1
|
Shi Y, Pikul JH. Achieving animal endurance in robots through advanced energy storage. Sci Robot 2025; 10:eadr6125. [PMID: 40305577 DOI: 10.1126/scirobotics.adr6125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Abstract
Bioinspired mobile robots move with comparable efficiency to their animal counterparts but lag by more than an order of magnitude in system-level energy density because of battery limitations. This Review quantifies this energy gap, evaluates hardware strengths and current battery weaknesses, and proposes benchmarking frameworks for future technologies. Using Spot as a case study, we identify the battery chemistries needed to match the energy storage in animals and propose technologies to unleash robotic endurance.
Collapse
Affiliation(s)
- Yichao Shi
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - James H Pikul
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Shvartsburd Z, Vijayan MM. Corticotropin-releasing hormone receptor 1 mediates the enhanced locomotor activity and metabolic demands to an acute thermal stress in adult zebrafish. J Neuroendocrinol 2025; 37:e13497. [PMID: 39915694 PMCID: PMC11975798 DOI: 10.1111/jne.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 01/26/2025] [Indexed: 04/09/2025]
Abstract
We recently showed that Crh-Crhr1 signalling is essential for acute stress-related locomotor activity in zebrafish larvae. However, the possibility that Crhr1 activation may also initiate the acute metabolic demands for stress coping was unexplored. Here, we tested the hypothesis that Crhr1 signalling is essential for the thermal stressor-induced increases in the acute metabolic rate, a key response for coping with the enhanced energy demands during stress. We tested this by using a wildtype (WT) and a ubiquitous Crhr1 knockout (crhr1-/-) zebrafish and subjecting them to an acute thermal stressor (TS: +5°C above ambient for 60 min). The TS induced the heat shock proteins response in both genotypes, but the elevated cortisol response observed in the WT was absent in the crhr1-/- mutant. The TS also increased the locomotor activity and the metabolic rate in the WT fish, but this response was inhibited in the crhr1-/- mutants. To test if this was due to a lack of TS-induced cortisol elevation in the crhr1-/- mutant, we mimicked the response in the WT fish by treating them with metyrapone, an 11β-hydroxylase inhibitor. While metyrapone inhibited the TS-induced cortisol elevation in the WT, it did not affect the metabolic rate. The lack of Crhr1 also reduced the swimming performance, and the lower Ucrit in the mutants corresponded with alterations in muscle energy metabolism. Together, our results indicate that Crh-Crhr1 signalling, independent of downstream cortisol action, is essential for the TS-induced acute hyperlocomotor activity and the associated increases in the metabolic demand for stress coping.
Collapse
|
3
|
Obayashi N, Junge K, Singh P, Hughes J. Online Hydraulic Stiffness Modulation of a Soft Robotic Fish Tail for Improved Thrust and Efficiency. Soft Robot 2025; 12:242-252. [PMID: 39463373 DOI: 10.1089/soro.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
This paper explores online stiffness modulation within a single tail stroke for swimming soft robots. Despite advances in stiffening mechanisms, little attention has been given to dynamically adjusting stiffness in real-time, presenting a challenge in developing mechanisms with the requisite bandwidth to match tail actuation. Achieving an optimal balance between thrust and efficiency in swimming soft robots remains elusive, and the paper addresses this challenge by proposing a novel mechanism for independent stiffness control, leveraging fluid-driven stiffening within a patterned pouch. Inspired by fluidic-driven actuation, this approach exhibits high bandwidth and facilitates significant stiffness changes. We perform experiments to demonstrate how this mechanism enhances both thrust and swimming efficiency. The tail actuation and fluid-driven stiffening can be optimized for a specific combination of thrust and efficiency, tailored to the desired maneuver type. The paper further explores the complex interaction between the soft body and surrounding fluid and provides fluid dynamics insights gained from the vortices created during actuation. Through frequency modulation and online stiffening, the study extends the Pareto front of achievable thrust generation and swimming efficiency.
Collapse
Affiliation(s)
| | - Kai Junge
- CREATE Lab, EPFL, Lausanne, Switzerland
| | | | | |
Collapse
|
4
|
Coughlin DJ, Santarcangelo K, Wilcock E, Tum Suden DJ, Ellerby DJ. Muscle power production during intermittent swimming in bluegill sunfish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1026-1035. [PMID: 37661699 DOI: 10.1002/jez.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Locomotion is essential for the survival and fitness of animals. Fishes have evolved a variety of mechanisms to minimize the cost of transport. For instance, bluegill sunfish have recently been shown to employ intermittent swimming in nature and in laboratory conditions. We focused on the functional properties of the power-producing muscles that generate propulsive forces in bluegill to understand the implications of intermittent activity. We used in vivo aerobic or red muscle activity parameters (e.g., oscillation frequency and onset time and duration of activation) in muscle physiology experiments to examine muscle power output during intermittent versus steady swimming in these fish. Intermittent propulsion involves swimming at relatively slow speeds with short propulsive bursts alternating with gliding episodes. The propulsive bursts are at higher oscillation frequencies than would be predicted for a given average swimming speed with constant propulsion. The work-loop muscle physiology experiments with red muscle demonstrated that intermittent activity allows muscle to produce sufficient power for swimming compared with imposed steady swimming conditions. Further, the intermittent muscle activity in vitro reduces fatigue relative to steady or continuous activity. This work supports the fixed-gear hypothesis that suggests that there are preferred oscillation frequencies that optimize efficiency in muscle use and minimize cost of transport.
Collapse
Affiliation(s)
- David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | | | - Emma Wilcock
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | | | - David J Ellerby
- Department of Biology, Wellesley College, Massachusetts, USA
| |
Collapse
|
5
|
Liu D, Wang J, Mao X, Deng J. Energetic benefits in coordinated circular swimming motion of two swimmers. Phys Rev E 2023; 108:054603. [PMID: 38115522 DOI: 10.1103/physreve.108.054603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/13/2023] [Indexed: 12/21/2023]
Abstract
The coordinated movement of multiple swimmers is a crucial component of fish schools. Fish swimming in different formations, such as tandem, side-by-side, diamond, and phalanx, can achieve significant energetic advantages. However, the energetic benefits of nonstraight swimming behaviors, such as the collective motion of a milling pattern, are not well understood. To fill in this gap, we consider two swimmers in circular tracks, controlled by a PID approach to reach stable configurations. Our study finds that the optimal phase is affected by circumferential effects, and that substantial energy savings can result from both propulsion and turning. We also explore the radial effect in terms of energetic benefits. In a milling pattern, the inner swimmers can easily gain a certain energetic benefit (-8%), while their peers on the outside must be close enough to the inner swimmer with a proper phase to gain the energetic benefit (-14%). When the radial spacing becomes larger or is in an unmatched phase, the swimming of the outer swimmers becomes more laborious (+16%). Our results indicate that swimmers who maintain a matched phase and minimum radial effect obtain the highest energetic benefits (-26%). These findings highlight the energetic benefits of swimmers, even in a milling pattern, where the position difference dominates the extent of benefit.
Collapse
Affiliation(s)
- Danshi Liu
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiadong Wang
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xuewei Mao
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian Deng
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
6
|
Suriyampola PS, Zúñiga-Vega JJ, Jayasundara N, Flores J, Lopez M, Bhat A, Martins EP. River zebrafish combine behavioral plasticity and generalized morphology with specialized sensory and metabolic physiology to survive in a challenging environment. Sci Rep 2023; 13:16398. [PMID: 37773260 PMCID: PMC10541436 DOI: 10.1038/s41598-023-42829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Phenotypes that allow animals to detect, weather, and predict changes efficiently are essential for survival in fluctuating environments. Some phenotypes may remain specialized to suit an environment perfectly, while others become more plastic or generalized, shifting flexibly to match current context or adopting a form that can utilize a wide range of contexts. Here, we tested the differences in behavior, morphology, sensory and metabolic physiology between wild zebrafish (Danio rerio) in highly variable fast-flowing rivers and still-water sites. We found that river zebrafish moved at higher velocities than did still-water fish, had lower oxygen demands, and responded less vigorously to small changes in flow rate, as we might expect for fish that are well-suited to high-flow environments. River zebrafish also had less streamlined bodies and were more behaviorally plastic than were still-water zebrafish, both features that may make them better-suited to a transitional lifestyle. Our results suggest that zebrafish use distinct sensory mechanisms and metabolic physiology to reduce energetic costs of living in fast-flowing water while relying on morphology and behavior to create flexible solutions to a challenging habitat. Insights on animals' reliance on traits with different outcomes provide a framework to better understand their survival in future environmental fluctuations.
Collapse
Affiliation(s)
| | - José Jaime Zúñiga-Vega
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Jennifer Flores
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Melissa Lopez
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, India
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
7
|
Tack NB, Gemmell BJ. A tale of two fish tails: does a forked tail really perform better than a truncate tail when cruising? J Exp Biol 2022; 225:281299. [PMID: 36354328 DOI: 10.1242/jeb.244967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
Abstract
Many fishes use their tail as the main thrust producer during swimming. This fin's diversity in shape and size influences its physical interactions with water as well as its ecological functions. Two distinct tail morphologies are common in bony fishes: flat, truncate tails which are best suited for fast accelerations via drag forces, and forked tails that promote economical, fast cruising by generating lift-based thrust. This assumption is based primarily on studies of the lunate caudal fin of Scombrids (i.e. tuna, mackerel), which is comparatively stiff and exhibits an airfoil-type cross-section. However, this is not representative of the more commonly observed and taxonomically widespread flexible forked tail, yet similar assumptions about economical cruising are widely accepted. Here, we present the first comparative experimental study of forked versus truncate tail shape and compare the fluid mechanical properties and energetics of two common nearshore fish species. We examined the hypothesis that forked tails provide a hydrodynamic advantage over truncate tails at typical cruising speeds. Using experimentally derived pressure fields, we show that the forked tail produces thrust via acceleration reaction forces like the truncate tail during cruising but at increased energetic costs. This reduced efficiency corresponds to differences in the performance of the two tail geometries and body kinematics to maintain similar overall thrust outputs. Our results offer insights into the benefits and tradeoffs of two common fish tail morphologies and shed light on the functional morphology of fish swimming to guide the development of bio-inspired underwater technologies.
Collapse
Affiliation(s)
- Nils B Tack
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brad J Gemmell
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
8
|
Struble MK, Gibb AC. Do we all walk the walk? A comparison of walking behaviors across tetrapods. Integr Comp Biol 2022; 62:icac125. [PMID: 35945645 DOI: 10.1093/icb/icac125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A walking gait has been identified in a range of vertebrate species with different body plans, habitats, and life histories. With increased application of this broad umbrella term, it has become necessary to assess the physical characteristics, analytical approaches, definitions, and diction used to describe walks. To do this, we reviewed studies of slow speed locomotion across a range of vertebrates to refine the parameters used to define walking, evaluate analytical techniques, and propose approaches to maximize consistency across subdisciplines. We summarize nine key parameters used to characterize walking behaviors in mammals, birds, reptiles, amphibians, and fishes. After identifying consistent patterns across groups, we propose a comprehensive definition for a walking gait. A walk is a form of locomotion where the majority of the forward propulsion of the animal comes from forces generated by the appendages interacting with the ground. During a walk, an appendage must be out of phase with the opposing limb in the same girdle and there is always at least one limb acting as ground-support (no suspension phase). Additionally, walking occurs at dimensionless speeds <1 v* and the duty factor of the limbs is always >0.5. Relative to other gaits used by the same species, the stance duration of a walk is long, the cycle frequency is low, and the cycle distance is small. Unfortunately, some of these biomechanical parameters, while effectively describing walks, may also characterize other, non-walking gaits. Inconsistent methodology likely contributes to difficulties in comparing data across many groups of animals; consistent application of data collection and analytical techniques in research methodology can improve these comparisons. Finally, we note that the kinetics of quadrupedal movements are still poorly understood and much work remains to be done to understand the movements of small, exothermic tetrapods.
Collapse
Affiliation(s)
- M K Struble
- Northern Arizona University S San Francisco St, Flagstaff, AZ 86011
- Department of Biological Sciences 617 S Beaver St, Flagstaff, AZ 86011
| | - A C Gibb
- Northern Arizona University S San Francisco St, Flagstaff, AZ 86011
- Department of Biological Sciences 617 S Beaver St, Flagstaff, AZ 86011
| |
Collapse
|
9
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Moran CJ, Burgess E, Gerry SP. Feeding below the thermocline: implications for prey capture kinematics. J Zool (1987) 2021. [DOI: 10.1111/jzo.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. J. Moran
- Department of Biology The Citadel Charleston SC USA
- Department of Biology Fairfield University Fairfield CT USA
| | - E. Burgess
- Department of Biology The Citadel Charleston SC USA
| | - S. P. Gerry
- Department of Biology Fairfield University Fairfield CT USA
| |
Collapse
|
11
|
Berlinger F, Saadat M, Haj-Hariri H, Lauder GV, Nagpal R. Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot. BIOINSPIRATION & BIOMIMETICS 2021; 16:026018. [PMID: 33264757 DOI: 10.1088/1748-3190/abd013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Fish migrate across considerable distances and exhibit remarkable agility to avoid predators and feed. Fish swimming performance and maneuverability remain unparalleled when compared to robotic systems, partly because previous work has focused on robots and flapping foil systems that are either big and complex, or tethered to external actuators and power sources. By contrast, we present a robot-the Finbot-that combines high degrees of autonomy, maneuverability, and biomimicry with miniature size (160 cm3). Thus, it is well-suited for controlled three-dimensional experiments on fish swimming in confined laboratory test beds. Finbot uses four independently controllable fins and sensory feedback for precise closed-loop underwater locomotion. Different caudal fins can be attached magnetically to reconfigure Finbot for swimming at top speed (122 mm s-1≡ 1 BL s-1) or minimal cost of transport (CoT = 8.2) at Strouhal numbers as low as 0.53. We conducted more than 150 experiments with 12 different caudal fins to measure three key characteristics of swimming fish: (i) linear speed-frequency relationships, (ii) U-shaped CoT, and (iii) reverse Kármán wakes (visualized with particle image velocimetry). More fish-like wakes appeared where the CoT was low. By replicating autonomous multi-fin fish-like swimming, Finbot narrows the gap between fish and fish-like robots and can address open questions in aquatic locomotion, such as optimized propulsion for new fish robots, or the hydrodynamic principles governing the energy savings in fish schools.
Collapse
Affiliation(s)
- F Berlinger
- Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States of America
| | - M Saadat
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States of America
| | - H Haj-Hariri
- College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, United States of America
| | - G V Lauder
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States of America
| | - R Nagpal
- Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States of America
| |
Collapse
|
12
|
Abstract
SUMMARYBiological fish can create high forward swimming speed due to change of thrust/drag area of pectoral fins between power stroke and recovery stroke in rowing mode. In this paper, we proposed a novel type of folding pectoral fins for the fish robot, which provides a simple approach in generating effective thrust only through one degree of freedom of fin actuator. Its structure consists of two elemental fin panels for each pectoral fin that connects to a hinge base through the flexible joints. The Morison force model is adopted to discover the relationship of the dynamic interaction between fin panels and surrounding fluid. An experimental platform for the robot motion using the pectoral fin with different flexible joints was built to validate the proposed design. The results express that the performance of swimming velocity and turning radius of the robot are enhanced effectively. The forward swimming velocity can reach 0.231 m/s (0.58 BL/s) at the frequency near 0.75 Hz. By comparison, we found an accord between the proposed dynamic model and the experimental behavior of the robot. The attained results can be used to design controllers and optimize performances of the robot propelled by the folding pectoral fins.
Collapse
|
13
|
Red muscle activity in bluegill sunfish Lepomis macrochirus during forward accelerations. Sci Rep 2019; 9:8088. [PMID: 31147566 PMCID: PMC6542830 DOI: 10.1038/s41598-019-44409-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Fishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration could not be transmitted effectively to the environment, but fish can potentially use their muscles to increase the effective stiffness of their body. Here, we quantified red muscle activity during acceleration and steady swimming, looking for patterns that would be consistent with the hypothesis of body stiffening. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are both known to increase effective stiffness for muscle tissue in vitro, which is consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexible organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements.
Collapse
|
14
|
Tandler T, Gellman E, De La Cruz D, Ellerby DJ. Drag coefficient estimates from coasting bluegill sunfish Lepomis macrochirus. JOURNAL OF FISH BIOLOGY 2019; 94:532-534. [PMID: 30671967 DOI: 10.1111/jfb.13906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The drag coefficient bluegill sunfish Lepomis macrochirus was estimated from coasting deceleration as (mean ± SD) 0.0154 ± 0.0070 at a Reynolds number of 41,000 ± 14,000. This was within the coasting range in other species and lower than values obtained from dead drag measurements in this species and others. Low momentum losses during coasting may allow its use during intermittent propulsion to modulate power output or maximize energy economy.
Collapse
Affiliation(s)
- Talia Tandler
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| | - Emma Gellman
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| | - Dayna De La Cruz
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| | - David J Ellerby
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA
| |
Collapse
|
15
|
Marcoux TM, Korsmeyer KE. Energetics and behavior of coral reef fishes during oscillatory swimming in a simulated wave surge. ACTA ACUST UNITED AC 2019; 222:jeb.191791. [PMID: 30659085 DOI: 10.1242/jeb.191791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022]
Abstract
Oxygen consumption rates were measured for coral reef fishes during swimming in a bidirectional, oscillatory pattern to simulate station-holding in wave-induced, shallow-water flows. For all species examined, increases in wave intensity, as simulated by increases in frequency and amplitude of oscillation, yielded increased metabolic rates and net costs of swimming (NCOS; swimming metabolic rate minus standard metabolic rate). Comparing species with different swimming modes, the caudal fin swimming Kuhlia spp. (Kuhliidae) and simultaneous pectoral-caudal fin swimming Amphiprion ocellaris (Pomacentridae) turned around to face the direction of swimming most of the time, whereas the median-paired fin (MPF) swimmers, the pectoral fin swimming Ctenochaetus strigosus (Acanthuridae) and dorsal-anal fin swimming Sufflamen bursa (Balistidae), more frequently swam in reverse for one half of the oscillation to avoid turning. Contrary to expectations, the body-caudal fin (BCF) swimming Kuhlia spp. had the lowest overall NCOS in the oscillatory swimming regime compared with the MPF swimmers. However, when examining the effect of increasing frequency of oscillation at similar average velocities, Ku hlia spp. showed a 24% increase in NCOS with a 50% increase in direction changes and accelerations. The two strict MPF swimmers had lower increases on average, suggestive of reduced added costs with increasing frequency of direction changes with this swimming mode. Further studies are needed on the costs of unsteady swimming to determine whether these differences can explain the observed prevalence of fishes using the MPF pectoral fin swimming mode in reef habitats exposed to high, wave-surge-induced water flows.
Collapse
Affiliation(s)
- Travis M Marcoux
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| | - Keith E Korsmeyer
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96813, USA
| |
Collapse
|
16
|
Moran CJ, Gerry SP, O'Neill MW, Rzucidlo CL, Gibb AC. Behavioral and physiological adaptations to high-flow velocities in chubs ( Gila spp.) native to Southwestern USA. ACTA ACUST UNITED AC 2018; 221:jeb.158972. [PMID: 29622666 DOI: 10.1242/jeb.158972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/01/2018] [Indexed: 11/20/2022]
Abstract
Morphological streamlining is often associated with physiological advantages for steady swimming in fishes. Though most commonly studied in pelagic fishes, streamlining also occurs in fishes that occupy high-flow environments. Before the installation of dams and water diversions, bonytail (Cyprinidae, Gila elegans), a fish endemic to the Colorado River (USA), regularly experienced massive, seasonal flooding events. Individuals of G. elegans display morphological characteristics that may facilitate swimming in high-flow conditions, including a narrow caudal peduncle and a high aspect ratio caudal fin. We tested the hypothesis that these features improve sustained swimming performance in bonytail by comparing locomotor performance in G. elegans with that of the closely related roundtail chub (Gila robusta) and two non-native species, rainbow trout (Oncorhynchus mykiss) and smallmouth bass (Micropterus dolomieu), using a Brett-style respirometer and locomotor step-tests. Gila elegans had the lowest estimated drag coefficient and the highest sustained swimming speeds relative to the other three species. There were no detectible differences in locomotor energetics during steady swimming among the four species. When challenged by high-velocity water flows, the second native species examined in this study, G. robusta, exploited the boundary effects in the flow tank by pitching forward and bracing the pelvic and pectoral fins against the acrylic tank bottom to 'hold station'. Because G. robusta can station hold to prevent being swept downstream during high flows and G. elegans can maintain swimming speeds greater than those of smallmouth bass and rainbow trout with comparable metabolic costs, we suggest that management agencies could use artificial flooding events to wash non-native competitors downstream and out of the Colorado River habitat.
Collapse
Affiliation(s)
- Clinton J Moran
- Department of Biology, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA
| | - Shannon P Gerry
- Department of Biology, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA
| | - Matthew W O'Neill
- US Forest Service, Coconino National Forest, 1824 S. Thompson St, Flagstaff, AZ 86001, USA
| | - Caroline L Rzucidlo
- Department of Biology, Fairfield University, 1073 N. Benson Rd, Fairfield, CT 06824, USA
| | - Alice C Gibb
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St, Flagstaff, AZ 86011, USA
| |
Collapse
|
17
|
Ellerby DJ, Cyr S, Han AX, Lin M, Trueblood LA. Linking muscle metabolism and functional variation to field swimming performance in bluegill sunfish (Lepomis macrochirus). J Comp Physiol B 2018; 188:461-469. [PMID: 29350264 DOI: 10.1007/s00360-018-1145-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/06/2018] [Indexed: 11/30/2022]
Abstract
Skeletal muscle has diverse mechanical roles during locomotion. In swimming fish, power-producing muscles work in concert with the accessory muscles of the fins which augment and control power transfer to the water. Although fin muscles represent a significant proportion of the locomotor muscle mass, their physiological properties are poorly characterized. To examine the relationship between muscle metabolism and the differing mechanical demands placed on distinct muscle groups, we quantified the aerobic and glycolytic capacities of the myotomal, pectoral and caudal muscles of bluegill sunfish. These were indicated by the activities of citrate synthase and lactate dehydrogenase, rate-limiting enzymes for aerobic respiration and glycolysis, respectively. The well-established roles of slow and fast myotomal muscle types in sustained and transient propulsive movements allows their use as benchmarks to which other muscles can be compared to assess their function. Slow myotomal muscle had the highest CS activity, consistent with meeting the high metabolic and mechanical power demands of body-caudal fin (BCF) swimming at the upper end of the aerobically supported speed range. The largest pectoral adductors and abductors had CS activities lower than the slow myotomal muscle, in line with their role supplying thrust for low-speed, low-power swimming. The metabolic capacities of the caudal muscles were surprisingly low and inconsistent with their activity during steady-state BCF swimming at high speeds. This may reflect adaptation to the observed swimming behavior in the field, which typically involved short bouts of BCF-propulsive cycles rather than sustained propulsive activity.
Collapse
Affiliation(s)
- David J Ellerby
- Department of Biological Sciences, Wellesley College, 106 Central St, Wellesley, MA, 02481, USA.
| | - Shauna Cyr
- Department of Biological Sciences, La Sierra University, Riverside, CA, 92505, USA
| | - Angela X Han
- Department of Biological Sciences, Wellesley College, 106 Central St, Wellesley, MA, 02481, USA
| | - Mika Lin
- Department of Biological Sciences, Wellesley College, 106 Central St, Wellesley, MA, 02481, USA
| | - Lloyd A Trueblood
- Department of Biological Sciences, La Sierra University, Riverside, CA, 92505, USA
| |
Collapse
|
18
|
Cathcart K, Shin SY, Milton J, Ellerby D. Field swimming performance of bluegill sunfish, Lepomis macrochirus: implications for field activity cost estimates and laboratory measures of swimming performance. Ecol Evol 2017; 7:8657-8666. [PMID: 29075479 PMCID: PMC5648661 DOI: 10.1002/ece3.3454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Mobility is essential to the fitness of many animals, and the costs of locomotion can dominate daily energy budgets. Locomotor costs are determined by the physiological demands of sustaining mechanical performance, yet performance is poorly understood for most animals in the field, particularly aquatic organisms. We have used 3‐D underwater videography to quantify the swimming trajectories and propulsive modes of bluegills sunfish (Lepomis macrochirus, Rafinesque) in the field with high spatial (1–3 mm per pixel) and temporal (60 Hz frame rate) resolution. Although field swimming trajectories were variable and nonlinear in comparison to quasi steady‐state swimming in recirculating flumes, they were much less unsteady than the volitional swimming behaviors that underlie existing predictive models of field swimming cost. Performance analyses suggested that speed and path curvature data could be used to derive reasonable estimates of locomotor cost that fit within measured capacities for sustainable activity. The distinct differences between field swimming behavior and performance measures obtained under steady‐state laboratory conditions suggest that field observations are essential for informing approaches to quantifying locomotor performance in the laboratory.
Collapse
Affiliation(s)
- Kelsey Cathcart
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Seo Yim Shin
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - Joanna Milton
- Department of Biological Sciences Wellesley College Wellesley MA USA
| | - David Ellerby
- Department of Biological Sciences Wellesley College Wellesley MA USA
| |
Collapse
|
19
|
Wainwright DK, Lauder GV. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis macrochirus. ZOOLOGY 2016; 119:182-195. [DOI: 10.1016/j.zool.2016.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/18/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
|
20
|
Maia A, Sheltzer AP, Tytell ED. Streamwise vortices destabilize swimming bluegill sunfish (Lepomis macrochirus). J Exp Biol 2015; 218:786-92. [DOI: 10.1242/jeb.114363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In their natural environment, fish must swim stably through unsteady flows and vortices, including vertical vortices, typically shed by posts in a flow, horizontal cross-flow vortices, often produced by a step or a waterfall in a stream, and streamwise vortices, where the axis of rotation is aligned with the direction of the flow. Streamwise vortices are commonly shed by bluff bodies in streams and by ships' propellers and axial turbines, but we know little about their effects on fish. Here, we describe how bluegill sunfish use more energy and are destabilized more often in flow with strong streamwise vorticity. The vortices were created inside a sealed flow tank by an array of four turbines with similar diameter to the experimental fish. We measured oxygen consumption for seven sunfish swimming at 1.5 body lengths (BL) s−1 with the turbines rotating at 2 Hz and with the turbines off (control). Simultaneously, we filmed the fish ventrally and recorded the fraction of time spent maneuvering side-to-side and accelerating forward. Separately, we also recorded lateral and ventral video for a combination of swimming speeds (0.5, 1.5 and 2.5 BL s−1) and turbine speeds (0, 1, 2 and 3 Hz), immediately after turning the turbines on and 10 min later to test for accommodation. Bluegill sunfish are negatively affected by streamwise vorticity. Spills (loss of heading), maneuvers and accelerations were more frequent when the turbines were on than in the control treatment. These unsteady behaviors, particularly acceleration, correlated with an increase in oxygen consumption in the vortex flow. Bluegill sunfish are generally fast to recover from roll perturbations and do so by moving their pectoral fins. The frequency of spills decreased after the turbines had run for 10 min, but was still markedly higher than in the control, showing that fish partially adapt to streamwise vorticity, but not completely. Coping with streamwise vorticity may be an important energetic cost for stream fishes or migratory fishes.
Collapse
Affiliation(s)
- Anabela Maia
- Eastern Illinois University, Department of Biological Sciences, 600 Lincoln Avenue, Charleston, IL 61920, USA
| | - Alex P. Sheltzer
- Tufts University, Biology Department, 200 Boston Avenue, Medford, MA 02155, USA
| | - Eric D. Tytell
- Tufts University, Biology Department, 200 Boston Avenue, Medford, MA 02155, USA
| |
Collapse
|
21
|
Abstract
Research on fish locomotion has expanded greatly in recent years as new approaches have been brought to bear on a classical field of study. Detailed analyses of patterns of body and fin motion and the effects of these movements on water flow patterns have helped scientists understand the causes and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swimming fish in the oceans and the vorticity present in fin and body wakes support the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.
Collapse
Affiliation(s)
- George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138;
| |
Collapse
|
22
|
Schaeffer PJ, Lindstedt SL. How animals move: comparative lessons on animal locomotion. Compr Physiol 2013; 3:289-314. [PMID: 23720288 DOI: 10.1002/cphy.c110059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Comparative physiology often provides unique insights in animal structure and function. It is specifically through this lens that we discuss the fundamental properties of skeletal muscle and animal locomotion, incorporating variation in body size and evolved difference among species. For example, muscle frequencies in vivo are highly constrained by body size, which apparently tunes muscle use to maximize recovery of elastic recoil potential energy. Secondary to this constraint, there is an expected linking of skeletal muscle structural and functional properties. Muscle is relatively simple structurally, but by changing proportions of the few muscle components, a diverse range of functional outputs is possible. Thus, there is a consistent and predictable relation between muscle function and myocyte composition that illuminates animal locomotion. When animals move, the mechanical properties of muscle diverge from the static textbook force-velocity relations described by A. V. Hill, as recovery of elastic potential energy together with force and power enhancement with activation during stretch combine to modulate performance. These relations are best understood through the tool of work loops. Also, when animals move, locomotion is often conveniently categorized energetically. Burst locomotion is typified by high-power outputs and short durations while sustained, cyclic, locomotion engages a smaller fraction of the muscle tissue, yielding lower force and power. However, closer examination reveals that rather than a dichotomy, energetics of locomotion is a continuum. There is a remarkably predictable relationship between duration of activity and peak sustainable performance.
Collapse
|
23
|
Svendsen JC, Banet AI, Christensen RHB, Steffensen JF, Aarestrup K. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata). ACTA ACUST UNITED AC 2013; 216:3564-74. [PMID: 23737561 DOI: 10.1242/jeb.083089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate (O2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, O2std or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.
Collapse
Affiliation(s)
- Jon C Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Roche DG, Taylor MK, Binning SA, Johansen JL, Domenici P, Steffensen JF. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata). J Exp Biol 2013; 217:414-22. [DOI: 10.1242/jeb.085811] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Unsteady water flows are common in nature, yet the swimming performance of fishes is typically evaluated at constant, steady speeds in the laboratory. We examined how cyclic changes in water flow velocity affect the swimming performance and energetics of a labriform swimmer, the shiner surfperch, Cymatogaster aggregata. Using intermittent-flow respirometry, we measured critical swimming speed (Ucrit), oxygen consumption rate (ṀO2) and pectoral fin use in steady flow versus unsteady flows with either low (0.5 body lengths per second; BLs-1) or high amplitude (1.0 BLs-1) velocity fluctuations, with a 5 s period. Individuals in low amplitude unsteady flow performed as well as fish in steady flow. However, swimming costs in high amplitude unsteady flow were on average 25.3 % higher than in steady flow and 14.2% higher than estimated values obtained from simulations based on the non-linear relationship between swimming speed and oxygen consumption rate in steady flow. Time-averaged pectoral fin use (fin beat frequency measured over 300 s) was similar among treatments. However, measures of instantaneous fin use (fin beat period) and body movement in high amplitude unsteady flow indicate that individuals with greater variation in the duration of their fin beats were better at holding station and consumed less oxygen than fish with low variation in fin beat period. These results suggest that the costs of swimming in unsteady flows are context dependent in labriform swimmers, and may be influenced by individual differences in the ability of fishes to adjust their fin beats to the flow environment.
Collapse
|
25
|
Green MH, Hale ME. Activity of pectoral fin motoneurons during two swimming gaits in the larval zebrafish (Danio rerio) and localization of upstream circuit elements. J Neurophysiol 2012; 108:3393-402. [DOI: 10.1152/jn.00623.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many animals, limb movements transition between gait patterns with increasing locomotor speed. While for tetrapod systems several well-developed models in diverse taxa (e.g., cat, mouse, salamander, turtle) have been used to study motor control of limbs and limb gaits, virtually nothing is known from fish species, including zebrafish, a well-studied model for axial motor control. Like tetrapods, fish have limb gait transitions, and the advantages of the zebrafish system make it a powerful complement to tetrapod models. Here we describe pectoral fin motoneuron activity in a fictive preparation with which we are able to elicit two locomotor gaits seen in behaving larval zebrafish: rhythmic slow axial and pectoral fin swimming and faster axis-only swimming. We found that at low swim frequencies (17–33 Hz), fin motoneurons fired spikes rhythmically and in coordination with axial motoneuron activity. Abductor motoneurons spiked out of phase with adductor motoneurons, with no significant coactivation. At higher frequencies, fin abductor motoneurons were generally nonspiking, whereas fin adductor motoneurons fired spikes reliably and nonrhythmically, suggesting that the gait transition from rhythmic fin beats to axis-only swimming is actively controlled. Using brain and spinal cord transections to localize underlying circuit components, we demonstrate that a limited region of caudal hindbrain and rostral spinal cord in the area of the fin motor pool is necessary to drive a limb rhythm while the full hindbrain, but not more rostral brain regions, is necessary to elicit the faster axis-only, fin-tucked swimming gait.
Collapse
Affiliation(s)
- Matthew H. Green
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois; and
| | - Melina E. Hale
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois; and
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Taguchi M, Liao JC. Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. ACTA ACUST UNITED AC 2011; 214:1428-36. [PMID: 21490251 DOI: 10.1242/jeb.052027] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Measuring the rate of consumption of oxygen ( ) during swimming reveals the energetics of fish locomotion. We show that rainbow trout have substantially different oxygen requirements for station holding depending on which hydrodynamic microhabitats they choose to occupy around a cylinder. We used intermittent flow respirometry to show that an energetics hierarchy, whereby certain behaviors are more energetically costly than others, exists both across behaviors at a fixed flow velocity and across speeds for a single behavior. At 3.5 L s(-1) (L is total body length) entraining has the lowest , followed by Kármán gaiting, bow waking and then free stream swimming. As flow speed increases the costs associated with a particular behavior around the cylinder changes in unexpected ways compared with free stream swimming. At times, actually decreases as flow velocity increases. Entraining demands the least oxygen at 1.8 L s(-1) and 3.5 L s(-1), whereas bow waking requires the least oxygen at 5.0 L s(-1). Consequently, a behavior at one speed may have a similar cost to another behavior at another speed. We directly confirm that fish Kármán gaiting in a vortex street gain an energetic advantage from vortices beyond the benefit of swimming in a velocity deficit. We propose that the ability to exploit velocity gradients as well as stabilization costs shape the complex patterns of oxygen consumption for behaviors around cylinders. Measuring for station holding in turbulent flows advances our attempts to develop ecologically relevant approaches to evaluating fish swimming performance.
Collapse
Affiliation(s)
- Masashige Taguchi
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| | | |
Collapse
|
27
|
|
28
|
Gerry SP, Wang J, Ellerby DJ. A new approach to quantifying morphological variation in bluegill Lepomis macrochirus. JOURNAL OF FISH BIOLOGY 2011; 78:1023-1034. [PMID: 21463305 DOI: 10.1111/j.1095-8649.2011.02911.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bluegill Lepomis macrochirus showed intraspecific morphological and behavioural differences dependent on the environment. Pelagic L. macrochirus had more fusiform bodies, a higher pectoral fin aspect ratio, a larger spiny dorsal fin area and pectoral fins located farther from the centre of mass than littoral L. macrochirus (P < 0·05). The shape of the body and pectoral fins, in particular, were suggestive of adaptation for sustained high-speed and economical labriform swimming. Littoral L. macrochirus had a deeper and wider body, deeper caudal fins and wider mouths than pelagic L. macrochirus (P < 0·05). Additionally, the soft dorsal, pelvic, anal and caudal fins of littoral L. macrochirus were positioned farther from the centre of mass (P < 0·05). The size and placement of these fins suggested that they will be effective in creating turning moments to facilitate manoeuvring in the macrophyte-dense littoral habitat.
Collapse
Affiliation(s)
- S P Gerry
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | |
Collapse
|
29
|
Svendsen JC, Tudorache C, Jordan AD, Steffensen JF, Aarestrup K, Domenici P. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer. J Exp Biol 2010; 213:2177-83. [PMID: 20543115 DOI: 10.1242/jeb.041368] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Members of the family Embiotocidae exhibit a distinct gait transition from exclusively pectoral fin oscillation to combined pectoral and caudal fin propulsion with increasing swimming speed. The pectoral–caudal gait transition occurs at a threshold speed termed Up–c. The objective of this study was to partition aerobic and anaerobic swimming costs at speeds below and above the Up–c in the striped surfperch Embiotoca lateralis using swimming respirometry and video analysis to test the hypothesis that the gait transition marks the switch from aerobic to anaerobic power output. Exercise oxygen consumption rate was measured at 1.4, 1.9 and 2.3 L s–1. The presence and magnitude of excess post-exercise oxygen consumption (EPOC) were evaluated after each swimming speed. The data demonstrated that 1.4 L s–1 was below the Up–c, whereas 1.9 and 2.3 L s–1 were above the Up–c. These last two swimming speeds included caudal fin propulsion in a mostly steady and unsteady (burst-assisted) mode, respectively. There was no evidence of EPOC after swimming at 1.4 and 1.9 L s–1, indicating that the pectoral–caudal gait transition was not a threshold for anaerobic metabolism. At 2.3 L s–1, E. lateralis switched to an unsteady burst and flap gait. This swimming speed resulted in EPOC, suggesting that anaerobic metabolism constituted 25% of the total costs. Burst activity correlated positively with the magnitude of the EPOC. Collectively, these data indicate that steady axial propulsion does not lead to EPOC whereas transition to burst-assisted swimming above Up–c is associated with anaerobic metabolism in this labriform swimmer.
Collapse
Affiliation(s)
- Jon C. Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Christian Tudorache
- Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Anders D. Jordan
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - John F. Steffensen
- University of Copenhagen, Marine Biological Laboratory, Biological Institute, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Kim Aarestrup
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Paolo Domenici
- CNR – IAMC, Istituto per l'Ambiente Marino Costiero, Località Sa Mardini, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
30
|
Webb PW, Cotel AJ. Turbulence: Does Vorticity Affect the Structure and Shape of Body and Fin Propulsors? Integr Comp Biol 2010; 50:1155-66. [PMID: 21558264 DOI: 10.1093/icb/icq020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- P W Webb
- School of Natural Resources and the Environment, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
31
|
Wilson AD, Godin JGJ. Boldness and intermittent locomotion in the bluegill sunfish, Lepomis macrochirus. Behav Ecol 2009. [DOI: 10.1093/beheco/arp157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Lim SM, Ellerby DJ. The effects of acute temperature change on cost of transport at maximal labriform speed in bluegill Lepomis macrochirus. JOURNAL OF FISH BIOLOGY 2009; 75:938-943. [PMID: 20738591 DOI: 10.1111/j.1095-8649.2009.02349.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effects of acute temperature change on the cost of bluegill Lepomis macrochirus swimming were quantified. At 14 degrees C, maximum labriform swimming speed (U(lab,max)) was reduced relative to that at the acclimation temperature of 22 degrees C, but total cost of transport (T(TC)) remained unchanged. At 30 degrees C, U(lab,max) was the same as at 22 degrees C, but T(TC) was 66% greater.
Collapse
Affiliation(s)
- S M Lim
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | | |
Collapse
|
33
|
Ellerby DJ. The physiology and mechanics of undulatory swimming: a student laboratory exercise using medicinal leeches. ADVANCES IN PHYSIOLOGY EDUCATION 2009; 33:213-220. [PMID: 19745048 DOI: 10.1152/advan.00033.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle mechanics, hydrostatic skeletons, and the physiological features that allow leeches to deal with the volume increase and osmotic load imposed by the meal. Analyses can be carried out at a range of levels tailored to suit a particular class.
Collapse
Affiliation(s)
- David J Ellerby
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts 02482, USA.
| |
Collapse
|
34
|
Jones EA, Jong AS, Ellerby DJ. The effects of acute temperature change on swimming performance in bluegill sunfishLepomis macrochirus. J Exp Biol 2008; 211:1386-93. [DOI: 10.1242/jeb.014688] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMany fish change gait within their aerobically supported range of swimming speeds. The effects of acute temperature change on this type of locomotor behavior are poorly understood. Bluegill sunfish swim in the labriform mode at low speeds and switch to undulatory swimming as their swimming speed increases. Maximum aerobic swimming speed (Umax),labriform-undulatory gait transition speed (Utrans) and the relationships between fin beat frequency and speed were measured at 14,18, 22, 26 and 30°C in bluegill acclimated to 22°C. At temperatures below the acclimation temperature (Ta), Umax, Utrans and the caudal and pectoral fin beat frequencies at these speeds were reduced relative to the acclimation level. At temperatures above Ta there was no change in these variables relative to the acclimation level. Supplementation of oxygen levels at 30°C had no effect on swimming performance. The mechanical power output of the abductor superficialis, a pectoral fin abductor muscle, was measured in vitro at the same temperatures used for the swimming experiments. At and below Ta, maximal power output was produced at a cycle frequency approximately matching the in vivo pectoral fin beat frequency. At temperatures above Ta muscle power output and cycle frequency could be increased above the in vivo levels at Utrans. Our data suggest that the factors triggering the labriform–undulatory gait transition change with temperature. Muscle mechanical performance limited labriform swimming speed at Ta and below, but other mechanical or energetic factors limited labriform swimming speed at temperatures above Ta.
Collapse
Affiliation(s)
- Emily A. Jones
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| | - Arianne S. Jong
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| | - David J. Ellerby
- Department of Biological Sciences, Wellesley College, 106 Central Street,Wellesley, MA 02481, USA
| |
Collapse
|