1
|
Chronopoulos J, Pernet E, Tran KA, McGovern TK, Morozan A, Wang S, Tsai O, Makita K, Divangahi M, Martin JG. Pregnancy enhances antiviral immunity independent of type I IFN but dependent on IL-17-producing γδ + T cells in the nasal mucosa. SCIENCE ADVANCES 2024; 10:eado7087. [PMID: 39331716 PMCID: PMC11430450 DOI: 10.1126/sciadv.ado7087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Pregnancy is associated with profound changes in immunity. However, pregnancy-related respiratory immune adaptations in response to influenza infection and their impact on disease severity remain unclear. Here, we describe, in a preclinical model of mid-gestation pregnancy, a mechanism of enhanced host defense against influenza A virus (IAV) localized to the nasal cavity that limits viral replication and reduces the magnitude of intrapulmonary immune responses. Consequently, the pregnant mice show reduced pulmonary pathology and preserved airway function after IAV infection. The early restriction of viral replication is independent of type I interferon (IFN) but dependent on increased antimicrobial peptides (AMPs) driven by interleukin-17+ (IL-17+) γδ+ T cells within the nasal passages. This pathway of host defense against IAV infection in the upper airways during pregnancy restricts early viral infection and prevents virus dissemination into the lung supporting maternal fitness.
Collapse
Affiliation(s)
- Julia Chronopoulos
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Erwan Pernet
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medical Biology, Université du Québec à Trois-Rivières, Quebec, Canada
| | - Kim A. Tran
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Toby K. McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Arina Morozan
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sadie Wang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Oscar Tsai
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Kosuke Makita
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - James G. Martin
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Matsumoto S, Shimizu T, Uda A, Watanabe K, Watarai M. Role of the JAK2/STAT3 pathway on infection of Francisella novicida. PLoS One 2024; 19:e0310120. [PMID: 39255287 PMCID: PMC11386456 DOI: 10.1371/journal.pone.0310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Francisella tularensis is a causative agent of the zoonotic disease tularemia, and is highly pathogenic to humans. The pathogenicity of this bacterium is largely attributed to intracellular growth in host cells. Although several bacterial factors important for the intracellular growth have been elucidated, including the type VI secretion system, the host factors involved in the intracellular growth of F. tularensis are largely unknown. To identify the host factors important for F. tularensis infection, 368 compounds were screened for the negative regulation of F. tularensis subsp. novicida (F. novicida) infection. Consequently, 56 inhibitors were isolated that decreased F. novicida infection. Among those inhibitors, we focused on cucurbitacin I, an inhibitor of the JAK2/ STAT3 pathway. Cucurbitacin I and another JAK2/STAT3 inhibitor, Stattic, decreased the intracellular bacterial number of F. novicida. However, these inhibitors failed to affect the cell attachment or the intrasaccular proliferation of F. novicida. In addition, treatment with these inhibitors destabilized actin filaments. These results suggest that the JAK2/STAT3 pathway plays an important role in internalization of F. novicida into host cells through mechanisms involving actin dynamics, such as phagocytosis.
Collapse
Affiliation(s)
- Sonoko Matsumoto
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- One Welfare Education and Research Center, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kenta Watanabe
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Hou X, Li C, Liu J, Yang S, Peng X, Wang Q, Liu C, Liu X, Luan J, Zhao G, Lin J. Cathelicidin boosts the antifungal activity of neutrophils and improves prognosis during Aspergillus fumigatus keratitis. Infect Immun 2024; 92:e0048323. [PMID: 38501672 PMCID: PMC11003229 DOI: 10.1128/iai.00483-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.
Collapse
Affiliation(s)
- Xiaochen Hou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jingyi Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shanshan Yang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chengxiu Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
He R, Torres CA, Wang Y, He C, Zhong G. Type-I Interferon Signaling Protects against Chlamydia trachomatis Infection in the Female Lower Genital Tract. Infect Immun 2023; 91:e0015323. [PMID: 37191510 PMCID: PMC10269118 DOI: 10.1128/iai.00153-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
We have previously shown that Chlamydia trachomatis is significantly inhibited during the early stage of infection in the female mouse lower genital tract and the anti-C. trachomatis innate immunity is compromised in the absence of cGAS-STING signaling. Since type-I interferon is a major downstream response of the cGAS-STING signaling, we evaluated the effect of type-I interferon signaling on C. trachomatis infection in the female genital tract in the current study. The infectious yields of chlamydial organisms recovered from vaginal swabs along the infection course were carefully compared between mice with or without deficiency in type-I interferon receptor (IFNαR1) following intravaginal inoculation with 3 different doses of C. trachomatis. It was found that IFNαR1-deficient mice significantly increased the yields of live chlamydial organisms on days 3 and 5, providing the 1st experimental evidence for a protective role of type-I interferon signaling in preventing C. trachomatis infection in mouse female genital tract. Further comparison of live C. trachomatis recovered from different genital tract tissues between wild type and IFNαR1-deficient mice revealed that the type-I interferon-dependent anti-C. trachomatis immunity was restricted to mouse lower genital tract. This conclusion was validated when C. trachomatis was inoculated transcervically. Thus, we have demonstrated an essential role of type-I interferon signaling in innate immunity against C. trachomatis infection in the mouse lower genital tract, providing a platform for further revealing the molecular and cellular basis of type-I interferon-mediated immunity against sexually transmitted infection with C. trachomatis.
Collapse
Affiliation(s)
- Rongze He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Caroline Andrea Torres
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yihui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Cheng He
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Peoples Republic of China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Chen K, Gong W, Huang J, Yoshimura T, Ming Wang J. Developmental and homeostatic signaling transmitted by the G-protein coupled receptor FPR2. Int Immunopharmacol 2023; 118:110052. [PMID: 37003185 PMCID: PMC10149111 DOI: 10.1016/j.intimp.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes. During the past years, some unusual properties of FPR2 have attracted intense attention because FPR2 appears to possess dual functions by activating or inhibiting intracellular signal pathways based on the nature, concentration of the ligands, and the temporal and spatial settings of the microenvironment in vivo, the cell types it interacts with. Therefore, FPR2 controls an abundant array of developmental and homeostatic signaling cascades, in addition to its "classical" capacity to mediate the migration of hematopoietic and non-hematopoietic cells including malignant cells. In this review, we summarize recent development in FPR2 research, particularly in its role in diseases, therefore helping to establish FPR2 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA; College of Life Sciences, Beijing Jiaotong University, Beijing, PR China
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
6
|
Jiang Z, Liu S, Xiao X, Jiang G, Qu Q, Miao X, Wu R, Shi R, Guo R, Liu J. High-throughput probing macrophage-bacteria interactions at the single cell level with microdroplets. LAB ON A CHIP 2022; 22:2944-2953. [PMID: 35766807 DOI: 10.1039/d2lc00516f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pathogenic infections may lead to disruption of homeostasis, thus becoming a serious threat to the human health. Understanding the interactions between bacteria and macrophages is critical for therapeutic development against sepsis or inflammatory bowel disease. Here, we report a technique using droplet biosensors for the detection of nitric oxide (NO) secreted by a single macrophage under inflammatory stimuli. We demonstrated that the limit of detection can be promoted more than two orders of magnitude by our approach, in comparison to the conventional microplate format. The experiments of co-encapsulating single macrophages and different numbers of Escherichia coli (E. coli) enabled fluorescence monitoring of NO secretion by single macrophages over the incubation, and investigation of their interactions inside the isolated droplet for their separate fates. Our approach provides a unique platform to study the bacteria-macrophage interactions at the single cell level.
Collapse
Affiliation(s)
- Zhongyun Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Xiang Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Guimei Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Qing Qu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Xingxing Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Ruochen Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| |
Collapse
|
7
|
Wang D, Yu X, Sheng P, Zhang G. The Transcriptomic Mechanism of a Novel Autolysis Induced by a Recombinant Antibacterial Peptide from Chicken Expressed in Pichia pastoris. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062029. [PMID: 35335392 PMCID: PMC8955930 DOI: 10.3390/molecules27062029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Autolysis is a common physiological process in eukaryotic cells that is often prevented or applied, especially in yeast expression systems. In this study, an antimicrobial peptide from chicken (AMP) was recombinantly expressed in the Pichia pastoris expression system, which induced a series of cellular autolysis phenotypes after methanol treatment, such as the aggregated, lysed, irregular, and enlarged cell morphology, while the cells expressing a recombinant aflatoxin-detoxifizyme (ADTZ) were not autolyzed. A comparative transcriptomic analysis showed that the transcriptomic profiles of cells derived from the autolysis and non-autolysis groups were well discriminated, suggesting that the mechanisms of autolysis were at the transcriptional level. A further differential expression gene (DEG) analysis showed that the DEGs from the two groups were involved mainly in autophagy, the MAPK signaling pathway, transcriptional factors, the central carbon metabolism, anti-stress functions, and so on. In the autolysis group, the cell activity was significantly reduced with the MAPK signaling pathway, the central carbon metabolism was down-regulated, and components of the cytoplasm-to-vacuole targeting (CVT) and mitophagy pathways were up-regulated, suggesting that the autophagy involved in the trafficking of intracellular molecules in the vacuole and mitochondrion contributed to autolysis, which was regulated by transcriptional factors and signal pathways at the transcriptional level. This study provides a theoretical basis for genetic modifications to prevent or utilize cell autolysis in the recombinant protein expression system.
Collapse
Affiliation(s)
- Dongsheng Wang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (P.S.); (G.Z.)
- Correspondence: (D.W.); (X.Y.)
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 1, Gongda Road, Huzhou 313200, China
- Correspondence: (D.W.); (X.Y.)
| | - Ping Sheng
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (P.S.); (G.Z.)
| | - Guohua Zhang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (P.S.); (G.Z.)
| |
Collapse
|