1
|
de Cubas L, Boronat S, Vega M, Domènech A, Gómez-Armengol F, Artemov A, Lyublinskaya O, Ayté J, Hidalgo E. The glutathione system maintains the thiol redox balance in the mitochondria of fission yeast. Free Radic Biol Med 2025; 234:100-112. [PMID: 40216096 DOI: 10.1016/j.freeradbiomed.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/27/2025] [Accepted: 04/05/2025] [Indexed: 04/20/2025]
Abstract
The thioredoxin and glutathione (GSH)-glutaredoxin electron donor pathways provide a reducing environment to the cell and maintain homeostasis of numerous redox reactions. The abundant tripeptide GSH has multiple roles, including redox buffering, detoxification, peroxide scavenging and iron-sulfur cluster assembly. Glutathione reductase, Pgr1 in fission yeast, maintains glutathione reduced, and it is essential in most organisms. Cells lacking Pgr1 exhibit severe pleiotropic defects. We used multiple approaches to unravel the compartment-specific roles of Pgr1. Our findings confirmed that Pgr1 had dual cytosolic and mitochondrial localization. Mitochondrial homeostasis was severely impaired in Δpgr1 cells and most of these defects were restored by expression of an exclusively mitochondrial Pgr1 isoform. As expected, the cytosol of Δpgr1 cells showed low ratio of reduced-to-oxidized glutathione. However, this did not significantly affect peroxiredoxin-dependent hydrogen peroxide scavenging, suggesting a minimal role, if any, of GSH in cytosolic thiol reduction. The transcriptome of Δpgr1 cells revealed signatures of oxidative stress and iron deprivation, suggesting that the GSH-containing sensor of iron starvation, the glutaredoxin Grx4, is also a sensor of GSH oxidation. In the mitochondria, Pgr1 not only provided the GSH electron donor for the glutaredoxin-based pathway but also recycled mitochondrial Trx2, thereby contributing to thiol redox homeostasis in the matrix. In conclusion, glutathione reductase is essential for maintaining a balanced redox environment in the mitochondria by recycling Trx2, Grx2 and the GSH-containing Grx5, and therefore contributes to the processes of iron-sulfur cluster assembly and respiration, while controlling Grx4 dynamics in the cytosol.
Collapse
Affiliation(s)
- Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Alba Domènech
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ferran Gómez-Armengol
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Alexey Artemov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Olga Lyublinskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
2
|
Colarusso AV, Williams AM, Gladfelter AS, Wirshing ACE, Lew DJ. Optimized vectors for genetic engineering of Aureobasidium pullulans. Mol Biol Cell 2025; 36:mr5. [PMID: 40202829 DOI: 10.1091/mbc.e25-02-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Aureobasidium pullulans is a polyextremotolerant black yeast that exhibits impressive morphological plasticity. Consequently, it shows promise as a model system for investigating mechanisms of cell adaptation to different environments and the regulation of cell shape. Here, we build upon the current toolkit for working with A. pullulans and design and test 25 vectors with seven different codon-optimized fluorophores and three selection cassettes. This includes vectors that allow for dual expression of green fluorescent protein and mCherry-tagged proteins at the URA3 locus and vectors that enable homology-based deletion or C-terminal tagging of endogenous genes without the need for cloning. This versatile vector series for working with A. pullulans will enable a broad range of experiments in this emerging model system.
Collapse
Affiliation(s)
| | - Audrey M Williams
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705
| | - Alison C E Wirshing
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel J Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
3
|
Rao BD, Gomez-Gil E, Peter M, Balogh G, Nunes V, MacRae JI, Chen Q, Rosenthal PB, Oliferenko S. Horizontal acquisition of prokaryotic hopanoid biosynthesis reorganizes membrane physiology driving lifestyle innovation in a eukaryote. Nat Commun 2025; 16:3291. [PMID: 40195311 PMCID: PMC11976957 DOI: 10.1038/s41467-025-58515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. How new metabolic functionalities are integrated into host cell biology is largely unknown. Here, we probe this fundamental question using the fission yeast Schizosaccharomyces japonicus, which has acquired a squalene-hopene cyclase Shc1 through horizontal gene transfer. We show that Shc1-dependent production of hopanoids, mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes and explain how Shc1 functions alongside the sterol biosynthetic pathway to support membrane properties. Reengineering experiments in the sister species S. pombe show that hopanoids entail new traits in a naïve organism, but the acquisition of a new enzyme may trigger profound reorganization of the host metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashree Dasari Rao
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Gomez-Gil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Maria Peter
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | | | - Qu Chen
- The Francis Crick Institute, London, UK
| | | | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Stegemann F, Marcus E, Neupert S, Ostrowski S, Mathews DH, Phizicky EM. Schizosaccharomyces pombe pus1 mutants are temperature sensitive due to decay of tRNA Ile(UAU) by the 5'-3' exonuclease Dhp1, primarily targeting the unspliced pre-tRNA. RNA (NEW YORK, N.Y.) 2025; 31:566-584. [PMID: 39848696 PMCID: PMC11912914 DOI: 10.1261/rna.080315.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect. We show that tRNAIle(UAU) is degraded by the 5'-3' exonuclease Dhp1 (ortholog of Saccharomyces cerevisiae Rat1), as each of four spontaneous pus1Δ suppressors had dhp1 mutations and restored tRNAIle(UAU) levels, and two suppressors that also restored tRNAIle(UAU) levels had mutations in tol1 (S. cerevisiae MET22 ortholog), predicted to inhibit Dhp1. We show that Pus1 modifies U27, U34, and U36 of tRNAIle(UAU), raising the question about how these modifications prevent decay. Our results suggest that Dhp1 targets unspliced pre-tRNAIle(UAU), as a pus1Δ strain in which the only copy of tRNAIle(UAU) has no intron [tI(UAU)-iΔ] is temperature resistant and undergoes no detectable decay, and the corresponding pus1Δ tI(UAU)-WT strain accumulates unspliced pre-tRNAIle(UAU) Moreover, the predicted exon-intron structure of pre-tRNAIle(UAU) differs from the canonical bulge-helix-loop structure compatible with tRNA splicing, and a pus1Δ tI(UAU)i-var strain with intron mutations predicted to improve exon-intron structure is temperature resistant and undergoes little decay. These results suggest that decay of tRNAIle(UAU) by Dhp1 in pus1Δ strains occurs at the level of unspliced pre-tRNAIle(UAU), implying a substantial role for one or more of the Ψ residues in stabilizing the pre-tRNA structure for splicing.
Collapse
Affiliation(s)
- Franziska Stegemann
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Savanah Neupert
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sarah Ostrowski
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
5
|
Matsuyama A, Hashimoto A, Arioka M, Yoshida M. Improvement of Targeting Efficiency by Promoter Replacement of Markers in Integration Vectors. Genes Cells 2025; 30:e70013. [PMID: 40110920 DOI: 10.1111/gtc.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
To establish a gene expression system that reflects physiological conditions, we developed a series of vectors that can be integrated into the chromosome. Compared with the integration vectors employing double-crossover recombination, single-crossover integration vectors have the advantage of high transformation efficiency. However, because single-crossover recombination generates repeat sequences upstream and downstream of the integrated fragment, this strategy is often associated with a risk that an integrated fragment may pop out from the chromosome during cultivation. Here, we assessed the frequency of pop-out using a fission yeast single-crossover integration vector, pDUAL. We also examined the effect of shortening the repeats on pop-out by employing a strategy involving heterologous replacement of the promoter for the leu1 marker in the vector. Due to the intrinsic low frequency of pop-out, the effect of promoter conversion on pop-out was negligible, if any. However, a clear ameliorative effect was observed in obtaining the desirable transformants in which a vector fragment was correctly inserted at the targeted locus, a result that may be driven by the limited potential for recombination in the promoter replacement construct.
Collapse
Affiliation(s)
- Akihisa Matsuyama
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Manabu Arioka
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Office of University Professor, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Colarusso A, Williams A, Gladfelter AS, Wirshing ACE, Lew DJ. Optimized vectors for genetic engineering of Aureobasidium pullulans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.25.634885. [PMID: 39975359 PMCID: PMC11838232 DOI: 10.1101/2025.01.25.634885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aureobasidium pullulans is a polyextremotolerant black yeast that exhibits impressive morphological plasticity. Consequently, it shows promise as a model system for investigating mechanisms of cell adaptation to different environments and the regulation of cell shape. Here, we build upon the current toolkit for working with A. pullulans and design and test 25 vectors with seven different codon-optimized fluorophores and three selection cassettes. This includes vectors that allow for dual expression of GFP and mCherry tagged proteins at the URA3 locus and vectors that enable homology-based deletion or C-terminal tagging of endogenous genes without the need for cloning. This versatile vector series for working with A. pullulans will enable a broad range of experiments in this emerging model system.
Collapse
Affiliation(s)
- Analeigha Colarusso
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Audrey Williams
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705
| | - Alison C E Wirshing
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel J Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705
| |
Collapse
|
7
|
Ding Y, Li J, Jiang HL, Suo F, Shao GC, Zhang XR, Dong MQ, Liu CP, Xu RM, Du LL. The ortholog of human DNAJC9 promotes histone H3-H4 degradation and is counteracted by Asf1 in fission yeast. Nucleic Acids Res 2025; 53:gkaf036. [PMID: 39878217 PMCID: PMC11775587 DOI: 10.1093/nar/gkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth. Utilizing AlphaFold-based structural prediction, we identified a histone-binding surface on Djc9 that binds to helix α3 of H3 in a manner that precludes simultaneous helix α3-binding by Asf1. Djc9 and Asf1 indeed compete for binding to the H3-H4 dimer in vitro, and an H3-α3 mutation impeding Djc9 binding also renders Asf1 non-essential, indicating that the role of Asf1 needed for growth in fission yeast is to prevent histone binding by Djc9. In the absence of Asf1, cell growth is hindered due to unrestrained Djc9-mediated downregulation of H3 and H4. In the presence of Asf1, Djc9 confers resistance to the DNA replication inhibitor hydroxyurea and dominant negative disease-related histone mutants by promoting the degradation of superfluous or dysfunctional histones. Our findings provide new insights into the function and mechanism of this conserved histone-binding protein.
Collapse
Affiliation(s)
- Yan Ding
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - He-Li Jiang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guang-Can Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Ran Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Chao-Pei Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Lin Du
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
8
|
Lu G, Tang Z, Wu M, Liu L, Opoku M, Bian K, Ruan R, Shang J, Liu J, Feng G. SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe. Genes Cells 2025; 30:e13192. [PMID: 39789818 DOI: 10.1111/gtc.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe. We demonstrated that Dsk1 defective mutants of loss of the gene, spacer domain, and kinase activity as well as its overexpression mutant exhibited sensitivities of replication stress. Genetic analysis revealed that the loss of dsk1+ compromised the efficiency of homologous recombination (HR) repair, and Dsk1 was probably involved in the Rad52- and Rad51-dependent HR repair pathways. Interestingly, Dsk1 translocated into the nucleus upon replication stress and directly interacted with Rad51-mediator Rad52 and phosphorylated Rad52-Ser365 residue. The Rad52-Ser365 phosphorylation-defective mutant was slightly sensitive to replication stress, and the phosphorylation-mimicking mutants exhibited more sensitivities, which were partially correlated with phenotypes of the loss- and gain-of-function of dsk1+. This study uncovers a potential HR repair regulator Dsk1 in response to replication stress and implies that its homolog SRPKs may have the conserved targets and functions in higher eukaryotes.
Collapse
Affiliation(s)
- Guangchun Lu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Li Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mitchell Opoku
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kaicheng Bian
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Ruan
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinjie Shang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Gang Feng
- Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Pan ZQ, Yang YS, Du LL. Pil1 Co-tethering Assay to Detect Protein-Protein Interactions in the Fission Yeast Schizosaccharomyces pombe. Methods Mol Biol 2025; 2862:93-102. [PMID: 39527195 DOI: 10.1007/978-1-0716-4168-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Protein-protein interactions play critical roles in biological processes. We previously developed the Pil1 co-tethering assay, an imaging-based method to detect protein-protein interactions in living Schizosaccharomyces pombe cells. This assay leverages the distinct localization pattern of the Pil1 protein by fusing a bait protein to Pil1 and examining whether a prey protein co-localize with the Pil1-fused bait. Here, we present an improved protocol of the Pil1 co-tethering assay. In this protocol, modified stable integration vectors (SIVs) with a NotI site as the linearization site are used to express bait and prey proteins. We expect that this protocol will enhance the application of the Pil1 co-tethering assay for studying protein-protein interactions.
Collapse
Affiliation(s)
- Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
10
|
Murciano-Julià G, Francos-Cárdenas M, Salat-Canela C, Hidalgo E, Ayté J. FLCCR is a fluorescent reporter system that quantifies the duration of different cell cycle phases at the single-cell level in fission yeast. PLoS Biol 2025; 23:e3002969. [PMID: 39775128 PMCID: PMC11706491 DOI: 10.1371/journal.pbio.3002969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Fission yeast is an excellent model system that has been widely used to study the mechanism that control cell cycle progression. However, there is a lack of tools that allow to measure with high precision the duration of the different phases of the cell cycle in individual cells. To circumvent this problem, we have developed a fluorescent reporter that allows the quantification of the different phases of the cell cycle at the single-cell level in most genetic backgrounds. To prove the accuracy of this fluorescent reporter, we have tested the reporter in strains known to have a delay in the G1/S or G2/M transitions, confirming the strength and versatility of the system. An advantage of this reporter is that it eliminates the need for culture synchronization, avoiding stressing the cells. Using this reporter, we show that unperturbed cells lacking Sty1 have a standard cell cycle length and distribution and that the extended length of these cells is due to their increased cell growth rate but not to alterations in their cell cycle progression.
Collapse
Affiliation(s)
| | | | - Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
Hashimura H, Kuwana S, Nakagawa H, Abe K, Adachi T, Sugita T, Fujishiro S, Honda G, Sawai S. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell Struct Funct 2024; 49:135-153. [PMID: 39631875 PMCID: PMC11930779 DOI: 10.1247/csf.24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Hibiki Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kenichi Abe
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tomoko Adachi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toyoko Sugita
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Shoko Fujishiro
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
12
|
Hua Y, Zhang J, Yang MY, Ren JY, Suo F, Liang L, Dong MQ, Ye K, Du LL. Structural duality enables a single protein to act as a toxin-antidote pair for meiotic drive. Proc Natl Acad Sci U S A 2024; 121:e2408618121. [PMID: 39485800 PMCID: PMC11551426 DOI: 10.1073/pnas.2408618121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
In sexual reproduction, selfish genetic elements known as killer meiotic drivers (KMDs) bias inheritance by eliminating gametes that do not carry them. The selective killing behavior of most KMDs can be explained by a toxin-antidote model, where a toxin harms all gametes while an antidote provides resistance to the toxin in carriers. This study investigates whether and how the KMD element tdk1 in the fission yeast Schizosaccharomyces pombe deploys this strategy. Intriguingly, tdk1 relies on a single protein product, Tdk1, for both killing and resistance. We show that Tdk1 exists in a nontoxic tetrameric form during vegetative growth and meiosis but transforms into a distinct toxic form in spores. This toxic form acquires the ability to interact with the histone reader Bdf1 and assembles into supramolecular foci that disrupt mitosis in noncarriers after spore germination. In contrast, Tdk1 synthesized during germination of carrier spores is nontoxic and acts as an antidote, dismantling the preformed toxic Tdk1 assemblies. Replacement of the N-terminal region of Tdk1 with a tetramer-forming peptide reveals its dual roles in imposing an autoinhibited tetrameric conformation and facilitating the assembly of supramolecular foci when autoinhibition is released. Moreover, we successfully reconstituted a functional KMD element by combining a construct that exclusively expresses Tdk1 during meiosis ("toxin-only") with another construct that expresses Tdk1 specifically during germination ("antidote-only"). This work uncovers a remarkable example of a single protein employing structural duality to form a toxin-antidote pair, expanding our understanding of the mechanisms underlying toxin-antidote systems.
Collapse
Affiliation(s)
- Yu Hua
- National Institute of Biological Sciences, Beijing102206, China
| | - Jianxiu Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Man-Yun Yang
- National Institute of Biological Sciences, Beijing102206, China
| | - Jing-Yi Ren
- National Institute of Biological Sciences, Beijing102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing102206, China
| | - Lingfei Liang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
13
|
Lyu XH, Yang YS, Pan ZQ, Ning SK, Suo F, Du LL. An improved tetracycline-inducible expression system for fission yeast. J Cell Sci 2024; 137:jcs263404. [PMID: 39318285 DOI: 10.1242/jcs.263404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
The ability to manipulate gene expression is valuable for elucidating gene function. In the fission yeast Schizosaccharomyces pombe, the most widely used regulatable expression system is the nmt1 promoter and its two attenuated variants. However, these promoters have limitations, including a long lag, incompatibility with rich media and unsuitability for non-dividing cells. Here, we present a tetracycline-inducible system free of these shortcomings. Our system features the enotetS promoter, which achieves a similar induced level and a higher induction ratio compared to the nmt1 promoter, without exhibiting a lag. Additionally, our system includes four weakened enotetS variants, offering an expression range similar to that of the nmt1 series promoters but with more intermediate levels. To enhance usability, each promoter is combined with a Tet-repressor-expressing cassette in an integration plasmid. Importantly, our system can be used in non-dividing cells, enabling the development of a synchronous meiosis induction method with high spore viability. Moreover, our system allows for the shutdown of gene expression and the generation of conditional loss-of-function mutants. This system provides a versatile and powerful tool for manipulating gene expression in fission yeast.
Collapse
Affiliation(s)
- Xiao-Hui Lyu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu-Sheng Yang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Qian Pan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shao-Kai Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research , Tsinghua University, Beijing 102206, China
| |
Collapse
|
14
|
Culley S, Caballero AC, Burden JJ, Uhlmann V. Made to measure: An introduction to quantifying microscopy data in the life sciences. J Microsc 2024; 295:61-82. [PMID: 37269048 DOI: 10.1111/jmi.13208] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Images are at the core of most modern biological experiments and are used as a major source of quantitative information. Numerous algorithms are available to process images and make them more amenable to be measured. Yet the nature of the quantitative output that is useful for a given biological experiment is uniquely dependent upon the question being investigated. Here, we discuss the 3 main types of information that can be extracted from microscopy data: intensity, morphology, and object counts or categorical labels. For each, we describe where they come from, how they can be measured, and what may affect the relevance of these measurements in downstream data analysis. Acknowledging that what makes a measurement 'good' is ultimately down to the biological question being investigated, this review aims at providing readers with a toolkit to challenge how they quantify their own data and be critical of conclusions drawn from quantitative bioimage analysis experiments.
Collapse
Affiliation(s)
- Siân Culley
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | - Virginie Uhlmann
- European Bioinformatics Institute (EMBL-EBI), EMBL, Cambridge, UK
| |
Collapse
|
15
|
Hebra T, Smrčková H, Elkatmis B, Převorovský M, Pluskal T. POMBOX: A Fission Yeast Cloning Toolkit for Molecular and Synthetic Biology. ACS Synth Biol 2024; 13:558-567. [PMID: 37991801 PMCID: PMC10877588 DOI: 10.1021/acssynbio.3c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
The fission yeast Schizosaccharomyces pombe is a popular model organism in molecular biology and cell physiology. With its ease of genetic manipulation and growth, supported by in-depth functional annotations in the PomBase database and genome-wide metabolic models,S. pombe is an attractive option for synthetic biology applications. However,S. pombe currently lacks modular tools for generating genetic circuits with more than 1 transcriptional unit. We developed a toolkit to address this gap. Adapted from the MoClo-YTK plasmid kit for Saccharomyces cerevisiae and using the same modular cloning grammar, our POMBOX toolkit is designed to facilitate fast, efficient, and modular construction of genetic circuits inS. pombe. It allows for interoperability when working with DNA sequences that are functional in bothS. cerevisiae and S. pombe (e.g., protein tags, antibiotic resistance cassettes, and coding sequences). Moreover, POMBOX enables the modular assembly of multigene pathways and increases the possible pathway length from 6 to 12 transcriptional units. We also adapted the stable integration vector homology arms to Golden Gate assembly and tested the genomic integration success rates depending on different sequence sizes, from 4 to 24 kb. We included 14 S. pombe promoters that we characterized using two fluorescent proteins, in both minimally defined (EMM2─Edinburgh minimal media) and complex (YES─yeast extract with supplements) media. Then, we examined the efficacy of 6 S. cerevisiae and 6 synthetic terminators in S. pombe. Finally, we used the POMBOX kit for a synthetic biology application in metabolic engineering and expressed plant enzymes in S. pombe to produce specialized metabolite precursors, namely, methylxanthine, amorpha-4,11-diene, and cinnamic acid from the purine, mevalonate, and aromatic amino acid pathways.
Collapse
Affiliation(s)
- Téo Hebra
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Helena Smrčková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Büsra Elkatmis
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Martin Převorovský
- Department
of Cell Biology, Faculty of Science, Charles
University, 128 00 Prague, Czech
Republic
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague, Czech Republic
| |
Collapse
|
16
|
Lera-Ramírez M, Bähler J, Mata J, Rutherford K, Hoffman CS, Lambert S, Oliferenko S, Martin SG, Gould KL, Du LL, Sabatinos SA, Forsburg SL, Nielsen O, Nurse P, Wood V. Revised fission yeast gene and allele nomenclature guidelines for machine readability. Genetics 2023; 225:iyad143. [PMID: 37758508 PMCID: PMC10627252 DOI: 10.1093/genetics/iyad143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023] Open
Abstract
Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.
Collapse
Affiliation(s)
- Manuel Lera-Ramírez
- University College London, Department of Genetics Evolution and Environment, Darwin Building, 99-105 Gower Street, London WC1E 6BT, UK
| | - Jürg Bähler
- University College London, Department of Genetics Evolution and Environment, Darwin Building, 99-105 Gower Street, London WC1E 6BT, UK
| | - Juan Mata
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| | - Kim Rutherford
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| | | | - Sarah Lambert
- Institut Curie, Université Paris-Saclay, CNRS UMR3348, Orsay 91400, France
| | - Snezhana Oliferenko
- The Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, UK
| | - Sophie G Martin
- University of Geneva, Department of Molecular and Cellular Biology, Geneva 1211, Switzerland
| | - Kathleen L Gould
- Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN 37232, USA
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sarah A Sabatinos
- Toronto Metropolitan University, Department of Chemistry & Biology, Toronto M5B 2K3, Canada
| | - Susan L Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Olaf Nielsen
- Department of Biology, Cell cycle and genome stability Group, University of Copenhagen, Copenhagen N DK2100, Denmark
| | - Paul Nurse
- The Francis Crick Institute, London NW1 1AT, UK
| | - Valerie Wood
- University of Cambridge, Department of Biochemistry, Cambridge CB2 1GA, UK
| |
Collapse
|
17
|
Malla M, Sinha D, Chowdhury P, Bisesi BT, Chen Q. The cytoplasmic tail of the mechanosensitive channel Pkd2 regulates its internalization and clustering in eisosomes. J Cell Sci 2023; 136:jcs260598. [PMID: 37259828 PMCID: PMC10323245 DOI: 10.1242/jcs.260598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Polycystins are a family of conserved ion channels, mutations of which lead to one of the most common human genetic disorders, namely, autosomal dominant polycystic kidney disease. Schizosacchromyces pombe possesses an essential polycystin homologue, Pkd2, which directs Ca2+ influx on the cell surface in response to membrane tension, but its structure remains unsolved. Here, we analyzed the structure-function relationship of Pkd2 based on its AlphaFold-predicted structure. Pkd2 consists of three domains, the extracellular lipid-binding domain (LBD), nine-helix transmembrane domain (TMD) and C-terminal cytoplasmic domain (CCD). Our genetic and microscopy data revealed that LBD and TMD are essential for targeting Pkd2 to the plasma membrane from the endoplasmic reticulum. In comparison, CCD ensures the polarized distribution of Pkd2 by promoting its internalization and preventing its clustering in the eisosome, a caveolae-like membrane compartment. The domains of Pkd2 and their functions are conserved in other fission yeast species. We conclude that both extracellular and cytoplasmic domains of Pkd2 are crucial for its intracellular trafficking and function. We propose that mechanosensitive channels can be desensitized through either internalization or clustering in low-tension membrane compartments.
Collapse
Affiliation(s)
- Mamata Malla
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Debatrayee Sinha
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Pritha Chowdhury
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Benjamin Thomas Bisesi
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| |
Collapse
|
18
|
Matsuyama A, Hashimoto A, Nishimura S, Yoshida M. A set of vectors and strains for chromosomal integration in fission yeast. Sci Rep 2023; 13:9295. [PMID: 37291244 PMCID: PMC10250367 DOI: 10.1038/s41598-023-36267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The expression of heterologous genes is an important technique in yeast genetics. In fission yeast, the leu1 and ura4 genes have been used mainly as selectable markers for heterologous expression. To expand the repertoire of selection markers available for heterologous expression of genes, here we developed new host-vector systems employing lys1 and arg3. By employing genome editing with the CRISPR/Cas9 system, we isolated several alleles of lys1 and arg3, each having a critical mutation in the ORF region. In parallel, we developed a set of vectors that complement the amino acid auxotrophy of lys1 and arg3 mutants when integrated into each locus. Using these vectors in combination with the previously developed integration vector pDUAL, we successfully observed the localization of three proteins in a cell simultaneously by fusing them with different fluorescent proteins. Thus, these vectors enable combinatorial expression of heterologous genes, which addresses increasingly diverse experimental challenges.
Collapse
Affiliation(s)
- Akihisa Matsuyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinichi Nishimura
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory of Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
19
|
Billault-Chaumartin I, Michon L, Anderson CA, Yde SE, Suarez C, Iwaszkiewicz J, Zoete V, Kovar DR, Martin SG. Actin assembly requirements of the formin Fus1 to build the fusion focus. J Cell Sci 2022; 135:jcs260289. [PMID: 35673994 PMCID: PMC9377709 DOI: 10.1242/jcs.260289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Caitlin A. Anderson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah E. Yde
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University of Lausanne, Ludwig Institute for Cancer Research, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Varberg JM, Unruh JR, Bestul AJ, Khan AA, Jaspersen SL. Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe. Life Sci Alliance 2022; 5:e202201423. [PMID: 35354597 PMCID: PMC8967992 DOI: 10.26508/lsa.202201423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrew J Bestul
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Azqa A Khan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Larkin A, Ames A, Seman M, Ragunathan K. Investigating Mitotic Inheritance of Histone Modifications Using Tethering Strategies. Methods Mol Biol 2022; 2529:419-440. [PMID: 35733025 DOI: 10.1007/978-1-0716-2481-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The covalent and reversible modification of histones enables cells to establish heritable gene expression patterns without altering their genetic blueprint. Epigenetic mechanisms regulate gene expression in two separate ways: (1) establishment, which depends on sequence-specific DNA- or RNA-binding proteins that recruit histone-modifying enzymes to unique genomic loci, and (2) maintenance, which is sequence-independent and depends on the autonomous propagation of preexisting chromatin states during DNA replication. Only a subset of the vast repertoire of histone modifications in the genome is heritable. Here, we describe a synthetic biology approach to tether histone-modifying enzymes to engineer chromatin states in living cells and evaluate their potential for mitotic inheritance. In S. pombe, fusing the H3K9 methyltransferase, Clr4, to the tetracycline-inducible TetR DNA-binding domain facilitates rapid and reversible control of heterochromatin assembly. We describe a framework to successfully implement an inducible heterochromatin establishment system and evaluate its molecular properties. We anticipate that our innovative genetic strategy will be broadly applicable to the discovery of protein complexes and separation-of-function alleles of heterochromatin-associated factors with unique roles in epigenetic inheritance.
Collapse
Affiliation(s)
- Ajay Larkin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Amanda Ames
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Seman
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Sakai K, Kondo Y, Fujioka H, Kamiya M, Aoki K, Goto Y. Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. J Cell Sci 2021; 134:273759. [PMID: 34806750 DOI: 10.1242/jcs.259315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV both in vitro and in fission yeast. We introduced SynPCB2.1, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB2.1. These tools not only enable the easy use of multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
23
|
Zimmerli CE, Allegretti M, Rantos V, Goetz SK, Obarska-Kosinska A, Zagoriy I, Halavatyi A, Hummer G, Mahamid J, Kosinski J, Beck M. Nuclear pores dilate and constrict in cellulo. Science 2021; 374:eabd9776. [PMID: 34762489 DOI: 10.1126/science.abd9776] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Christian E Zimmerli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Matteo Allegretti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vasileios Rantos
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Sara K Goetz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Gerganova V, Lamas I, Rutkowski DM, Vještica A, Castro DG, Vincenzetti V, Vavylonis D, Martin SG. Cell patterning by secretion-induced plasma membrane flows. SCIENCE ADVANCES 2021; 7:eabg6718. [PMID: 34533984 PMCID: PMC8448446 DOI: 10.1126/sciadv.abg6718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane–associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.
Collapse
Affiliation(s)
- Veneta Gerganova
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Iker Lamas
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | | | - Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
- Corresponding author. (S.G.M.); (D.V.)
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Switzerland
- Corresponding author. (S.G.M.); (D.V.)
| |
Collapse
|
25
|
Vyas A, Freitas AV, Ralston ZA, Tang Z. Fission Yeast Schizosaccharomyces pombe: A Unicellular "Micromammal" Model Organism. Curr Protoc 2021; 1:e151. [PMID: 34101381 PMCID: PMC8193909 DOI: 10.1002/cpz1.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a rod-shaped unicellular eukaryote, well known for its contributions as a model organism for our understanding of regulation and conservation of the eukaryotic cell cycle. As a yeast divergent from the budding yeast Saccharomyces cerevisiae, S. pombe shares more common features with humans including gene structures, chromatin dynamics, and the prevalence of introns, as well as the control of gene expression through pre-mRNA splicing, epigenetic gene silencing, and RNAi pathways. With the advent of new methodologies for research, S. pombe has become an increasingly used model to investigate various molecular and cellular processes over the last 50 years. Also, S. pombe serves as an excellent system for undergraduate students to obtain hands-on research experience. Versatile experimental approaches are amenable using the fission yeast system due to its relative ease of maintenance, its inherent cellular properties, its power in classic and molecular genetics, and its feasibility in genomics and proteomics analyses. This article provides an overview of S. pombe's rise as a valuable model organism and presents examples to highlight the significance of S. pombe as a unicellular "micromammal" in investigating biological questions. We especially focus on the advantages of and the advancements in using fission yeast for studying biological processes that are characteristic of metazoans to decipher the underlining molecular mechanisms fundamental to all eukaryotes. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Aditi Vyas
- W.M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| | - Anna V. Freitas
- W.M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| | - Zachary A. Ralston
- W.M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| | - Zhaohua Tang
- W.M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| |
Collapse
|
26
|
Vještica A, Bérard M, Liu G, Merlini L, Nkosi PJ, Martin SG. Cell cycle-dependent and independent mating blocks ensure fungal zygote survival and ploidy maintenance. PLoS Biol 2021; 19:e3001067. [PMID: 33406066 PMCID: PMC7815208 DOI: 10.1371/journal.pbio.3001067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/19/2021] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating. During sexual reproduction, fertilization must happen between exactly two gametes to ensure genome stability. This study shows that two mechanisms – establishment of zygotic fate and re-entry to the cell cycle – combine to prevent fission yeast zygotes fusing with further gametes.
Collapse
Affiliation(s)
- Aleksandar Vještica
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AV); (SGM)
| | - Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gaowen Liu
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Junior Nkosi
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (AV); (SGM)
| |
Collapse
|
27
|
Lamas I, Weber N, Martin SG. Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast. Cells 2020; 9:E2089. [PMID: 32932721 PMCID: PMC7565336 DOI: 10.3390/cells9092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.
Collapse
Affiliation(s)
| | | | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, 1015 Lausanne, Switzerland; (I.L.); (N.W.)
| |
Collapse
|
28
|
First person – Aleksandar Vještica. J Cell Sci 2020. [DOI: 10.1242/jcs.242750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Aleksandar Vještica is first author on ‘A toolbox of stable integration vectors in the fission yeast Schizosaccharomyces pombe’, published in JCS. Aleksandar is a post-doctoral fellow in the lab of Sophie G Martin at the University of Lausanne, Switzerland, where he discovered and continues to investigate fungal re-fertilization blocks.
Collapse
|