1
|
Tambrin HM, Liu Y, Zhu K, Teng X, Toyama Y, Miao Y, Ludwig A. ARHGAP12 suppresses F-actin assembly to control epithelial tight junction mechanics and paracellular leak pathway permeability. Cell Rep 2025; 44:115511. [PMID: 40198220 DOI: 10.1016/j.celrep.2025.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Tight junctions (TJs) control the paracellular transport of ions, solutes, and macromolecules across epithelial barriers. There is evidence that claudin-based ion transport (the pore pathway) and the paracellular transport of macromolecules (the leak pathway) are controlled independently. However, how leak pathway flux is regulated is unclear. Here, we have identified the Cdc42/Rac GTPase-activating protein ARHGAP12 as a specific activator of the leak pathway. ARHGAP12 is recruited to TJs via an interaction between its Src homology (SH3) domain and the TJ protein ZO-2 to suppress N-WASP-mediated F-actin assembly. This dampens junctional tension and promotes the paracellular transport of macromolecules without affecting ion flux. Mechanistically, we demonstrate that the ARHGAP12 tandem WW domain interacts directly with PPxR motifs in the proline-rich domain of N-WASP and thereby attenuates SH3-domain-mediated N-WASP oligomerization and Arp2/3-driven F-actin assembly. Collectively, our data indicate that branched F-actin networks regulate junctional tension to fine-tune the TJ leak pathway.
Collapse
Affiliation(s)
- Hana Maldivita Tambrin
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yun Liu
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Kexin Zhu
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, Singapore 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, Singapore 117411, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
2
|
Zhou LY, Liu ZG, Sun YQ, Li YZ, Teng ZQ, Liu CM. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:13. [PMID: 40172766 PMCID: PMC11965071 DOI: 10.1186/s13619-025-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the visual gateway of the brain, with their axons converging to form the optic nerve, making them the most vulnerable target in diseases such as glaucoma and traumatic optic neuropathy (TON). In both diseases, the disruption of the blood-retinal barrier(BRB) is considered an important mechanism that accelerates RGC degeneration and hinders axon regeneration. The BRB consists of the inner blood-retinal barrier (iBRB) and the outer blood-retinal barrier (oBRB), which are maintained by endothelial cells(ECs), pericytes(PCs), and retinal pigment epithelial (RPE), respectively. Their functions include regulating nutrient exchange, oxidative stress, and the immune microenvironment. However, in glaucoma and TON, the structural and functional integrity of the BRB is severely damaged due to mechanical stress, inflammatory reactions, and metabolic disorders. Emerging evidence highlights that BRB disruption leads to heightened vascular permeability, immune cell infiltration, and sustained chronic inflammation, creating a hostile microenvironment for RGC survival. Furthermore, the dynamic interplay and imbalance among ECs, PCs, and glial cells within the neurovascular unit (NVU) are pivotal drivers of BRB destruction, exacerbating RGC apoptosis and limiting optic nerve regeneration. The intricate molecular and cellular mechanisms underlying these processes underscore the BRB's critical role in glaucoma and TON pathophysiology while offering a compelling foundation for therapeutic strategies targeting BRB repair and stabilization. This review provides crucial insights and lays a robust groundwork for advancing research on neural regeneration and innovative optic nerve protective strategies.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yan-Zhong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
3
|
Jacobs T, Isasti Sanchez J, Reger S, Luschnig S. Rho/Rok-dependent regulation of actomyosin contractility at tricellular junctions restricts epithelial permeability in Drosophila. Curr Biol 2025; 35:1181-1196.e5. [PMID: 39965573 DOI: 10.1016/j.cub.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Cell contacts in epithelia are remodeled to regulate paracellular permeability and to control the passage of migrating cells, but how barrier function is modulated while preserving epithelial integrity is not clear. In the follicular epithelium of Drosophila ovaries, tricellular junctions (TCJs) open transiently in a process termed patency to allow passage of externally produced yolk proteins for uptake by the oocyte. Here, we show that modulation of actomyosin contractility at cell vertices controls TCJ permeability. Before patency, circumferential actomyosin bundles are anchored at apical follicle cell vertices, where tension-sensing junctional proteins, Rho-associated kinase (Rok), and active myosin II accumulate and maintain vertices closed. TCJ opening is initiated by redistribution of myosin II from circumferential bundles to the medial zone, accompanied by decreasing tension on vertices. This transition requires activation of Cofilin-dependent filamentous actin (F-actin) disassembly by the phosphatase Slingshot and myosin II inactivation by myosin light-chain phosphatase and is counteracted by Rok. Accordingly, constitutive activation of myosin or of Rho signaling prevents vertex opening, whereas reduced myosin II or Rok activity causes excessive vertex opening. Thus, the opening of intercellular gaps in the follicular epithelium relies on relaxation of actomyosin contractility rather than active actomyosin-based pulling forces. Conversely, F-actin assembly is required for closing intercellular gaps after patency. Our findings are consistent with a force transduction model in which TCJ integrity is maintained by vertex-anchored contractile actomyosin. We propose that the cell-type-specific organization of actomyosin at cell vertices determines the mode of contractility-dependent regulation of epithelial permeability.
Collapse
Affiliation(s)
- Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Jone Isasti Sanchez
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Steven Reger
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany.
| |
Collapse
|
4
|
Craig Z, Arnold TR, Walworth K, Walkon A, Miller AL. Anillin tunes contractility and regulates barrier function during Rho flare-mediated tight junction remodeling. Mol Biol Cell 2025; 36:ar31. [PMID: 39841565 PMCID: PMC11974952 DOI: 10.1091/mbc.e24-11-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activations of RhoA, termed "Rho flares," which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF. However, mechanisms that tune the level of RhoA activation and Myosin II contractility during the process remain uncharacterized. Here, we show that the scaffolding protein Anillin localizes to Rho flares and regulates RhoA activity and actomyosin contraction at flares. Knocking down Anillin results in Rho flares with increased intensity but shorter duration. These changes in active RhoA dynamics weaken downstream F-actin and Myosin II accumulation at the site of Rho flares, resulting in decreased junction contraction. Consequently, tight junction breaks are not reinforced following Rho flares. We show that Anillin-driven RhoA regulation is necessary for successfully repairing tight junction leaks and protecting junctions from repeated barrier damage. Together, these results uncover a novel regulatory role for Anillin during tight junction repair and barrier function maintenance.
Collapse
Affiliation(s)
- Zie Craig
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Torey R. Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Kelsey Walworth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Alexander Walkon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Richter C, Latta L, Harig D, Carius P, Stucki JD, Hobi N, Hugi A, Schumacher P, Krebs T, Gamrekeli A, Stöckle F, Urbschat K, Montalvo G, Lautenschläger F, Loretz B, Hidalgo A, Schneider‐Daum N, Lehr C. A stretchable human lung-on-chip model of alveolar inflammation for evaluating anti-inflammatory drug response. Bioeng Transl Med 2025; 10:e10715. [PMID: 39801748 PMCID: PMC11711225 DOI: 10.1002/btm2.10715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 01/16/2025] Open
Abstract
This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip. For validating the in vitro model, three different protocols have been developed to demonstrate the clinically established anti-inflammatory effect of glucocorticoids to reduce certain inflammatory markers after different pro-inflammatory stimuli: (1) an inflammation caused by bacterial LPS (lipopolysaccharides) to simulate an LPS-induced acute lung injury measured best with cytokine IL-6 release; (2) an inflammation caused by LPS at ALI (air-liquid interface) to investigate aerosolized anti-inflammatory treatment, measured with chemokine IL-8 release; and (3) an inflammation with a combination of human inflammatory cytokines TNFα and IFNγ to simulate a critical cytokine storm leading to epithelial barrier disruption, where the eventual weakening or protection of the epithelial barrier can be measured. In all cases, the presence of macrophages appeared to be crucial to mediating inflammatory changes in the alveolar epithelium. LPS induction led to inflammatory changes independently of stretch conditions. Dynamic stretch, emulating breathing-like mechanics, was essential for in vitro modeling of the clinically relevant outcome of epithelial barrier disruption upon TNFα/IFNγ-induced inflammation.
Collapse
Affiliation(s)
- Clémentine Richter
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Lorenz Latta
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Daria Harig
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Patrick Carius
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| | - Janick D. Stucki
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
- ARTORG Center for Biomedical Engineering Research, Organs‐on‐Chip Technologies, University of BernBernSwitzerland
| | - Nina Hobi
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
- ARTORG Center for Biomedical Engineering Research, Organs‐on‐Chip Technologies, University of BernBernSwitzerland
| | - Andreas Hugi
- AlveoliX AG, Swiss Organs‐on‐Chip InnovationBernSwitzerland
| | | | | | | | - Felix Stöckle
- Center for Thorax Medicine, Clinic SaarbrückenSaarbrückenGermany
| | - Klaus Urbschat
- Section of Thoracic Surgery of the Saar Lung Center, SHG ClinicsVölklingenGermany
| | - Galia Montalvo
- Department of Experimental PhysicsSaarland UniversitySaarbrückenGermany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland UniversityHomburgGermany
| | - Franziska Lautenschläger
- Department of Experimental PhysicsSaarland UniversitySaarbrückenGermany
- Center for Biophysics, Saarland UniversitySaarbrückenGermany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | - Alberto Hidalgo
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
| | | | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrückenGermany
- Department of PharmacySaarland UniversitySaarbrückenGermany
| |
Collapse
|
6
|
Izadifar Z, Charrez B, Almeida M, Robben S, Pilobello K, van der Graaf-Mas J, Marquez SL, Ferrante TC, Shcherbina K, Gould R, LoGrande NT, Sesay AM, Ingber DE. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens Bioelectron 2024; 265:116683. [PMID: 39213819 PMCID: PMC11391946 DOI: 10.1016/j.bios.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Micaela Almeida
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Stijn Robben
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Department of Microelectronics, Technical University Delft, Delft, 2628 CD, Netherlands
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janet van der Graaf-Mas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Susan L Marquez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Russell Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Craig Z, Arnold TR, Walworth K, Walkon A, Miller AL. Anillin tunes contractility and regulates barrier function during Rho flare-mediated tight junction remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624537. [PMID: 39605712 PMCID: PMC11601591 DOI: 10.1101/2024.11.20.624537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activation of RhoA, termed 'Rho flares,' which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF. However, mechanisms that tune the level of RhoA activation and Myosin II contractility during the process remain uncharacterized. Here, we show that the scaffolding protein Anillin localizes to Rho flares and regulates RhoA activity and actomyosin contraction at flares. Knocking down Anillin results in Rho flares with increased intensity but shorter duration. These changes in active RhoA dynamics weaken downstream F-actin and Myosin II accumulation at the site of Rho flares, resulting in decreased junction contraction. Consequently, tight junction breaks are not reinforced following Rho flares. We show that Anillin-driven RhoA regulation is necessary for successfully repairing tight junction leaks and protecting junctions from repeated barrier damage. Together, these results uncover a novel regulatory role for Anillin during tight junction repair and barrier function maintenance.
Collapse
Affiliation(s)
- Zie Craig
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA
| | - Torey R. Arnold
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA
| | - Kelsey Walworth
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA
| | - Alexander Walkon
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA
| |
Collapse
|
8
|
van den Goor L, Iseler J, Koning KM, Miller AL. Mechanosensitive recruitment of Vinculin maintains junction integrity and barrier function at epithelial tricellular junctions. Curr Biol 2024; 34:4677-4691.e5. [PMID: 39341202 PMCID: PMC11496005 DOI: 10.1016/j.cub.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Apical cell-cell junctions, including adherens junctions and tight junctions, adhere epithelial cells to one another and regulate selective permeability at both bicellular junctions and tricellular junctions (TCJs). Although several specialized proteins are known to localize at TCJs, it remains unclear how actomyosin-mediated tension transmission at TCJs contributes to the maintenance of junction integrity and barrier function at these sites. Here, utilizing the embryonic epithelium of gastrula-stage Xenopus laevis embryos, we define a mechanism by which the mechanosensitive protein Vinculin helps anchor the actomyosin network at TCJs, thus maintaining TCJ integrity and barrier function. Using an optogenetic approach to acutely increase junctional tension, we find that Vinculin is mechanosensitively recruited to apical junctions immediately surrounding TCJs. In Vinculin knockdown (KD) embryos, junctional actomyosin intensity is decreased and becomes disorganized at TCJs. Using fluorescence recovery after photobleaching (FRAP), we show that Vinculin KD reduces actin stability at TCJs and destabilizes Angulin-1, a key tricellular tight junction protein involved in regulating barrier function at TCJs. When Vinculin KD embryos are subjected to increased tension, TCJ integrity is not maintained, filamentous actin (F-actin) morphology at TCJs is disrupted, and breaks in the signal of the tight junction protein ZO-1 signal are detected. Finally, using a live imaging barrier assay, we detect increased barrier leaks at TCJs in Vinculin KD embryos. Together, our findings show that Vinculin-mediated actomyosin organization is required to maintain junction integrity and barrier function at TCJs and reveal new information about the interplay between adhesion and barrier function at TCJs.
Collapse
Affiliation(s)
- Lotte van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jolene Iseler
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Katherine M Koning
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Rouaud F, Maupérin M, Mutero-Maeda A, Citi S. Cingulin-nonmuscle myosin interaction plays a role in epithelial morphogenesis and cingulin nanoscale organization. J Cell Sci 2024; 137:jcs262353. [PMID: 39319625 PMCID: PMC11449440 DOI: 10.1242/jcs.262353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane. We also show that the CGN mutant protein that causes deafness in human and mouse models is localized at TJs but does not bind to NM2B, resulting in decreased TJ membrane tortuosity. These results indicate that the interaction between CGN and NM2B regulates epithelial tissue morphogenesis and nanoscale organization of CGN and suggest that CGN regulates the auditory function of hair cells by organizing the actomyosin cytoskeleton to modulate the mechanics of the apical and junctional cortex.
Collapse
Affiliation(s)
- Florian Rouaud
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30, Quai E. Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
10
|
Lechuga S, Marino-Melendez A, Davis A, Zalavadia A, Khan A, Longworth MS, Ivanov AI. Coactosin-like protein 1 regulates integrity and repair of model intestinal epithelial barriers via actin binding dependent and independent mechanisms. Front Cell Dev Biol 2024; 12:1405454. [PMID: 39040043 PMCID: PMC11260685 DOI: 10.3389/fcell.2024.1405454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The actin cytoskeleton regulates the integrity and repair of epithelial barriers by mediating the assembly of tight junctions (TJs), and adherens junctions (AJs), and driving epithelial wound healing. Actin filaments undergo a constant turnover guided by numerous actin-binding proteins, however, the roles of actin filament dynamics in regulating intestinal epithelial barrier integrity and repair remain poorly understood. Coactosin-like protein 1 (COTL1) is a member of the ADF/cofilin homology domain protein superfamily that binds and stabilizes actin filaments. COTL1 is essential for neuronal and cancer cell migration, however, its functions in epithelia remain unknown. The goal of this study is to investigate the roles of COTL1 in regulating the structure, permeability, and repair of the epithelial barrier in human intestinal epithelial cells (IEC). COTL1 was found to be enriched at apical junctions in polarized IEC monolayers in vitro. The knockdown of COTL1 in IEC significantly increased paracellular permeability, impaired the steady state TJ and AJ integrity, and attenuated junctional reassembly in a calcium-switch model. Consistently, downregulation of COTL1 expression in Drosophila melanogaster increased gut permeability. Loss of COTL1 attenuated collective IEC migration and decreased cell-matrix attachment. The observed junctional abnormalities in COTL1-depleted IEC were accompanied by the impaired assembly of the cortical actomyosin cytoskeleton. Overexpression of either wild-type COTL1 or its actin-binding deficient mutant tightened the paracellular barrier and activated junction-associated myosin II. Furthermore, the actin-uncoupled COTL1 mutant inhibited epithelial migration and matrix attachment. These findings highlight COTL1 as a novel regulator of the intestinal epithelial barrier integrity and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
11
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
12
|
Citi S, Fromm M, Furuse M, González-Mariscal L, Nusrat A, Tsukita S, Turner JR. A short guide to the tight junction. J Cell Sci 2024; 137:jcs261776. [PMID: 38712627 PMCID: PMC11128289 DOI: 10.1242/jcs.261776] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, 30 Quai Ernest Ansermet, 1205 Geneva, Switzerland
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Charité – Universitätsmedizin Berlin,Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, 5-1 Higashiyama Myodajii, Okazaki 444-8787, Japan
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Mexico City 07360, México
| | - Asma Nusrat
- Mucosal Biology and Inflammation Research Group, Department of Pathology, University of Michigan, 109 Zina Pitcher Place, 4057 Biomedical Science Research Building, Ann Arbor, MI 48109-2200, USA
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization (ACRO),Teikyo University, Kaga 2-21-1, Itabashi-ku, Tokyo 173-0003, Japan
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 01125, USA
| |
Collapse
|
13
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
14
|
Wei Q, Chen L, Luo W, Chen C, Shi Y, Xie J, Xie X, Luo HB. PDE12 disrupts mitochondrial oxidative phosphorylation and mediates mitochondrial dysfunction to induce oral mucosal epithelial barrier damage in oral submucous fibrosis. Eur J Pharmacol 2024; 967:176353. [PMID: 38325798 DOI: 10.1016/j.ejphar.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Oral submucous fibrosis (OSF) is a chronic oral mucosal disease. The pathological changes of OSF include epithelial damage and subepithelial matrix fibrosis. This study aimed to reveal the epithelial injury mechanism of OSF. A histopathological method was used to analyze oral mucosal tissue from OSF patients and OSF rats. The expression of PDE12 in the oral epithelium was analyzed by immunohistochemistry. The epithelial-mesenchymal transition (EMT) and tight junction proteins in arecoline-treated HOKs were explored by western blotting. Epithelial leakage was assessed by transepithelial electrical resistance and lucifer yellow permeability. The expression of PDE12 and the mitochondrial morphology, mitochondrial permeability transition pore opening, mitochondrial membrane potential, and mitochondrial reactive oxygen species (mtROS) were evaluated in arecoline-induced HOKs. Oxidative phosphorylation (OXPHOS) complexes and ATP content were also explored in HOKs. The results showed significant overexpression of PDE12 in oral mucosal tissue from OSF patients and rats. PDE12 was also overexpressed and aggregated in mitochondria in arecoline-induced HOKs, resulting in dysfunction of OXPHOS and impaired mitochondrial function. An EMT, disruption of tight junctions with epithelial leakage, and extracellular matrix remodeling were also observed. PDE12 overexpression induced by PDE12 plasmid transfection enhanced the mtROS level and interfered with occludin protein localization in HOKs. Interestingly, knockdown of PDE12 clearly ameliorated arecoline-induced mitochondrial dysfunction and epithelial barrier dysfunction in HOKs. Therefore, we concluded that overexpression of PDE12 impaired mitochondrial OXPHOS and mitochondrial function and subsequently impaired epithelial barrier function, ultimately leading to OSF. We suggest that PDE12 may be a new potential target against OSF.
Collapse
Affiliation(s)
- Qihui Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Linlin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan Province, China
| | - Cailian Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yuqing Shi
- School of Life Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Jinmei Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Province, China.
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
15
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
16
|
Segui-Perez C, Stapels DAC, Ma Z, Su J, Passchier E, Westendorp B, Wubbolts RW, Wu W, van Putten JPM, Strijbis K. MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via protein kinase C. J Cell Sci 2024; 137:jcs261468. [PMID: 38345099 PMCID: PMC10984281 DOI: 10.1242/jcs.261468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Daphne A. C. Stapels
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Ziliang Ma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 138648 Singapore, Singapore
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Jinyi Su
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elsemieke Passchier
- UMAB, Department of Laboratory Pharmacy and Biomedical Genetics, Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Richard W. Wubbolts
- Department of Biomolecular Health Sciences, Division of Cell Biology, Metabolism and Cancer, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 138648 Singapore, Singapore
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Jos P. M. van Putten
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
17
|
Sepaniac LA, Davenport NR, Bement WM. Bring the pain: wounding reveals a transition from cortical excitability to epithelial excitability in Xenopus embryos. Front Cell Dev Biol 2024; 11:1295569. [PMID: 38456169 PMCID: PMC10918254 DOI: 10.3389/fcell.2023.1295569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
The cell cortex plays many critical roles, including interpreting and responding to internal and external signals. One behavior which supports a cell's ability to respond to both internal and externally-derived signaling is cortical excitability, wherein coupled positive and negative feedback loops generate waves of actin polymerization and depolymerization at the cortex. Cortical excitability is a highly conserved behavior, having been demonstrated in many cell types and organisms. One system well-suited to studying cortical excitability is Xenopus laevis, in which cortical excitability is easily monitored for many hours after fertilization. Indeed, recent investigations using X. laevis have furthered our understanding of the circuitry underlying cortical excitability and how it contributes to cytokinesis. Here, we describe the impact of wounding, which represents both a chemical and a physical signal, on cortical excitability. In early embryos (zygotes to early blastulae), we find that wounding results in a transient cessation ("freezing") of wave propagation followed by transport of frozen waves toward the wound site. We also find that wounding near cell-cell junctions results in the formation of an F-actin (actin filament)-based structure that pulls the junction toward the wound; at least part of this structure is based on frozen waves. In later embryos (late blastulae to gastrulae), we find that cortical excitability diminishes and is progressively replaced by epithelial excitability, a process in which wounded cells communicate with other cells via wave-like increases of calcium and apical F-actin. While the F-actin waves closely follow the calcium waves in space and time, under some conditions the actin wave can be uncoupled from the calcium wave, suggesting that they may be independently regulated by a common upstream signal. We conclude that as cortical excitability disappears from the level of the individual cell within the embryo, it is replaced by excitability at the level of the embryonic epithelium itself.
Collapse
Affiliation(s)
- Leslie A. Sepaniac
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicholas R. Davenport
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - William M. Bement
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Lechuga S, Marino-Melendez A, Naydenov NG, Zafar A, Braga-Neto MB, Ivanov AI. Regulation of Epithelial and Endothelial Barriers by Molecular Chaperones. Cells 2024; 13:370. [PMID: 38474334 PMCID: PMC10931179 DOI: 10.3390/cells13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Atif Zafar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Manuel B. Braga-Neto
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| |
Collapse
|
19
|
Wijesiriwardana UA, Pluske JR, Craig JR, Furness JB, Ringuet M, Fothergill LJ, Dunshea FR, Cottrell JJ. A comparative analysis of gastrointestinal tract barrier function and immune markers in gilt vs. sow progeny at birth and weaning. J Anim Sci 2024; 102:skae054. [PMID: 38447056 PMCID: PMC10977035 DOI: 10.1093/jas/skae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Progeny born to primiparous sows (gilt progeny; GP) have lower birth, weaning and slaughter weights than sow progeny (SP). GP also have reduced gastrointestinal tract (GIT) development, as evidenced by lower organ weights. Therefore, the aim of this experiment was to quantify changes in GIT barrier function that occur in birth and weaning, representing two major challenges to the young piglet. The effects of parity (GP vs. SP) in GIT barrier integrity function were quantified at four timepoints: birth (~0 h), 24 h after birth (24 h), 1-d preweaning (PrW), and 1-d postweaning (PoW) in commercially reared piglets. Due to inherent differences between newborn and weanling pigs, the results were analyzed in two cohorts, birth (0 vs. 24 h, n = 31) and weaning (PrW vs. PoW, n = 40). Samples of the stomach, jejunum, ileum, and colon were excised after euthanasia and barrier integrity was quantified by measuring transepithelial resistance (TER), macromolecular permeability, the abundance of inflammatory proteins (IL-8, IL-1β, and TNF-α) and tight junction proteins (claudin-2 and -3). Papp was characterized using a dual tracer approach comprising 4 KDa fluorescein isothiocyanate (FD4) and 150 kDa tetramethyl rhodamine isothiocyanate (T150)-labeled dextrans. Characteristic effects of the initiation of feeding and weaning were observed on the GIT with the initiation of feeding, such as increasing TER and reducing Papp at 24 h, consistent with mucosal growth (P = 0.058) This was accompanied by increased cytokine abundance as evidenced by elevations in TNF-α and IL-1β. However, GP had increased IL-8 abundance (P = 0.011 and 0.063 for jejunum and ileum respectively) at birth than 24 h overall. In the weaning cohort, jejunal and ileal permeability to FD4 was higher in GP (P = 0.05 and 0.022, respectively) while only higher ileal T150 was observed in GP (P = 0.032). Ileal claudin-2 abundance tended to be higher in SP overall (P = 0.063), but GP ileal claudin-2 expression was upregulated weaning while no change was observed in SP (P = 0.043). Finally, other than a higher jejunal TNF-α abundance observed in SP (P = 0.016), no other effect of parity was observed on inflammatory markers in the weaning cohort. The results from this study indicate that the GIT of GP have poorer adaptation to early life events, with the response to weaning, being more challenging which is likely to contribute to poorer postweaning growth.
Collapse
Affiliation(s)
- Udani A Wijesiriwardana
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John R Pluske
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australasian Pork Research Institute Ltd, Willaston, SA 5118, Australia
| | - Jessica R Craig
- Research and Innovation, Rivalea (Australia), Pty. Ltd, Corowa, NSW 2646, Australia
| | - John B Furness
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3010, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mitchell Ringuet
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Linda J Fothergill
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J Cottrell
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
20
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
21
|
Abstract
Various functions within our bodies require the generation and maintenance of compartments with distinct compositions, which in turn necessitate the formation of semipermeable cellular diffusion barriers. For example, the blood-brain barrier protects the brain by allowing only specific molecules to pass through. Another instance is the intestinal barrier, which allows the uptake of essential nutrients, while restricting the passage of pathogenic molecules and bacteria. Breakdown of such barriers causes various pathologies, such as brain or retinal edema, or diarrhoea. Epithelia and endothelia are the most common barrier-forming cells. Individual cells in such barriers are held together by cell-cell adhesion structures - also known as intercellular junctions - that are essential for barrier formation and maintenance. Here, we will focus on the structure and assembly of tight junctions (TJs) and their functions as barriers, but will refer to other adhesive structures crucial for barrier regulation such as adherens junctions (AJs) and focal adhesions to the extracellular matrix (ECM) (Figure 1A,B). We will also discuss additional functions of TJs in cell surface polarity and the regulation of gene expression, cell function, and cell behaviour.
Collapse
Affiliation(s)
- Maria S Balda
- UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
22
|
Higashi T, Stephenson RE, Schwayer C, Huljev K, Higashi AY, Heisenberg CP, Chiba H, Miller AL. ZnUMBA - a live imaging method to detect local barrier breaches. J Cell Sci 2023; 136:jcs260668. [PMID: 37461809 PMCID: PMC10445723 DOI: 10.1242/jcs.260668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Epithelial barrier function is commonly analyzed using transepithelial electrical resistance, which measures ion flux across a monolayer, or by adding traceable macromolecules and monitoring their passage across the monolayer. Although these methods measure changes in global barrier function, they lack the sensitivity needed to detect local or transient barrier breaches, and they do not reveal the location of barrier leaks. Therefore, we previously developed a method that we named the zinc-based ultrasensitive microscopic barrier assay (ZnUMBA), which overcomes these limitations, allowing for detection of local tight junction leaks with high spatiotemporal resolution. Here, we present expanded applications for ZnUMBA. ZnUMBA can be used in Xenopus embryos to measure the dynamics of barrier restoration and actin accumulation following laser injury. ZnUMBA can also be effectively utilized in developing zebrafish embryos as well as cultured monolayers of Madin-Darby canine kidney (MDCK) II epithelial cells. ZnUMBA is a powerful and flexible method that, with minimal optimization, can be applied to multiple systems to measure dynamic changes in barrier function with spatiotemporal precision.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Rachel E. Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cornelia Schwayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Karla Huljev
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Yan L, Dwiggins CW, Moriarty RA, Jung JW, Gupta U, Brandon KD, Stroka KM. Matrix stiffness regulates the tight junction phenotypes and local barrier properties in tricellular regions in an iPSC-derived BBB model. Acta Biomater 2023:S1742-7061(23)00327-6. [PMID: 37302732 DOI: 10.1016/j.actbio.2023.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The blood-brain barrier (BBB) can respond to various mechanical cues such as shear stress and substrate stiffness. In the human brain, the compromised barrier function of the BBB is closely associated with a series of neurological disorders that are often also accompanied by the alteration of brain stiffness. In many types of peripheral vasculature, higher matrix stiffness decreases barrier function of endothelial cells through mechanotransduction pathways that alter cell-cell junction integrity. However, human brain endothelial cells are specialized endothelial cells that largely resist changes in cell morphology and key BBB markers. Therefore, it has remained an open question how matrix stiffness affects barrier integrity in the human BBB. To gain insight into the effects of matrix stiffness on BBB permeability, we differentiated brain microvascular endothelial-like cells from human induced pluripotent stem cells (iBMEC-like cells) and cultured the cells on extracellular matrix-coated hydrogels of varying stiffness. We first detected and quantified the junction presentation of key tight junction (TJ) proteins. Our results show matrix-dependent junction phenotypes in iBMEC-like cells, where cells on softer gels (1 kPa) have significantly lower continuous and total TJ coverages. We also determined that these softer gels also lead to decreased barrier function in a local permeability assay. Furthermore, we found that matrix stiffness regulates the local permeability of iBMEC-like cells through the balance of continuous ZO-1 TJs and no junction regions ZO-1 in tricellular regions. Together, these findings provide valuable insights into the effects of matrix stiffness on TJ phenotypes and local permeability of iBMEC-like cells. STATEMENT OF SIGNIFICANCE: Brain mechanical properties, including stiffness, are particularly sensitive indicators for pathophysiological changes in neural tissue. The compromised function of the blood-brain barrier is closely associated with a series of neurological disorders often accompanied by altered brain stiffness. In this study, we use polymeric biomaterials and provide new evidence that biomaterial stiffness regulates the local permeability in iPSC-derived brain endothelial cells in tricellular regions through the tight junction protein ZO-1. Our findings provide valuable insights into the changes in junction architecture and barrier permeability in response to different substrate stiffnesses. Since BBB dysfunction has been linked to many diseases, understanding the influence of substrate stiffness on junction presentations and barrier permeability could lead to the development of new treatments for diseases associated with BBB dysfunction or drug delivery across BBB systems.
Collapse
Affiliation(s)
- Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Cole W Dwiggins
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Rebecca A Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Udit Gupta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Baro L, Islam A, Brown HM, Bell ZA, Juanes MA. APC-driven actin nucleation powers collective cell dynamics in colorectal cancer cells. iScience 2023; 26:106583. [PMID: 37128612 PMCID: PMC10148130 DOI: 10.1016/j.isci.2023.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Cell remodeling relies on dynamic rearrangements of cell contacts powered by the actin cytoskeleton. The tumor suppressor adenomatous polyposis coli (APC) nucleate actin filaments (F-actin) and localizes at cell junctions. Whether APC-driven actin nucleation acts in cell junction remodeling remains unknown. By combining bioimaging and genetic tools with artificial intelligence algorithms applied to colorectal cancer cell, we found that the APC-dependent actin pool contributes to sustaining levels of F-actin, as well as E-cadherin and occludin protein levels at cell junctions. Moreover, this activity preserved cell junction length and angle, as well as vertex motion and integrity. Loss of this F-actin pool led to larger cells with slow and random cell movement within a sheet. Our findings suggest that APC-driven actin nucleation promotes cell junction integrity and dynamics to facilitate collective cell remodeling and motility. This offers a new perspective to explore the relevance of APC-driven cytoskeletal function in gut morphogenesis.
Collapse
Affiliation(s)
- Lautaro Baro
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Asifa Islam
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Hannah M. Brown
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - Zoë A. Bell
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
| | - M. Angeles Juanes
- School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK
- National Horizons Centre, Teesside University, DL1 1HG Darlington, UK
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
25
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Vitkov L, Singh J, Schauer C, Minnich B, Krunić J, Oberthaler H, Gamsjaeger S, Herrmann M, Knopf J, Hannig M. Breaking the Gingival Barrier in Periodontitis. Int J Mol Sci 2023; 24:4544. [PMID: 36901974 PMCID: PMC10003416 DOI: 10.3390/ijms24054544] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g., via mastication and teeth brushing) has been disregarded despite the accumulated knowledge of mechanical force effects on tight junctions (TJs) and subsequent pathology in other epithelial tissues. Transitory bacteraemia is observed as a rule in gingival inflammation, but is rarely observed in clinically healthy gingiva. This implies that TJs of inflamed gingiva deteriorate, e.g., via a surplus of lipopolysaccharide (LPS), bacterial proteases, toxins, Oncostatin M (OSM), and neutrophil proteases. The inflammation-deteriorated gingival TJs rupture when exposed to physiological mechanical forces. This rupture is characterised by bacteraemia during and briefly after mastication and teeth brushing, i.e., it appears to be a dynamic process of short duration, endowed with quick repair mechanisms. In this review, we consider the bacterial, immune, and mechanical factors responsible for the increased permeability and break of the epithelial barrier of inflamed gingiva and the subsequent translocation of both viable bacteria and bacterial LPS during physiological mechanical forces, such as mastication and teeth brushing.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
- Department of Dental Pathology, University of East Sarajevo, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Jeeshan Singh
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Bernd Minnich
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Jelena Krunić
- Department of Dental Pathology, University of East Sarajevo, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Hannah Oberthaler
- Department of Environment & Biodiversity, University of Salzburg, 5020 Salzburg, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med Department Hanusch Hospital, 1140 Vienna, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
27
|
Lechuga S, Braga-Neto MB, Naydenov NG, Rieder F, Ivanov AI. Understanding disruption of the gut barrier during inflammation: Should we abandon traditional epithelial cell lines and switch to intestinal organoids? Front Immunol 2023; 14:1108289. [PMID: 36875103 PMCID: PMC9983034 DOI: 10.3389/fimmu.2023.1108289] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Disruption of the intestinal epithelial barrier is a hallmark of mucosal inflammation. It increases exposure of the immune system to luminal microbes, triggering a perpetuating inflammatory response. For several decades, the inflammatory stimuli-induced breakdown of the human gut barrier was studied in vitro by using colon cancer derived epithelial cell lines. While providing a wealth of important data, these cell lines do not completely mimic the morphology and function of normal human intestinal epithelial cells (IEC) due to cancer-related chromosomal abnormalities and oncogenic mutations. The development of human intestinal organoids provided a physiologically-relevant experimental platform to study homeostatic regulation and disease-dependent dysfunctions of the intestinal epithelial barrier. There is need to align and integrate the emerging data obtained with intestinal organoids and classical studies that utilized colon cancer cell lines. This review discusses the utilization of human intestinal organoids to dissect the roles and mechanisms of gut barrier disruption during mucosal inflammation. We summarize available data generated with two major types of organoids derived from either intestinal crypts or induced pluripotent stem cells and compare them to the results of earlier studies with conventional cell lines. We identify research areas where the complementary use of colon cancer-derived cell lines and organoids advance our understanding of epithelial barrier dysfunctions in the inflamed gut and identify unique questions that could be addressed only by using the intestinal organoid platforms.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Manuel B. Braga-Neto
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
28
|
Chumki SA, van den Goor LM, Hall BN, Miller AL. p115RhoGEF activates RhoA to support tight junction maintenance and remodeling. Mol Biol Cell 2022; 33:ar136. [PMID: 36200892 PMCID: PMC9727809 DOI: 10.1091/mbc.e22-06-0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, epithelial cell-cell junctions must rapidly remodel to maintain barrier function as cells undergo dynamic shape-change events. Consequently, localized leaks sometimes arise within the tight junction (TJ) barrier, which are repaired by short-lived activations of RhoA, called "Rho flares." However, how RhoA is activated at leak sites remains unknown. Here we asked which guanine nucleotide exchange factor (GEF) localizes to TJs to initiate Rho activity at Rho flares. We find that p115RhoGEF locally activates Rho flares at sites of TJ loss. Knockdown of p115RhoGEF leads to diminished Rho flare intensity and impaired TJ remodeling. p115RhoGEF knockdown also decreases junctional active RhoA levels, thus compromising the apical actomyosin array and junctional complex. Furthermore, p115RhoGEF is necessary to promote local leak repair to maintain TJ barrier function. In all, our work demonstrates a central role for p115RhoGEF in activating junctional RhoA to preserve barrier function and direct local TJ remodeling.
Collapse
Affiliation(s)
- Shahana A. Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Lotte M. van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin N. Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Ann L. Miller ()
| |
Collapse
|
29
|
Carleton AE, Duncan MC, Taniguchi K. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst. Semin Cell Dev Biol 2022; 131:117-123. [PMID: 35637065 PMCID: PMC9529837 DOI: 10.1016/j.semcdb.2022.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The formation of a central lumen in the human epiblast is a critical step for development. However, because the lumen forms in the epiblast coincident with implantation, the molecular and cellular events of this early lumenogenesis process cannot be studied in vivo. Recent developments using new model systems have revealed insight into the underpinnings of epiblast formation. To provide an up-to-date comprehensive review of human epiblast lumenogenesis, we highlight recent findings from human and mouse models with an emphasis on new molecular understanding of a newly described apicosome compartment, a novel 'formative' state of pluripotency that coordinates with epiblast polarization, and new evidence about the physical and polarized trafficking mechanisms contributing to lumenogenesis.
Collapse
Affiliation(s)
- Amber E. Carleton
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Mara C. Duncan
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan USA,Co-corresponding authors
| | - Kenichiro Taniguchi
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Co-corresponding authors
| |
Collapse
|
30
|
Fuladi S, McGuinness S, Shen L, Weber CR, Khalili-Araghi F. Molecular mechanism of claudin-15 strand flexibility: A computational study. J Gen Physiol 2022; 154:213632. [PMID: 36318156 PMCID: PMC9629798 DOI: 10.1085/jgp.202213116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Claudins are one of the major components of tight junctions that play a key role in the formation and maintenance of the epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with those obtained from analyses of freeze-fracture electron microscopy. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between two antiparallel double rows of claudins in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over submicrometer-length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on intermolecular interactions and their role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois, Chicago, IL
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL
| | | | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois, Chicago, IL,Correspondence to Fatemeh Khalili-Araghi:
| |
Collapse
|
31
|
Ivanov AI, Lechuga S, Marino‐Melendez A, Naydenov NG. Unique and redundant functions of cytoplasmic actins and nonmuscle myosin II isoforms at epithelial junctions. Ann N Y Acad Sci 2022; 1515:61-74. [PMID: 35673768 PMCID: PMC9489603 DOI: 10.1111/nyas.14808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity and functions of epithelial barriers depend on the formation of adherens junctions (AJs) and tight junctions (TJs). A characteristic feature of AJs and TJs is their association with the cortical cytoskeleton composed of actin filaments and nonmuscle myosin II (NM-II) motors. Mechanical forces generated by the actomyosin cytoskeleton are essential for junctional assembly, stability, and remodeling. Epithelial cells express two different actin proteins and three NM-II isoforms, all known to be associated with AJs and TJs. Despite their structural similarity, different actin and NM-II isoforms have distinct biochemical properties, cellular distribution, and functions. The diversity of epithelial actins and myosin motors could be essential for the regulation of different steps of junctional formation, maturation, and disassembly. This review focuses on the roles of actin and NM-II isoforms in controlling the integrity and barrier properties of various epithelia. We discuss the effects of the depletion of individual actin isoforms and NM-II motors on the assembly and barrier function of AJs and TJs in model epithelial monolayers in vitro. We also describe the functional consequences of either total or tissue-specific gene knockout of different actins and NM-II motors, with a focus on the development and integrity of different epithelia in vivo.
Collapse
Affiliation(s)
- Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Armando Marino‐Melendez
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
32
|
Evaluation of rapid transepithelial electrical resistance (TEER) measurement as a metric of kidney toxicity in a high-throughput microfluidic culture system. Sci Rep 2022; 12:13182. [PMID: 35915212 PMCID: PMC9343646 DOI: 10.1038/s41598-022-16590-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
Rapid non-invasive kidney-specific readouts are essential to maximizing the potential of microfluidic tissue culture platforms for drug-induced nephrotoxicity screening. Transepithelial electrical resistance (TEER) is a well-established technique, but it has yet to be evaluated as a metric of toxicity in a kidney proximal tubule (PT) model that recapitulates the high permeability of the native tissue and is also suitable for high-throughput screening. We utilized the PREDICT96 high-throughput microfluidic platform, which has rapid TEER measurement capability and multi-flow control, to evaluate the utility of TEER sensing for detecting cisplatin-induced toxicity in a human primary PT model under both mono- and co-culture conditions as well as two levels of fluid shear stress (FSS). Changes in TEER of PT-microvascular co-cultures followed a dose-dependent trend similar to that demonstrated by lactate dehydrogenase (LDH) cytotoxicity assays and were well-correlated with tight junction coverage after cisplatin exposure. Additionally, cisplatin-induced changes in TEER were detectable prior to increases in cell death in co-cultures. PT mono-cultures had a less differentiated phenotype and were not conducive to toxicity monitoring with TEER. The results of this study demonstrate that TEER has potential as a rapid, early, and label-free indicator of toxicity in microfluidic PT-microvascular co-culture models.
Collapse
|
33
|
Park I, Nam H, Goo D, Wickramasuriya SS, Zimmerman N, Smith AH, Rehberger TG, Lillehoj HS. Gut Microbiota-Derived Indole-3-Carboxylate Influences Mucosal Integrity and Immunity Through the Activation of the Aryl Hydrocarbon Receptors and Nutrient Transporters in Broiler Chickens Challenged With Eimeria maxima. Front Immunol 2022; 13:867754. [PMID: 35812452 PMCID: PMC9259858 DOI: 10.3389/fimmu.2022.867754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Two studies were conducted to evaluate the effects of indole-3-carboxylate (ICOOH) as a postbiotic on maintaining intestinal homeostasis against avian coccidiosis. In the first study, an in vitro culture system was used to investigate the effects of ICOOH on the proinflammatory cytokine response of chicken macrophage cells (CMCs), gut integrity of chicken intestinal epithelial cells (IECs), differentiation of quail muscle cells (QMCs), and primary chicken embryonic muscle cells (PMCs) and anti-parasitic effect against Eimeria maxima. Cells to be tested were seeded in the 24-well plates and treated with ICOOH at concentrations of 0.1, 1.0, and 10.0 µg. CMCs were first stimulated by lipopolysaccharide (LPS) to induce an innate immune response, and QMCs and PMCs were treated with 0.5% and 2% fetal bovine serum, respectively, before they were treated with ICOOH. After 18 h of incubation, cells were harvested, and RT-PCR was performed to measure gene expression of proinflammatory cytokines of CMCs, tight junction (TJ) proteins of IECs, and muscle cell growth markers of QMCs and PMCs. In the second study, in vivo trials were carried out to study the effect of dietary ICOOH on disease parameters in broiler chickens infected with E. maxima. One hundred twenty male broiler chickens (0-day-old) were allocated into the following four treatment groups: 1) basal diet without infection (CON), 2) basal diet with E. maxima (NC), 3) ICOOH at 10.0 mg/kg feed with E. maxima (HI), and 4) ICOOH at 1.0 mg/kg feed with E. maxima (LO). Body weights (BWs) were measured on 0, 7, 14, 20, and 22 days. All groups except the CON chickens were orally infected with E. maxima on day 14. Jejunal samples were collected for lesion score and the transcriptomic analysis of cytokines and TJ proteins. In vitro, ICOOH increased the expression of TJ proteins in IECs and decreased IL-1β and IL-8 transcripts in the LPS-stimulated CMCs. In vivo, chickens on the HI diet showed reduced jejunal IL-1β, IFN-γ, and IL-10 expression and increased expression of genes activated by aryl hydrocarbon receptors and nutrient transporters in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary ICOOH on intestinal immune responses and barrier integrity in broiler chickens challenged with E. maxima. Furthermore, the present finding supports the notion to use microbial metabolites as novel feed additives to enhance resilience in animal agriculture.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Noah Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | | | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Hyun S. Lillehoj,
| |
Collapse
|
34
|
Nakano M, Ohwada K, Shindo Y, Konno T, Kohno T, Kikuchi S, Tsujiwaki M, Ishii D, Nishida S, Kakuki T, Obata K, Miyata R, Kurose M, Kondoh A, Takano K, Kojima T. Inhibition of HDAC and Signal Transduction Pathways Induces Tight Junctions and Promotes Differentiation in p63-Positive Salivary Duct Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14112584. [PMID: 35681564 PMCID: PMC9179926 DOI: 10.3390/cancers14112584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The p53 family p63 gene is essential for the proliferation and differentiation of various epithelial cells, and it is overexpressed in some salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways inhibited cell proliferation and migration, induced tight junctions, and promoted differentiation in p63-positive salivary duct adenocarcinoma (SDC). It is, therefore, useful in therapy for p63-positive SDC cells. Abstract Background: The p53 family p63 is essential for the proliferation and differentiation of various epithelial basal cells. It is overexpressed in several cancers, including salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. Methods: In the present study, to investigate the roles and regulation of p63 in salivary duct adenocarcinoma (SDC), human SDC cell line A253 was transfected with siRNA-p63 or treated with the HDAC inhibitors trichostatin A (TSA) and quisinostat (JNJ-26481585). Results: In a DNA array, the knockdown of p63 markedly induced mRNAs of the tight junction (TJ) proteins cingulin (CGN) and zonula occuludin-3 (ZO-3). The knockdown of p63 resulted in the recruitment of the TJ proteins, the angulin-1/lipolysis-stimulated lipoprotein receptor (LSR), occludin (OCLN), CGN, and ZO-3 at the membranes, preventing cell proliferation, and leading to increased cell metabolism. Treatment with HDAC inhibitors downregulated the expression of p63, induced TJ structures, recruited the TJ proteins, increased the epithelial barrier function, and prevented cell proliferation and migration. Conclusions: p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways is, therefore, useful in therapy for p63-positive SDC cells.
Collapse
Affiliation(s)
- Masaya Nakano
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Daichi Ishii
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Soshi Nishida
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Makoto Kurose
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Atsushi Kondoh
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Correspondence:
| |
Collapse
|
35
|
Lechuga S, Cartagena‐Rivera AX, Khan A, Crawford BI, Narayanan V, Conway DE, Lehtimäki J, Lappalainen P, Rieder F, Longworth MS, Ivanov AI. A myosin chaperone, UNC-45A, is a novel regulator of intestinal epithelial barrier integrity and repair. FASEB J 2022; 36:e22290. [PMID: 35344227 PMCID: PMC9044500 DOI: 10.1096/fj.202200154r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/01/2023]
Abstract
The actomyosin cytoskeleton serves as a key regulator of the integrity and remodeling of epithelial barriers by controlling assembly and functions of intercellular junctions and cell-matrix adhesions. Although biochemical mechanisms that regulate the activity of non-muscle myosin II (NM-II) in epithelial cells have been extensively investigated, little is known about assembly of the contractile myosin structures at the epithelial adhesion sites. UNC-45A is a cytoskeletal chaperone that is essential for proper folding of NM-II heavy chains and myofilament assembly. We found abundant expression of UNC-45A in human intestinal epithelial cell (IEC) lines and in the epithelial layer of the normal human colon. Interestingly, protein level of UNC-45A was decreased in colonic epithelium of patients with ulcerative colitis. CRISPR/Cas9-mediated knock-out of UNC-45A in HT-29cf8 and SK-CO15 IEC disrupted epithelial barrier integrity, impaired assembly of epithelial adherence and tight junctions and attenuated cell migration. Consistently, decreased UNC-45 expression increased permeability of the Drosophila gut in vivo. The mechanisms underlying barrier disruptive and anti-migratory effects of UNC-45A depletion involved disorganization of the actomyosin bundles at epithelial junctions and the migrating cell edge. Loss of UNC-45A also decreased contractile forces at apical junctions and matrix adhesions. Expression of deletion mutants revealed roles for the myosin binding domain of UNC-45A in controlling IEC junctions and motility. Our findings uncover a novel mechanism that regulates integrity and restitution of the intestinal epithelial barrier, which may be impaired during mucosal inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Alexander X. Cartagena‐Rivera
- Section on MechanobiologyNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMarylandUSA
| | - Afshin Khan
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Bert I. Crawford
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Vani Narayanan
- Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Daniel E. Conway
- Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jaakko Lehtimäki
- Institute of Biotechnology and Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
| | - Florian Rieder
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Michelle S. Longworth
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Andrei I. Ivanov
- Department of Inflammation and ImmunityLerner Research InstituteCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
36
|
Varadarajan S, Chumki SA, Stephenson RE, Misterovich ER, Wu JL, Dudley CE, Erofeev IS, Goryachev AB, Miller AL. Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling. J Cell Biol 2022; 221:213049. [PMID: 35254388 PMCID: PMC8906493 DOI: 10.1083/jcb.202105107] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.
Collapse
Affiliation(s)
| | - Shahana A Chumki
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Eileen R Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jessica L Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
37
|
Luciano M, Versaevel M, Vercruysse E, Procès A, Kalukula Y, Remson A, Deridoux A, Gabriele S. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. BIOPHYSICS REVIEWS 2022; 3:011305. [PMID: 38505223 PMCID: PMC10903419 DOI: 10.1063/5.0074317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 03/21/2024]
Abstract
The wide range of epithelial cell shapes reveals the complexity and diversity of the intracellular mechanisms that serve to construct their morphology and regulate their functions. Using mechanosensitive steps, epithelial cells can sense a variety of different mechanochemical stimuli and adapt their behavior by reshaping their morphology. These changes of cell shape rely on a structural reorganization in space and time that generates modifications of the tensional state and activates biochemical cascades. Recent studies have started to unveil how the cell shape maintenance is involved in mechanical homeostatic tasks to sustain epithelial tissue folding, identity, and self-renewal. Here, we review relevant works that integrated mechanobiology to elucidate some of the core principles of how cell shape may be conveyed into spatial information to guide collective processes such as epithelial morphogenesis. Among many other parameters, we show that the regulation of the cell shape can be understood as the result of the interplay between two counteracting mechanisms: actomyosin contractility and intercellular adhesions, and that both do not act independently but are functionally integrated to operate on molecular, cellular, and tissue scales. We highlight the role of cadherin-based adhesions in force-sensing and mechanotransduction, and we report recent developments that exploit physics of liquid crystals to connect cell shape changes to orientational order in cell aggregates. Finally, we emphasize that the further intermingling of different disciplines to develop new mechanobiology assays will lead the way toward a unified picture of the contribution of cell shape to the pathophysiological behavior of epithelial tissues.
Collapse
Affiliation(s)
- Marine Luciano
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Marie Versaevel
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Eléonore Vercruysse
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Anthony Procès
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Yohalie Kalukula
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Alexandre Remson
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Amandine Deridoux
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Sylvain Gabriele
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
38
|
Bonfim-Melo A, Noordstra I, Gupta S, Chan AH, Jones MJK, Schroder K, Yap AS. Rapid lamellipodial responses by neighbor cells drive epithelial sealing in response to pyroptotic cell death. Cell Rep 2022; 38:110316. [PMID: 35108534 DOI: 10.1016/j.celrep.2022.110316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022] Open
Abstract
Cell injury poses a substantial challenge for epithelia homeostasis. Several cellular processes preserve epithelial barriers in response to apoptosis, but less is known about other forms of cell death, such as pyroptosis. Here we use an inducible caspase-1 system to analyze how colon epithelial monolayers respond to pyroptosis. We confirm that sporadic pyroptotic cells are physically eliminated from confluent monolayers by apical extrusion. This is accompanied by a transient defect in barrier function at the site of the pyroptotic cells. By visualizing cell shape changes and traction patterns in combination with cytoskeletal inhibitors, we show that rapid lamellipodial responses in the neighbor cells are responsible for correcting the leakage and resealing the barrier. Cell contractility is not required for this resealing response, in contrast to the response to apoptosis. Therefore, pyroptosis elicits a distinct homeostatic response from the epithelium that is driven by the stimulation of lamellipodia in neighbor cells.
Collapse
Affiliation(s)
- Alexis Bonfim-Melo
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Shafali Gupta
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Amy H Chan
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mathew J K Jones
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Kate Schroder
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Inflammatory Disease Research, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
39
|
Beggs RR, Rao TC, Dean WF, Kowalczyk AP, Mattheyses AL. Desmosomes undergo dynamic architectural changes during assembly and maturation. Tissue Barriers 2022; 10:2017225. [PMID: 34983311 PMCID: PMC9621066 DOI: 10.1080/21688370.2021.2017225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Desmosomes are macromolecular cell-cell junctions critical for maintaining adhesion and resisting mechanical stress in epithelial tissue. Desmosome assembly and the relationship between maturity and molecular architecture are not well understood. To address this, we employed a calcium switch assay to synchronize assembly followed by quantification of desmosome nanoscale organization using direct Stochastic Optical Reconstruction Microscopy (dSTORM). We found that the organization of the desmoplakin rod/C-terminal junction changed over the course of maturation, as indicated by a decrease in the plaque-to-plaque distance, while the plaque length increased. In contrast, the desmoplakin N-terminal domain and plakoglobin organization (plaque-to-plaque distance) were constant throughout maturation. This structural rearrangement of desmoplakin was concurrent with desmosome maturation measured by E-cadherin exclusion and increased adhesive strength. Using two-color dSTORM, we showed that while the number of individual E-cadherin containing junctions went down with the increasing time in high Ca2+, they maintained a wider desmoplakin rod/C-terminal plaque-to-plaque distance. This indicates that the maturation state of individual desmosomes can be identified by their architectural organization. We confirmed these architectural changes in another model of desmosome assembly, cell migration. Desmosomes in migrating cells, closest to the scratch where they are assembling, were shorter, E-cadherin enriched, and had wider desmoplakin rod/C-terminal plaque-to-plaque distances compared to desmosomes away from the wound edge. Key results were demonstrated in three cell lines representing simple, transitional, and stratified epithelia. Together, these data suggest that there is a set of architectural programs for desmosome maturation, and we hypothesize that desmoplakin architecture may be a contributing mechanism to regulating adhesive strength.
Collapse
Affiliation(s)
- Reena R Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
40
|
Ayala-Torres C, Krug SM, Rosenthal R, Fromm M. Angulin-1 (LSR) Affects Paracellular Water Transport, However Only in Tight Epithelial Cells. Int J Mol Sci 2021; 22:ijms22157827. [PMID: 34360593 PMCID: PMC8346120 DOI: 10.3390/ijms22157827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Water transport in epithelia occurs transcellularly (aquaporins) and paracellularly (claudin-2, claudin-15). Recently, we showed that downregulated tricellulin, a protein of the tricellular tight junction (tTJ, the site where three epithelial cells meet), increased transepithelial water flux. We now check the hypothesis that another tTJ-associated protein, angulin-1 (alias lipolysis-stimulated lipoprotein receptor, LSR) is a direct negative actuator of tTJ water permeability depending on the tightness of the epithelium. For this, a tight and an intermediate-tight epithelial cell line, MDCK C7 and HT-29/B6, were stably transfected with CRISPR/Cas9 and single-guide RNA targeting angulin-1 and morphologically and functionally characterized. Water flux induced by an osmotic gradient using 4-kDa dextran caused water flux to increase in angulin-1 KO clones in MDCK C7 cells, but not in HT-29/B6 cells. In addition, we found that water permeability in HT-29/B6 cells was not modified after either angulin-1 knockout or tricellulin knockdown, which may be related to the presence of other pathways, which reduce the impact of the tTJ pathway. In conclusion, modulation of the tTJ by knockout or knockdown of tTJ proteins affects ion and macromolecule permeability in tight and intermediate-tight epithelial cell lines, while the transepithelial water permeability was affected only in tight cell lines.
Collapse
|
41
|
Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Lin YY, Kuo CY, Su HH, Hung CL, Chen HK, Wang CH. Ultrasound Microbubble-Facilitated Inner Ear Delivery of Gold Nanoparticles Involves Transient Disruption of the Tight Junction Barrier in the Round Window Membrane. Front Pharmacol 2021; 12:689032. [PMID: 34262458 PMCID: PMC8273281 DOI: 10.3389/fphar.2021.689032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
The application of ultrasound microbubbles (USMBs) enhances the permeability of the round window membrane (RWM) and improves drug delivery to the inner ear. In this study, we investigated the efficiency of USMB-aided delivery of chitosan-coated gold nanoparticles (CS-AuNPs) and the mechanism of USMB-mediated enhancement of RMW permeability. We exposed mouse inner ears to USMBs at an intensity of 2 W/cm2 and then filled the tympanic bulla with CS-AuNPs or fluorescein isothiocyanate-decorated CS-AuNPs (FITC-CS-AuNPs). The membrane uptake of FITC-CS-AuNPs and their depth of permeation into the three-layer structure of the RWM, with or without prior USMB treatment, were visualized by z-stack confocal laser scanning microscopy. Ultrastructural changes in the RWM due to USMB-mediated cavitation appeared as sunburn-like peeling and various degrees of depression in the RWM surface, with pore-like openings forming in the outer epithelium. This disruption of the outer epithelium was paralleled by a transient reduction in tight junction (TJ)-associated protein levels in the RWM and an enhanced delivery of FITC-CS-AuNPs into the RWM. Without prior USMB exposure, the treatment with CS-AuNPs also caused a noticeable reduction in TJ proteins of the RWM. Our findings indicated that the combined treatment with USMBs and CS-AuNPs represents a promising and efficient drug and gene delivery vehicle for a trans-RWM approach for inner ear therapy. The outer epithelial layer of the RWM plays a decisive role in controlling the transmembrane transport of substances such as CS-AuNPs following the administration of USMBs. Most importantly, the enhanced permeation of AuNPs involved the transient disruption of the TJ-created paracellular barrier in the outer epithelium of the RWM.
Collapse
Affiliation(s)
- Yi-Chun Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Liang Chou
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Cho Fang
- Laboratory Animal Center, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Yung Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Han Su
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lien Hung
- Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chih-Hung Wang
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otorhinolaryngology, Taichung Armed Forces General Hospital, Taichung, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
42
|
Effects of histone deacetylase inhibitors Tricostatin A and Quisinostat on tight junction proteins of human lung adenocarcinoma A549 cells and normal lung epithelial cells. Histochem Cell Biol 2021; 155:637-653. [PMID: 33974136 DOI: 10.1007/s00418-021-01966-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for non-small cell lung cancer (NSCLC). However, more preclinical studies of HDAC inhibitors in NSCLC and normal lung epithelial cells are required to evaluate their antitumor activities and mechanisms. The bicellular tight junction molecule claudin-2 (CLDN-2) is highly expressed in lung adenocarcinoma tissues and increase the proliferation of adenocarcinoma cells. Downregulation of the tricellular tight junction molecule angulin-1/LSR induces malignancy via EGF-dependent CLDN-2 and TGF-β-dependent cellular metabolism in human lung adenocarcinoma cells. In the present study, to investigate the detailed mechanisms of the antitumor activities of HDAC inhibitors in lung adenocarcinoma, human lung adenocarcinoma A549 cells and normal lung epithelial cells were treated with the HDAC inibitors Trichostatin A (TSA) and Quisinostat (JNJ-2648158) with or without TGF-β. Both HDAC inhibitors increased anguin-1/LSR, decrease CLDN-2, promoted G1 arrest and prevented the migration of A549 cells. Furthermore, TSA but not Quisinostat with or without TGF-β induced cellular metabolism indicated as the mitochondrial respiration measured using the oxygen consumption rate. In normal human lung epithelial cells, treatment with TSA and Quisinostat increased expression of LSR and CLDN-2 and decreased that of CLDN-1 with or without TGF-β in 2D culture. Quisinostat but not TSA with TGF-β increased CLDN-7 expression in 2D culture. Both HDAC inhibitors prevented disruption of the epithelial barrier measured as the permeability of FD-4 induced by TGF-β in 2.5D culture. TSA and Quisinostat have potential for use in therapy for lung adenocarcinoma via changes in the expression of angulin-1/LSR and CLDN-2.
Collapse
|
43
|
Azizgolshani H, Coppeta JR, Vedula EM, Marr EE, Cain BP, Luu RJ, Lech MP, Kann SH, Mulhern TJ, Tandon V, Tan K, Haroutunian NJ, Keegan P, Rogers M, Gard AL, Baldwin KB, de Souza JC, Hoefler BC, Bale SS, Kratchman LB, Zorn A, Patterson A, Kim ES, Petrie TA, Wiellette EL, Williams C, Isenberg BC, Charest JL. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. LAB ON A CHIP 2021; 21:1454-1474. [PMID: 33881130 DOI: 10.1039/d1lc00067e] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.
Collapse
Affiliation(s)
- H Azizgolshani
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J R Coppeta
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E M Vedula
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E E Marr
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B P Cain
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - R J Luu
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M P Lech
- Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA
| | - S H Kann
- Draper, 555 Technology Square, Cambridge, MA 02139, USA. and Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - T J Mulhern
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - V Tandon
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K Tan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | - P Keegan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M Rogers
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A L Gard
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K B Baldwin
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J C de Souza
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Hoefler
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - S S Bale
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - L B Kratchman
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Zorn
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Patterson
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E S Kim
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - T A Petrie
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E L Wiellette
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - C Williams
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Isenberg
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J L Charest
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
44
|
Saito AC, Higashi T, Fukazawa Y, Otani T, Tauchi M, Higashi AY, Furuse M, Chiba H. Occludin and tricellulin facilitate formation of anastomosing tight-junction strand network to improve barrier function. Mol Biol Cell 2021; 32:722-738. [PMID: 33566640 PMCID: PMC8108510 DOI: 10.1091/mbc.e20-07-0464] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tight junctions (TJs) are composed of a claudin-based anastomosing network of TJ strands at which plasma membranes of adjacent epithelial cells are closely attached to regulate the paracellular permeability. Although the TJ proteins occludin and tricellulin have been known to be incorporated in the TJ strand network, their molecular functions remain unknown. Here, we established tricellulin/occludin-double knockout (dKO) MDCK II cells using a genome editing technique and evaluated the structure and barrier function of these cells. In freeze-fracture replica electron microscopy, the TJ strands of tricellulin/occludin-dKO cells had fewer branches and were less anastomosed compared with the controls. The paracellular permeability of ions and small tracers was increased in the dKO cells. A single KO of tricellulin or occludin had limited effects on the morphology and permeability of TJs. Mathematical simulation using a simplified TJ strand network model predicted that reduced cross-links in TJ strands lead to increased permeability of ions and small macromolecules. Furthermore, overexpression of occludin increased the complexity of TJ strand network and strengthened barrier function. Taken together, our data suggest that tricellulin and occludin mediate the formation and/or stabilization of TJ-strand branching points and contribute to the maintenance of epithelial barrier integrity.
Collapse
Affiliation(s)
- Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Research Center for Child Mental Development, School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Masashi Tauchi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Atsuko Y Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
45
|
Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 2020; 27:314-331. [PMID: 33309601 DOI: 10.1016/j.molmed.2020.11.006] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
| | - Elisabetta Dejana
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Donald M McDonald
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Doxorubicin increases permeability of murine small intestinal epithelium and cultured T84 monolayers. Sci Rep 2020; 10:21486. [PMID: 33293626 PMCID: PMC7722747 DOI: 10.1038/s41598-020-78473-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Enteric bacteria and/or their products are necessary for doxorubicin (DXR)-induced small intestine mucosal damage. While DXR does not induce gross loss of epithelium, others have shown elevated serum endotoxin after DXR administration. However, the mechanism of movement is unknown. We hypothesized that DXR treatment resulted in increased paracellular translocation of bacteria or bacterial products through the small intestinal epithelium. We measured permeability after DXR administration using transepithelial resistance and macromolecular flux and assessed tight junctional gene expression and protein localization both in vitro using T84 cells and ex vivo using murine jejunum. DXR treatment increased flux of 4 kDa dextrans in mouse jejenum, but increased flux of 4, 10 and 20 kDa dextrans in T84 cells. Following DXR, we observed increased permeability, both in vitro and ex vivo, independent of bacteria. DXR induced increased expression of Cldn2 and Cldn4 in murine small intestine but increased only CLDN2 expression in T84 cells. DXR treatment induced disorganization of tight junctional proteins. We conclude that DXR increases paracellular transit of small macromolecules, including bacterial products, through the epithelium, by altering expression of tight junctional components and dynamic loosening of cellular tight junctions.
Collapse
|
47
|
Nikulin SV, Poloznikov AA, Sakharov DA. A method for rapid generation of model intestinal barriers in vitro. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To increase the efficiency of drug development process, it is important to improve performance of preclinical experiments. A major drawback of the currently used in vitro intestinal barrier models is that it takes a significant time to obtain functional enterocyte monolayers with formed tight junctions. In this work, we have optimized various parameters such as cell density and different coatings, for a more rapid and efficient producing Caco-2 cell monolayers suitable for further experiments. In vivo microscopy and impedance spectroscopy were used to monitor cells state under various conditions. To determine possible biological mechanisms affected by exposure to various protein substrates, the transcriptomic analysis was applied. It was shown that collagen IV coating of the cell growth substrate significantly increased the rate of proliferation and migration of Caco-2 cells. This effect allows forming a functional monolayer of epithelial cells with tight junctions within 24 hours. Optimally, the initial cell density should be 90,000 to 200,000 cells/cm2. It was observed that collagen IV was poorly expressed by Caco-2 cells while the collagen IV receptor was expressed at a relatively high level in these cells. Laminin-332, another basement membrane component, was found to have no significant effect on times of formation of functional epithelial monolayers. Thus, using the optimal parameters determined in this study allows to significantly improve efficiency of using the in vitro intestinal barrier models.
Collapse
Affiliation(s)
- SV Nikulin
- National Research University Higher School of Economics, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - AA Poloznikov
- National Research University Higher School of Economics, Moscow, Russia
| | | |
Collapse
|
48
|
Lechuga S, Naydenov NG, Feygin A, Cruise M, Ervasti JM, Ivanov AI. Loss of β-Cytoplasmic Actin in the Intestinal Epithelium Increases Gut Barrier Permeability in vivo and Exaggerates the Severity of Experimental Colitis. Front Cell Dev Biol 2020; 8:588836. [PMID: 33195251 PMCID: PMC7644907 DOI: 10.3389/fcell.2020.588836] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a β-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether β-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out β-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of β-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, β-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from β-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that β-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA, United States
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - James M Ervasti
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
49
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
50
|
Li C, Chen Y, Zhu H, Zhang X, Han L, Zhao Z, Wang J, Ning L, Zhou W, Lu C, Xu L, Sang J, Feng Z, Zhang Y, Lou X, Bo X, Zhu B, Yu C, Zheng M, Li Y, Sun J, Shen Z. Inhibition of Histone Deacetylation by MS-275 Alleviates Colitis by Activating the Vitamin D Receptor. J Crohns Colitis 2020; 14:1103-1118. [PMID: 32030401 DOI: 10.1093/ecco-jcc/jjaa016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ulcerative colitis [UC] is a common chronic inflammatory bowel disease without curative treatment. METHODS We conducted gene set enrichment analysis to explore potential therapeutic agents for UC. Human colon tissue samples were collected to test H3 acetylation in UC. Both in vivo and in vitro colitis models were constructed to verify the role and mechanism of H3 acetylation modification in UC. Intestine-specific vitamin D receptor [VDR]-/- mice and VD [vitamin D]-deficient diet-fed mice were used to explore downstream molecular mechanisms accordingly. RESULTS According to the Connectivity Map database, MS-275 [class I histone deacetylase inhibitor] was the top-ranked agent, indicating the potential importance of histone acetylation in the pathogenesis of UC. We then found that histone H3 acetylation was significantly lower in the colon epithelium of UC patients and negatively associated with disease severity. MS-275 treatment inhibited histone H3 deacetylation, subsequently attenuating nuclear factor kappa B [NF-κB]-induced inflammation, reducing cellular apoptosis, maintaining epithelial barrier function, and thereby reducing colitis activity in a mouse model of colitis. We also identified VDR as be a downstream effector of MS-275. The curative effect of MS-275 on colitis was abolished in VDR-/- mice and in VD-deficient diet-fed mice and VDR directly targeted p65. In UC patients, histone H3 acetylation, VDR and zonulin-1 expression showed similar downregulation patterns and were negatively associated with disease severity. CONCLUSIONS We demonstrate that MS-275 inhibits histone deacetylation and alleviates colitis by ameliorating inflammation, reducing apoptosis, and maintaining intestinal epithelial barrier via VDR, providing new strategies for UC treatment.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Yi Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huatuo Zhu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Han
- Department of Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Department of Neuroimmunopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Zuodong Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Wang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Longgui Ning
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Zhou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Lu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Jianzhong Sang
- Department of Gastroenterology, Yuyao People's Hospital of Zhejiang Province, Ningbo, China
| | - Zemin Feng
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Zhang
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhe Lou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Shen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|