/R injury. Then we further demonstrated that LTβR depletion down-regulated non-canonical NF-κB and Bax/Bcl-2 apoptosis pathway through PPARα. CONCLUSIONS Our results suggested that the LTβR/PPARα axis may be a potential therapeutic target for the treatment of AKI.
Collapse
Affiliation(s)
- Zufeng Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Jiahe Fan
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Ran Luo
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030, China.
| |
Collapse
|
4
|
Baeza C, Ribagorda M, Maya-Lopez C, Fresno M, Sanchez-Diaz T, Pintor-Chocano A, Sanz AB, Carrasco S, Ortiz A, Sanchez-Niño MD. NIK Is a Mediator of Inflammation and Intimal Hyperplasia in Endothelial Denudation-Induced Vascular Injury. Int J Mol Sci 2024; 25:11473. [PMID: 39519026 PMCID: PMC11546836 DOI: 10.3390/ijms252111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. NFκB is a key mediator of inflammation that is activated during neointimal hyperplasia following endothelial injury. However, the molecular mechanisms involved in NFκB activation are poorly understood. NFκB may be activated through canonical (transient) and non-canonical (persistent) pathways. NFκB-inducing kinase (NIK, MAP3K14) is the upstream kinase of the non-canonical pathway. We have now explored the impact of NIK deficiency on neointimal hyperplasia following guidewire-induced endothelial cell injury and on local inflammation by comparing NIK activity-deficient alymphoplasia mice (NIKaly/aly) with control wild-type (NIK+/+) mice. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the local expression of NIK and the NFκB target chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2) and chemokine ligand 5 (RANTES/CCL5). Immunohistochemistry disclosed the infiltration of the media and intima by F4/80 positive macrophages. The intima/media ratio and percentage of stenosis were milder in the NIKaly/aly than in the NIK+/+ mice. Additionally, the gene expression for MCP-1 and RANTES was lower and F4/80+ cell infiltration was milder in the NIKaly/aly than in the NIK+/+ mice. Finally, circulating MCP-1 levels were lower in the NIKaly/aly than in the NIK+/+ mice, reflecting milder systemic inflammation. In conclusion, NIK is a driver of vascular wall inflammation and stenosis following guidewire-induced endothelial cell injury. NIK targeting may be a novel therapeutic approach to limit arterial stenosis following endothelial cell injury.
Collapse
Affiliation(s)
- Ciro Baeza
- Department of Vascular Surgery, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Marta Ribagorda
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Carla Maya-Lopez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas de la Universidad Autonoma de Madrid, 28049 Madrid, Spain;
| | - Tania Sanchez-Diaz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Ana B. Sanz
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Susana Carrasco
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Alberto Ortiz
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
6
|
Trusiano B, Zimmerman KL, Morrison HA, Allen IC. Not just for lymphoid cells: the role of the noncanonical NF-κB signaling pathway in early and late myelopoiesis with a focus on hypereosinophilic disorders. J Leukoc Biol 2024; 116:297-306. [PMID: 38682253 PMCID: PMC11288383 DOI: 10.1093/jleuko/qiae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
The noncanonical NF-κB pathway is involved in lymphoid organ development, B-cell maturation, and cytokine production. However, new research has demonstrated that this pathway is also key for the orderly and sequential maturation of myeloid cells, including neutrophils and eosinophils. When this pathway is disrupted or constitutively activated, aberrations in hematopoietic stem and progenitor cell survival and proliferation, as well as subsequent granulopoiesis and eosinophilopoiesis, are affected. Disturbance of such a coordinated and delicate process can manifest in devastating clinical disease, including acute and chronic myeloid leukemias, preleukemic processes such as myelodysplastic syndrome, or hyperinflammatory conditions like hypereosinophilic syndrome. In this review, we discuss the molecular machinery within the noncanonical NF-κB pathway, crosstalk with the canonical NF-κB pathway, murine models of noncanonical signaling, and how aberrations in this pathway manifest in leukemic or hyperinflammatory disease with a focus on hypereosinophilic syndrome. Potential and promising drug therapies will also be discussed, emphasizing the noncanonical NF-κB pathway as a potential target for improved treatment for patients with leukemia or idiopathic hypereosinophilic syndrome. The hope is that review of such mechanisms and treatments may eventually result in findings that aid physicians in rapidly diagnosing and more accurately classifying patients with such complex and overlapping hematopoietic diseases.
Collapse
Affiliation(s)
- Brie Trusiano
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
| | - Kurt L Zimmerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
| | - Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, United States
| |
Collapse
|
7
|
Li H, Li Y, Luo S, Zhang Y, Feng Z, Li S. The roles and mechanisms of the NF-κB signaling pathway in tendon disorders. Front Vet Sci 2024; 11:1382239. [PMID: 38978635 PMCID: PMC11228182 DOI: 10.3389/fvets.2024.1382239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Both acute and chronic tendon injuries are the most frequently occurring musculoskeletal diseases in human and veterinary medicine, with a limited repertoire of successful and evidenced-based therapeutic strategies. Inflammation has been suggested as a key driver for the formation of scar and adhesion tissue following tendon acute injury, as well as pathological alternations of degenerative tendinopathy. However, prior efforts to completely block this inflammatory process have yet to be largely successful. Recent investigations have indicated that a more precise targeted approach for modulating inflammation is critical to improve outcomes. The nuclear factor-kappaB (NF-κB) is a typical proinflammatory signal transduction pathway identified as a key factor leading to tendon disorders. Therefore, a comprehensive understanding of the mechanism or regulation of NF-κB in tendon disorders will aid in developing targeted therapeutic strategies for human and veterinary tendon disorders. In this review, we discuss what is currently known about molecular components and structures of basal NF-κB proteins and two activation pathways: the canonical activation pathway and the non-canonical activation pathway. Furthermore, we summarize the underlying mechanisms of the NF-κB signaling pathway in fibrosis and adhesion after acute tendon injury, as well as pathological changes of degenerative tendinopathy in all species and highlight the effect of targeting this signaling pathway in tendon disorders. However, to gain a comprehensive understanding of its mechanisms underlying tendon disorders, further investigations are required. In the future, extensive scientific examinations are warranted to full characterize the NF-κB, the exact mechanisms of action, and translate findings into clinical human and veterinary practice.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yini Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yan Zhang
- Luzhou Vocational and Technical College, Luzhou, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Sen Li
- School of Physical Education, Southwest Medical University, Luzhou, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Xu XX, Shao H, Wang QX, Wang ZY. Network Pharmacology and Experimental Validation Explore the Pharmacological Mechanisms of Herb Pair for Treating Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:1808-1822. [PMID: 38213142 DOI: 10.2174/0113862073263839231129163200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE This study aimed to elucidate the multitarget mechanism of the Mori Ramulus - Taxilli Herba (MT) herb pair in treating rheumatoid arthritis (RA). METHODS The targets of the herb pair and RA were predicted from databases and screened through cross-analysis. The core targets were obtained using protein-protein interaction (PPI) network analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, animal experiments were conducted to validate the anti-RA effect and mechanism of this herb pair. RESULTS This approach successfully identified 9 active compounds of MT that interacted with 6 core targets (AKT1, TNF, IL6, TP53, VEGFA, and IL1β). Pathway and functional enrichment analyses revealed that MT had significant effects on the TNF and IL-17 signaling pathways. The consistency of interactions between active components and targets in these pathways was confirmed through molecular docking. Moreover, the potential therapeutic effect of MT was verified in vivo, demonstrating its ability to effectively relieve inflammation by regulating these targeted genes and pathways. CONCLUSION The present work suggests that the therapeutic effect of MT herb pair on RA may be attributed to its ability to regulate the TNF signaling pathway and IL-17 signaling pathway.
Collapse
Affiliation(s)
- Xi-Xi Xu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Qiao-Xue Wang
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Zi-Yuan Wang
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211100, P. R. China
| |
Collapse
|
9
|
Haselager MV, Eldering E. The Therapeutic Potential of Targeting NIK in B Cell Malignancies. Front Immunol 2022; 13:930986. [PMID: 35911754 PMCID: PMC9326486 DOI: 10.3389/fimmu.2022.930986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is a key player in non-canonical NF-κB signaling, involved in several fundamental cellular processes, and is crucial for B cell function and development. In response to certain signals and ligands, such as CD40, BAFF and lymphotoxin-β activation, NIK protein stabilization and subsequent NF-κB activation is achieved. Overexpression or overactivation of NIK is associated with several malignancies, including activating mutations in multiple myeloma (MM) and gain-of-function in MALT lymphoma as a result of post-translational modifications. Consequently, drug discovery studies are devoted to pharmacologic modulation of NIK and development of specific novel small molecule inhibitors. However, disease-specific in vitro and in vivo studies investigating NIK inhibition are as of yet lacking, and clinical trials with NIK inhibitors remain to be initiated. In order to bridge the gap between bench and bedside, this review first briefly summarizes our current knowledge on NIK activation, functional activity and stability. Secondly, we compare current inhibitors targeting NIK based on efficacy and specificity, and provide a future perspective on the therapeutic potential of NIK inhibition in B cell malignancies.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- *Correspondence: Eric Eldering,
| |
Collapse
|
10
|
Jeucken KCM, van Rooijen CCN, Kan YY, Kocken LA, Jongejan A, van Steen ACI, van Buul JD, Olsson HK, van Hamburg JP, Tas SW. Differential Contribution of NF-κB Signaling Pathways to CD4+ Memory T Cell Induced Activation of Endothelial Cells. Front Immunol 2022; 13:860327. [PMID: 35769477 PMCID: PMC9235360 DOI: 10.3389/fimmu.2022.860327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
Endothelial cells (ECs) are important contributors to inflammation in immune-mediated inflammatory diseases (IMIDs). In this study, we examined whether CD4+ memory T (Tm) cells can drive EC inflammatory responses. Human Tm cells produced ligands that induced inflammatory responses in human umbilical vein EC as exemplified by increased expression of inflammatory mediators including chemokines and adhesion molecules. NF-κB, a key regulator of EC activation, was induced by Tm cell ligands. We dissected the relative contribution of canonical and non-canonical NF-κB signaling to Tm induced EC responses using pharmacological small molecule inhibitors of IKKβ (iIKKβ) or NF-κB inducing kinase (iNIK). RNA sequencing revealed substantial overlap in IKKβ and NIK regulated genes (n=549) that were involved in inflammatory and immune responses, including cytokines (IL-1β, IL-6, GM-CSF) and chemokines (CXCL5, CXCL1). NIK regulated genes were more restricted, as 332 genes were uniquely affected by iNIK versus 749 genes by iIKKβ, the latter including genes involved in metabolism, proliferation and leukocyte adhesion (VCAM-1, ICAM-1). The functional importance of NIK and IKKβ in EC activation was confirmed by transendothelial migration assays with neutrophils, demonstrating stronger inhibitory effects of iIKKβ compared to iNIK. Importantly, iIKKβ – and to some extent iNIK - potentiated the effects of currently employed therapies for IMIDs, like JAK inhibitors and anti-IL-17 antibodies, on EC inflammatory responses. These data demonstrate that inhibition of NF-κB signaling results in modulation of Tm cell-induced EC responses and highlight the potential of small molecule NF-κB inhibitors as a novel treatment strategy to target EC inflammatory responses in IMIDs.
Collapse
Affiliation(s)
- Kim C. M. Jeucken
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Charlotte C. N. van Rooijen
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Yik Y. Kan
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lotte A. Kocken
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Abraham C. I. van Steen
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Henric K. Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jan Piet van Hamburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Sander W. Tas,
| |
Collapse
|
11
|
Xiao P, Takiishi T, Violato NM, Licata G, Dotta F, Sebastiani G, Marselli L, Singh SP, Sze M, Van Loo G, Dejardin E, Gurzov EN, Cardozo AK. NF-κB-inducing kinase (NIK) is activated in pancreatic β-cells but does not contribute to the development of diabetes. Cell Death Dis 2022; 13:476. [PMID: 35589698 PMCID: PMC9120028 DOI: 10.1038/s41419-022-04931-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in β-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic β-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous β-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice. Therefore, NIK has been proposed as a potential target for diabetes therapy. However, no clear studies showed whether inhibition of NIK improves diabetes development. Here we show that genetic silencing of NIK in pancreatic β-cells neither modifies diabetes incidence nor inflammatory responses in a mouse model of immune-mediated diabetes. Moreover, NIK silencing in DIO mice did not influence body weight gain, nor glucose metabolism. In vitro studies corroborated the in vivo findings in terms of β-cell survival, function, and downstream gene regulation. Taken together, our data suggest that NIK activation is dispensable for the development of diabetes.
Collapse
Affiliation(s)
- Peng Xiao
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Tatiana Takiishi
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Natalia Moretti Violato
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Giada Licata
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Guido Sebastiani
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Sumeet Pal Singh
- Institute for Interdisciplinary Research in Human and Molecular Biology, Medical Faculty, Université libre de Bruxelles, Brussels, Belgium
| | - Mozes Sze
- Center for Inflammation Research, VIB, B-9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052, Ghent, Belgium
| | - Geert Van Loo
- Center for Inflammation Research, VIB, B-9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052, Ghent, Belgium
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Insitute, ULiege, Liège, Belgium
| | - Esteban Nicolas Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
12
|
Hanley KL, Liang Y, Wang G, Lin X, Yang M, Karin M, Fu W, Feng GS. Concurrent Disruption of the Ras/MAPK and NF-κB Pathways Induces Circadian Deregulation and Hepatocarcinogenesis. Mol Cancer Res 2022; 20:337-349. [PMID: 34810213 PMCID: PMC8898265 DOI: 10.1158/1541-7786.mcr-21-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/10/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
The Ras/Erk and NF-κB pathways play critical roles in cell proliferation and are known to drive oncogenesis when overactivated. Herein we report a gatekeeper function of the two pathways by working in synergy to suppress liver tumorigenesis. Hepatocyte-specific deletion of both Shp2/Ptpn11 and Ikkβ in mice, which promote Ras/Erk and NF-κB signaling, respectively, exacerbated chemical carcinogenesis and even triggered spontaneous development of hepatocellular carcinoma (HCC). We show that the unanticipated severe tumor phenotype was contributed collectively by severe cholestasis, metabolic changes, upregulated cell-cycle progression, and disruption of circadian rhythm in mutant hepatocytes. Remarkably, human HCCs with dysregulated circadian gene expression displayed downregulation of Ras/Erk and NF-κB signaling and poor prognosis. Together, these data indicate that at the ground state, the two central pathways, previously known as oncogenic, cooperate to sustain tumor-suppressive physiologic homeostasis and to prevent hepatic damage. Disruption of this intricate signaling network is carcinogenic in the liver. IMPLICATIONS We demonstrate here that basal levels of the Ras/MAPK and NF-κB pathways, while promoting tumorigenesis if overactivated, are required to maintain physiologic homeostasis and regulate circadian rhythm in the liver, which are antitumorigenic.
Collapse
Affiliation(s)
- Kaisa L. Hanley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Liang
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gaowei Wang
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaoxue Lin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Meixiang Yang
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Wenxian Fu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gen-Sheng Feng
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Li B, Li H, Dai L, Liu C, Wang L, Li Q, Gu C. NIK-SIX1 signalling axis regulates high glucose-induced endothelial cell dysfunction and inflammation. Autoimmunity 2022; 55:86-94. [PMID: 34894925 DOI: 10.1080/08916934.2021.2015579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction and inflammation are the main manifestations of diabetes-associated atherosclerosis. This paper studied the roles of NF-κB-inducing kinase (NIK) and sine oculis homeobox homolog 1 (SIX1) in regulating high glucose-induced endothelial dysfunction and inflammation. The expression of NIK and SIX1 in human umbilical vein endothelial cells (HUVECs) was silenced by transfection with the specific shRNAs. HUVECs exposed to high glucose were considered as a cell model of endothelial dysfunction. Expression of NIK and SIX1 following transfection was measured by qRT-PCR and western blotting analysis. The proliferation, migration, and inflammation of HUVECs were evaluated by EdU staining, scratch test, ELISA, and western blotting. High glucose (30 mM) significantly decreased the proliferation and migration of HUVECs. High glucose-induced the expression of adhesion molecules VCAM-1 and ICAM-1. Moreover, high glucose increased the release of IL-1β, IL-6, TNF-α, and MCP-1. Transfection of cells with NIK shRNA significantly reversed the toxic effects of high glucose on HUVECs. Of contrast, SIX1 shRNA accelerated the effects of high glucose on HUVECs. NIK shRNA inhibited the accumulation of RelA, RelB, and p52. Meanwhile, NIK shRNA led to SIX1 downregulation which further induced the activation of the NF-κB pathway. NIK-SIX1 signalling axis was suggested to be critical in the regulation of high glucose-induced endothelial dysfunction and inflammation. SIX1 may function as an immunological gatekeeper to control the excessive inflammation mediated by NIK in diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haiming Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Longsheng Dai
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changcheng Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liangshan Wang
- Department of Cardiac Surgery Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qin Li
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Yang S, Fu Q, Deng H, Liu Z, Zhong J, Zhu X, Wang Q, Sun C, Wu J. Mechanisms and molecular targets of the Yu-Ping-Feng powder for allergic rhinitis, based on network pharmacology. Medicine (Baltimore) 2021; 100:e26929. [PMID: 34477124 PMCID: PMC8415986 DOI: 10.1097/md.0000000000026929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
In traditional Chinese medicine (TCM), Yu-Ping-Feng powder (YPFP) has been used to treat allergic rhinitis (AR) for centuries. However, the mechanisms underlying its effects or its molecular targets in AR treatment are yet to be elucidated. Therefore, the active compounds of YPFP and their targets were collected and identified from the Traditional Chinese Medicine Systems Pharmacology database. Moreover, AR-associated targets were acquired from the GeneCards and Online Mendelian Inheritance in Man database. Proteins interactions network of YPFP presumed targets and AR-associated targets were examined and merged to reveal the candidate YPFP targets against AR.Cytoscape software and BisoGenet Database were employed to perform the Visualization and Integrated Discovery (Cluster Profiler R package, version: 3.8.1). Kyoto Encyclopedia of Genes and Genomes and genome pathway analyses. To identify the key target genes, a gene-pathway network has been constructed.We identified 44 effective active compounds and 622 YPFP targets. Also 1324 target genes related to AR were identified. Twenty pathways, including those of AGE-RAGE signaling, fluid shear stress, atherosclerosis, PI3K-Akt signaling, and tumor necrosis factor signaling was enriched significantly. MAPK1 was identified as the core gene, while others including RELA, AKT1, NFKBIA, IL6, and JUN, were also important in the gene-pathway network. Clearly, network pharmacology can be applied in revealing the molecular targets and mechanisms of action of complex herbal preparations.These findings suggested that YPFP could treat AR by regulating immunological functions, diminishing inflammation, and improving immunity through different pathways.
Collapse
Affiliation(s)
- Shasha Yang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qinwei Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Deng
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhiqing Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Wang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chuanhui Sun
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
15
|
Haselager M, Thijssen R, West C, Young L, Van Kampen R, Willmore E, Mackay S, Kater A, Eldering E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ 2021; 28:1658-1668. [PMID: 33495554 PMCID: PMC8167103 DOI: 10.1038/s41418-020-00692-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), the lymph node (LN) microenvironment delivers critical survival signals by inducing the expression of anti-apoptotic Bcl-2 members Bcl-XL, Bfl-1, and Mcl-1, resulting in apoptosis blockade. We determined previously that resistance against various drugs, among which is the clinically applied BH3 mimetic venetoclax, is dominated by upregulation of the anti-apoptotic regulator Bcl-XL. Direct clinical targeting of Bcl-XL by, e.g., Navitoclax is however not desirable due to induction of thrombocytopenia. Since the actual regulation of Bcl-XL in CLL in the context of the LN microenvironment is not well elucidated, we investigated various candidate LN signals to drive Bcl-XL expression. We found a dominance for NF-κB signaling upon CD40 stimulation, which results in activation of both the canonical and non-canonical NF-κB signaling pathways. We demonstrate that expression of Bcl-XL is first induced by the canonical NF-κB pathway, and subsequently boosted and continued via non-canonical NF-κB signaling through stabilization of NIK. NF-κB subunits p65 and p52 can both bind to the Bcl-XL promoter and activate transcription upon CD40 stimulation. Moreover, canonical NF-κB signaling was correlated with Bfl-1 expression, whereas Mcl-1 in contrast, was not transcriptionally regulated by NF-κB. Finally, we applied a novel compound targeting NIK to selectively inhibit the non-canonical NF-κB pathway and showed that venetoclax-resistant CLL cells were sensitized to venetoclax. In conclusion, protective signals from the CLL microenvironment can be tipped towards apoptosis sensitivity by interfering with non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Marco Haselager
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| | - Rachel Thijssen
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Christopher West
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Louise Young
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Roel Van Kampen
- grid.416905.fZuyderland Medical Center, Sittard, The Netherlands
| | - Elaine Willmore
- grid.1006.70000 0001 0462 7212Drug Discovery Unit, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Mackay
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnon Kater
- grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Hou CP, Yang PS, Chen CL, Feng TH, Juang HH. Mucosa-Associated Lymphoid Tissue 1 Is an Oncogene Inducing Cell Proliferation, Invasion, and Tumor Growth via the Upregulation of NF-κB Activity in Human Prostate Carcinoma Cells. Biomedicines 2021; 9:biomedicines9030250. [PMID: 33802402 PMCID: PMC8000469 DOI: 10.3390/biomedicines9030250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common seen malignancies and the leading cause of cancer-related death among men. Given the importance of early diagnosis and treatment, it is worth to identify a potential novel therapeutic target for prostate cancer. Mucosa-associated lymphoid tissue 1 (MALT1) is a novel gene involved in nuclear factor κB (NF-κB) signal transduction by acting as an adaptor protein and paracaspase, with an essential role in inflammation and tumorigenesis in many cancers. This study investigated the functions and the potential regulatory mechanisms of MALT1 in the human prostate cancer cells. We found that MALT1 is abundant in prostate cancer tissues. MALT1 facilitated NF-κB subunits (p50 and p65) nuclear translocation to induce gene expression of interleukin 6 (IL-6) and C-X-C motif chemokine 5 (CXCL5) in prostate carcinoma cells. MALT1 promoted cell proliferation, invasion, and tumor growth in vitro and in vivo. MALT1 enhanced NF-κB activity in prostate carcinoma cells; moreover, NF-κB induced MALT1 expression determined by reporter and immunoblot assays, implying there is a positive feedback loop between MALT1 and NF-κB. In conclusion, MALT1 is a NF-κB-induced oncogene in the human prostate carcinoma cells.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-H.T.); (Y.-H.L.); (C.-P.H.); (P.-S.Y.); (C.-L.C.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan; (K.-S.C.); (H.-C.S.); (S.-Y.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
17
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
18
|
Banach-Orłowska M, Wyszyńska R, Pyrzyńska B, Maksymowicz M, Gołąb J, Miączyńska M. Cholesterol restricts lymphotoxin β receptor-triggered NF-κB signaling. Cell Commun Signal 2019; 17:171. [PMID: 31878945 PMCID: PMC6933913 DOI: 10.1186/s12964-019-0460-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. At the cellular level, ligand-bound LTβR activates the pro-inflammatory NF-κB pathway but the detailed mechanisms regulating its signaling remain unknown. Understanding them is of high importance since LTβR and its ligands are promising therapeutic targets. Here, we studied the consequences of perturbed cellular cholesterol content on LTβR-induced NF-κB signaling. METHODS To modulate cholesterol availability and/or level in lung carcinoma A549 and H2228, and endothelial HUVEC cells different treatment regimens with filipin, methyl-β-cyclodextrin and simvastatin were applied. LTβR localization was studied by confocal microscopy. The activity of LTβR-induced NF-κB pathway was assessed by measuring the levels of NF-κB pathway inhibitor IκBα and phosphorylation of RelA transcription factor by Western blotting. The NF-κB transcriptional response, production of chemokines and adhesion molecules were examined by qRT-PCR, ELISA, and Western blotting, respectively. Adherence of different types of primary immune cells to epithelial A549 cells and endothelial HUVECs was measured fluorometrically. Interactions of LTβR with its protein partners were investigated by immunoprecipitation. RESULTS We showed that filipin-mediated sequestration of cholesterol or its depletion from the plasma membrane with methyl-β-cyclodextrin impaired LTβR internalization and potentiated LTβR-dependent activation of the canonical branch of the NF-κB pathway. The latter was manifested by enhanced degradation of IκBα inhibitor, elevated RelA phosphorylation, substantial increase in the expression of NF-κB target genes encoding, among others, cytokines and adhesion molecules known to play important roles in immune response. It was followed by robust secretion of CXCL8 and upregulation of ICAM1, that favored the adhesion of immune cells (NK and T cells, neutrophils) to A549 cells and HUVECs. Mechanistically, we showed that cholesterol depletion stabilized interactions of ligand-stimulated LTβR with modified forms of TRAF2 and NEMO proteins. CONCLUSIONS Our results showed that the reduction of the plasma membrane content of cholesterol or its sequestration strongly potentiated signaling outcome initiated by LTβR. Thus, drugs modulating cholesterol levels could potentially improve efficacy of LTβR-based therapies. Video abstract.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| | - Renata Wyszyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Beata Pyrzyńska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|
19
|
Jeucken KCM, Koning JJ, Mebius RE, Tas SW. The Role of Endothelial Cells and TNF-Receptor Superfamily Members in Lymphoid Organogenesis and Function During Health and Inflammation. Front Immunol 2019; 10:2700. [PMID: 31824495 PMCID: PMC6879661 DOI: 10.3389/fimmu.2019.02700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions depend on interactions between incoming and local immune cells, and stromal cells. To mediate these cellular interactions an organized vascular network within the LN exists. In general, the LN vasculature can be divided into two components: blood vessels, which include the specialized high endothelial venules that recruit lymphocytes from the bloodstream, and lymphatic vessels. Signaling via TNF receptor (R) superfamily (SF) members has been implicated as crucial for the development and function of LNs and the LN vasculature. In recent years the role of cell-specific signaling of TNFRSF members in different endothelial cell (EC) subsets and their roles in development and maintenance of lymphoid organs has been elucidated. Here, we discuss recent insights into EC-specific TNFRSF member signaling and highlight its importance in different EC subsets in LN organogenesis and function during health, and in lymphocyte activation and tertiary lymphoid structure formation during inflammation.
Collapse
Affiliation(s)
- Kim C M Jeucken
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Chen J, Stark LA. Insights into the Relationship between Nucleolar Stress and the NF-κB Pathway. Trends Genet 2019; 35:768-780. [PMID: 31434627 DOI: 10.1016/j.tig.2019.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The nuclear organelle the nucleolus and the transcription factor nuclear factor of κ-light-chain-enhancer of activated B cells (NF-κB) are both central to the control of cellular homeostasis, dysregulated in common diseases and implicated in the ageing process. Until recently, it was believed that they acted independently to regulate homeostasis in health and disease. However, there is an emerging body of evidence suggesting that nucleoli and NF-κB signalling converge at multiple levels. Here we will review current understanding of this crosstalk. We will discuss activation of the NF-κB pathway by nucleolar stress and induction of apoptosis by nucleolar sequestration of NF-κB/RelA. We will also discuss the role of TIF-IA, COMMD1, and nucleophosmin, which are key players in this crosstalk, and the therapeutic relevance, particularly with respect to the antitumour effects of aspirin.
Collapse
Affiliation(s)
- Jingyu Chen
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK
| | - Lesley A Stark
- University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|