1
|
Gordon R, Levenson R, Malady B, Al Sabeh Y, Nguyen A, Morse DE. Charge screening and hydrophobicity drive progressive assembly and liquid-liquid phase separation of reflectin protein. J Biol Chem 2025; 301:108277. [PMID: 39922493 PMCID: PMC11927725 DOI: 10.1016/j.jbc.2025.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The intrinsically disordered reflectin proteins drive tunable reflectivity for dynamic camouflage and communication in the recently evolved Loliginidae family of squid. Previous work revealed that reflectin A1 forms discrete assemblies whose size is precisely predicted by protein net charge density and charge screening by the local anion concentration. Using dynamic light scattering, FRET, and confocal microscopy, we show that these assemblies, of which 95 to 99% of bulk protein in solution is partitioned into, are dynamic intermediates to liquid protein-dense condensates formed by liquid-liquid phase separation (LLPS). Increasing salt concentration drives this progression by anionic screening of the cationic protein's Coulombic repulsion, and by increasing the contribution of the hydrophobic effect which tips the balance between short-range attraction and long-range repulsion to drive protein assembly and ultimately LLPS. Measuring fluorescence recovery after photobleaching and droplet fusion dynamics, we demonstrate that reflectin diffusivity in condensates is tuned by protein net charge density. These results illuminate the physical processes governing reflectin A1 assembly and LLPS and demonstrate the potential for reflectin A1 condensate-based tunable biomaterials. They also compliment previous observations of liquid phase separation in the Bragg lamellae of activated iridocytes and suggest that LLPS behavior may serve a critical role in governing the tunable and reversible dehydration of the membrane-bounded Bragg lamellae and vesicles containing reflectin in biophotonically active cells.
Collapse
Affiliation(s)
- Reid Gordon
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| | - Robert Levenson
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Brandon Malady
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Yahya Al Sabeh
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Alan Nguyen
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology and the Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA.
| |
Collapse
|
2
|
Song J, Li B, Zeng L, Ye Z, Wu W, Hu B. A Mini-Review on Reflectins, from Biochemical Properties to Bio-Inspired Applications. Int J Mol Sci 2022; 23:ijms232415679. [PMID: 36555320 PMCID: PMC9779258 DOI: 10.3390/ijms232415679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Some cephalopods (squids, octopuses, and cuttlefishes) produce dynamic structural colors, for camouflage or communication. The key to this remarkable capability is one group of specialized cells called iridocytes, which contain aligned membrane-enclosed platelets of high-reflective reflectins and work as intracellular Bragg reflectors. These reflectins have unusual amino acid compositions and sequential properties, which endows them with functional characteristics: an extremely high reflective index among natural proteins and the ability to answer various environmental stimuli. Based on their unique material composition and responsive self-organization properties, the material community has developed an impressive array of reflectin- or iridocyte-inspired optical systems with distinct tunable reflectance according to a series of internal and external factors. More recently, scientists have made creative attempts to engineer mammalian cells to explore the function potentials of reflectin proteins as well as their working mechanism in the cellular environment. Progress in wide scientific areas (biophysics, genomics, gene editing, etc.) brings in new opportunities to better understand reflectins and new approaches to fully utilize them. The work introduced the composition features, biochemical properties, the latest developments, future considerations of reflectins, and their inspiration applications to give newcomers a comprehensive understanding and mutually exchanged knowledge from different communities (e.g., biology and material).
Collapse
Affiliation(s)
- Junyi Song
- Correspondence: (J.S.); (B.H.); Tel.: +86-18969697729 (J.S.); +86-13308492461 (B.H.)
| | | | | | | | | | - Biru Hu
- Correspondence: (J.S.); (B.H.); Tel.: +86-18969697729 (J.S.); +86-13308492461 (B.H.)
| |
Collapse
|
3
|
At the Intersection of Natural Structural Coloration and Bioengineering. Biomimetics (Basel) 2022; 7:biomimetics7020066. [PMID: 35645193 PMCID: PMC9149877 DOI: 10.3390/biomimetics7020066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Most of us get inspired by and interact with the world around us based on visual cues such as the colors and patterns that we see. In nature, coloration takes three primary forms: pigmentary coloration, structural coloration, and bioluminescence. Typically, pigmentary and structural coloration are used by animals and plants for their survival; however, few organisms are able to capture the nearly instantaneous and visually astounding display that cephalopods (e.g., octopi, squid, and cuttlefish) exhibit. Notably, the structural coloration of these cephalopods critically relies on a unique family of proteins known as reflectins. As a result, there is growing interest in characterizing the structure and function of such optically-active proteins (e.g., reflectins) and to leverage these materials across a broad range of disciplines, including bioengineering. In this review, I begin by briefly introducing pigmentary and structural coloration in animals and plants as well as highlighting the extraordinary appearance-changing capabilities of cephalopods. Next, I outline recent advances in the characterization and utilization of reflectins for photonic technologies and and discuss general strategies and limitations for the structural and optical characterization of proteins. Finally, I explore future directions of study for optically-active proteins and their potential applications. Altogether, this review aims to bring together an interdisciplinary group of researchers who can resolve the fundamental questions regarding the structure, function, and self-assembly of optically-active protein-based materials.
Collapse
|
4
|
Roberts AD, Finnigan W, Wolde-Michael E, Kelly P, Blaker JJ, Hay S, Breitling R, Takano E, Scrutton NS. Synthetic biology for fibres, adhesives and active camouflage materials in protection and aerospace. MRS COMMUNICATIONS 2019; 9:486-504. [PMID: 31281737 PMCID: PMC6609449 DOI: 10.1557/mrc.2019.35] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/12/2019] [Indexed: 05/03/2023]
Abstract
Synthetic biology has huge potential to produce the next generation of advanced materials by accessing previously unreachable (bio)chemical space. In this prospective review, we take a snapshot of current activity in this rapidly developing area, focussing on prominent examples for high-performance applications such as those required for protective materials and the aerospace sector. The continued growth of this emerging field will be facilitated by the convergence of expertise from a range of diverse disciplines, including molecular biology, polymer chemistry, materials science and process engineering. This review highlights the most significant recent advances and address the cross-disciplinary challenges currently being faced.
Collapse
Affiliation(s)
- Aled D. Roberts
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
- Bio-Active Materials Group, School of Materials, The University of
Manchester, Manchester, UK, M13 9PL
| | - William Finnigan
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Emmanuel Wolde-Michael
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Paul Kelly
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Jonny J. Blaker
- Bio-Active Materials Group, School of Materials, The University of
Manchester, Manchester, UK, M13 9PL
| | - Sam Hay
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Eriko Takano
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, Manchester Synthetic Biology
Research Centre SYBIOCHEM, School of Chemistry, The University of Manchester,
Manchester, UK, M1 7DN
| |
Collapse
|
5
|
Gonzalez-Bellido PT, Scaros AT, Hanlon RT, Wardill TJ. Neural Control of Dynamic 3-Dimensional Skin Papillae for Cuttlefish Camouflage. iScience 2018; 1:24-34. [PMID: 30058000 PMCID: PMC6059360 DOI: 10.1016/j.isci.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 10/27/2022] Open
Abstract
The color and pattern changing abilities of octopus, squid, and cuttlefish via chromatophore neuromuscular organs are unparalleled. Cuttlefish and octopuses also have a unique muscular hydrostat system in their skin. When this system is expressed, dermal bumps called papillae disrupt body shape and imitate the fine texture of surrounding objects, yet the control system is unknown. Here we report for papillae: (1) the motoneurons and the neurotransmitters that control activation and relaxation, (2) a physiologically fast expression and retraction system, and (3) a complex of smooth and striated muscles that enables long-term expression of papillae through sustained tension in the absence of neural input. The neural circuits controlling acute shape-shifting skin papillae in cuttlefish show homology to the iridescence circuits in squids. The sustained tension in papillary muscles for long-term camouflage utilizes muscle heterogeneity and points toward the existence of a "catch-like" mechanism that would reduce the necessary energy expenditure.
Collapse
Affiliation(s)
- Paloma T. Gonzalez-Bellido
- Marine Biological Laboratory, MBL Street, Woods Hole, MA 02543-1015, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EG, UK
| | - Alexia T. Scaros
- Marine Biological Laboratory, MBL Street, Woods Hole, MA 02543-1015, USA
- Department of Physiology and Biophysics, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| | - Roger T. Hanlon
- Marine Biological Laboratory, MBL Street, Woods Hole, MA 02543-1015, USA
| | - Trevor J. Wardill
- Marine Biological Laboratory, MBL Street, Woods Hole, MA 02543-1015, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EG, UK
| |
Collapse
|
6
|
Levenson R, Bracken C, Bush N, Morse DE. Cyclable Condensation and Hierarchical Assembly of Metastable Reflectin Proteins, the Drivers of Tunable Biophotonics. J Biol Chem 2015; 291:4058-68. [PMID: 26719342 DOI: 10.1074/jbc.m115.686014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 01/05/2023] Open
Abstract
Reversible changes in the phosphorylation of reflectin proteins have been shown to drive the tunability of color and brightness of light reflected from specialized cells in the skin of squids and related cephalopods. We show here, using dynamic light scattering, electron microscopy, and fluorescence analyses, that reversible titration of the excess positive charges of the reflectins, comparable with that produced by phosphorylation, is sufficient to drive the reversible condensation and hierarchical assembly of these proteins. The results suggest a two-stage process in which charge neutralization first triggers condensation, resulting in the emergence of previously cryptic structures that subsequently mediate reversible, hierarchical assembly. The extent to which cyclability is seen in the in vitro formation and disassembly of complexes estimated to contain several thousand reflectin molecules suggests that intrinsic sequence- and structure-determined specificity governs the reversible condensation and assembly of the reflectins and that these processes are therefore sufficient to produce the reversible changes in refractive index, thickness, and spacing of the reflectin-containing subcellular Bragg lamellae to change the brightness and color of reflected light. This molecular mechanism points to the metastability of reflectins as the centrally important design principle governing biophotonic tunability in this system.
Collapse
Affiliation(s)
- Robert Levenson
- From the Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-5100
| | - Colton Bracken
- From the Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-5100
| | - Nicole Bush
- From the Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-5100
| | - Daniel E Morse
- From the Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106-5100
| |
Collapse
|
7
|
Gonzalez-Bellido PT, Wardill TJ, Buresch KC, Ulmer KM, Hanlon RT. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control. ACTA ACUST UNITED AC 2014; 217:850-8. [PMID: 24622892 DOI: 10.1242/jeb.091884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Squid display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (1) the iridescence signals are routed through a peripheral center called the stellate ganglion and (2) the iridescence motor neurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squid change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.
Collapse
Affiliation(s)
- P T Gonzalez-Bellido
- Program in Sensory Physiology and Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | | | | | | | | |
Collapse
|
8
|
DeMartini DG, Ghoshal A, Pandolfi E, Weaver AT, Baum M, Morse DE. Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes. ACTA ACUST UNITED AC 2014; 216:3733-41. [PMID: 24006348 DOI: 10.1242/jeb.090415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loliginid squid use tunable multilayer reflectors to modulate the optical properties of their skin for camouflage and communication. Contained inside specialized cells called iridocytes, these photonic structures have been a model for investigations into bio-inspired adaptive optics. Here, we describe two distinct sexually dimorphic tunable biophotonic features in the commercially important species Doryteuthis opalescens: bright stripes of rainbow iridescence on the mantle just beneath each fin attachment and a bright white stripe centered on the dorsal surface of the mantle between the fins. Both of these cellular features are unique to the female; positioned in the same location as the conspicuously bright white testis in the male, they are completely switchable, transitioning between transparency and high reflectivity. The sexual dimorphism, location and tunability of these features suggest that they may function in mating or reproduction. These features provide advantageous new models for investigation of adaptive biophotonics. The intensely reflective cells of the iridescent stripes provide a greater signal-to-noise ratio than the adaptive iridocytes studied thus far, while the cells constituting the white stripe are adaptive leucophores--unique biological tunable broadband scatterers containing Mie-scattering organelles activated by acetylcholine, and a unique complement of reflectin proteins.
Collapse
Affiliation(s)
- Daniel G DeMartini
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9611, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ghoshal A, Demartini DG, Eck E, Morse DE. Optical parameters of the tunable Bragg reflectors in squid. J R Soc Interface 2013; 10:20130386. [PMID: 23740489 DOI: 10.1098/rsif.2013.0386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.
Collapse
Affiliation(s)
- Amitabh Ghoshal
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106-5100, USA
| | | | | | | |
Collapse
|
10
|
Andouche A, Bassaglia Y, Baratte S, Bonnaud L. Reflectin genes and development of iridophore patterns in Sepia officinalis embryos (Mollusca, Cephalopoda). Dev Dyn 2013; 242:560-71. [PMID: 23381735 DOI: 10.1002/dvdy.23938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the cuttlefish Sepia officinalis, iridescence is known to play a role in patterning and communication. In iridophores, iridosomes are composed of reflectins, a protein family, which show great diversity in all cephalopod species. Iridosomes are established before hatching, but very little is known about how these cells are established, their distribution in embryos, or the contribution of each reflectin gene to iridosome structures. RESULTS Six reflectin genes are expressed during the development of iridosomes in Sepia officinalis. We show that they are expressed in numerous parts of the body before hatching. Evidence of the colocalization of two different genes of reflectin was found. Curiously, reflectin mRNA expression was no longer detectable at the time of hatchling, while reflectin proteins were present and gave rise to visible iridescence. CONCLUSION These data suggest that several different forms of reflectins are simultaneously used to produce iridescence in S. officinalis and that mRNA production and translation are decoupled in time during iridosome development.
Collapse
Affiliation(s)
- Aude Andouche
- Muséum National d'Histoire Naturelle MNHN, DMPA, UMR Biologie des Organismes et Ecosystèmes Aquatiques BOREA, MNHN CNRS 7208, IRD 207, UPMC, 75005 Paris, France.
| | | | | | | |
Collapse
|
11
|
Membrane invaginations facilitate reversible water flux driving tunable iridescence in a dynamic biophotonic system. Proc Natl Acad Sci U S A 2013; 110:2552-6. [PMID: 23359694 DOI: 10.1073/pnas.1217260110] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Squids have used their tunable iridescence for camouflage and communication for millions of years; materials scientists have more recently looked to them for inspiration to develop new "biologically inspired" adaptive optics. Iridocyte cells produce iridescence through constructive interference of light with intracellular Bragg reflectors. The cell's dynamic control over the apparent lattice constant and dielectric contrast of these multilayer stacks yields the corresponding optical control of brightness and color across the visible spectrum. Here, we resolve remaining uncertainties in iridocyte cell structure and determine how this unusual morphology enables the cell's tunable reflectance. We show that the plasma membrane periodically invaginates deep into the iridocyte to form a potential Bragg reflector consisting of an array of narrow, parallel channels that segregate the resulting high refractive index, cytoplasmic protein-containing lamellae from the low-index channels that are continuous with the extracellular space. In response to control by a neurotransmitter, the iridocytes reversibly imbibe or expel water commensurate with changes in reflection intensity and wavelength. These results allow us to propose a comprehensive mechanism of adaptive iridescence in these cells from stimulation to color production. Applications of these findings may contribute to the development of unique classes of tunable photonic materials.
Collapse
|
12
|
Sakaue Y, Bellier JP, Kimura S, D'Este L, Takeuchi Y, Kimura H. Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm. Brain Struct Funct 2013; 219:323-41. [PMID: 23354679 DOI: 10.1007/s00429-012-0502-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/28/2012] [Indexed: 11/25/2022]
Abstract
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
Collapse
Affiliation(s)
- Yuko Sakaue
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Kreit E, Mäthger LM, Hanlon RT, Dennis PB, Naik RR, Forsythe E, Heikenfeld J. Biological versus electronic adaptive coloration: how can one inform the other? J R Soc Interface 2012; 10:20120601. [PMID: 23015522 DOI: 10.1098/rsif.2012.0601] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive reflective surfaces have been a challenge for both electronic paper (e-paper) and biological organisms. Multiple colours, contrast, polarization, reflectance, diffusivity and texture must all be controlled simultaneously without optical losses in order to fully replicate the appearance of natural surfaces and vividly communicate information. This review merges the frontiers of knowledge for both biological adaptive coloration, with a focus on cephalopods, and synthetic reflective e-paper within a consistent framework of scientific metrics. Currently, the highest performance approach for both nature and technology uses colourant transposition. Three outcomes are envisioned from this review: reflective display engineers may gain new insights from millions of years of natural selection and evolution; biologists will benefit from understanding the types of mechanisms, characterization and metrics used in synthetic reflective e-paper; all scientists will gain a clearer picture of the long-term prospects for capabilities such as adaptive concealment and signaling.
Collapse
Affiliation(s)
- Eric Kreit
- Novel Devices Laboratory, School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Wardill TJ, Gonzalez-Bellido PT, Crook RJ, Hanlon RT. Neural control of tuneable skin iridescence in squid. Proc Biol Sci 2012; 279:4243-52. [PMID: 22896651 DOI: 10.1098/rspb.2012.1374] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fast dynamic control of skin coloration is rare in the animal kingdom, whether it be pigmentary or structural. Iridescent structural coloration results when nanoscale structures disrupt incident light and selectively reflect specific colours. Unlike animals with fixed iridescent coloration (e.g. butterflies), squid iridophores (i.e. aggregations of iridescent cells in the skin) produce dynamically tuneable structural coloration, as exogenous application of acetylcholine (ACh) changes the colour and brightness output. Previous efforts to stimulate iridophores neurally or to identify the source of endogenous ACh were unsuccessful, leaving researchers to question the activation mechanism. We developed a novel neurophysiological preparation in the squid Doryteuthis pealeii and demonstrated that electrical stimulation of neurons in the skin shifts the spectral peak of the reflected light to shorter wavelengths (greater than 145 nm) and increases the peak reflectance (greater than 245%) of innervated iridophores. We show ACh is released within the iridophore layer and that extensive nerve branching is seen within the iridophore. The dynamic colour shift is significantly faster (17 s) than the peak reflectance increase (32 s), revealing two distinct mechanisms. Responses from a structurally altered preparation indicate that the reflectin protein condensation mechanism explains peak reflectance change, while an undiscovered mechanism causes the fast colour shift.
Collapse
Affiliation(s)
- T J Wardill
- Program in Sensory Physiology and Behavior, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
15
|
Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology. Biotechnol Adv 2011; 29:457-67. [PMID: 21620946 DOI: 10.1016/j.biotechadv.2011.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022]
Abstract
Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold.
Collapse
|
16
|
Izumi M, Sweeney AM, Demartini D, Weaver JC, Powers ML, Tao A, Silvas TV, Kramer RM, Crookes-Goodson WJ, Mäthger LM, Naik RR, Hanlon RT, Morse DE. Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid. J R Soc Interface 2009; 7:549-60. [PMID: 19776150 DOI: 10.1098/rsif.2009.0299] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many cephalopods exhibit remarkable dermal iridescence, a component of their complex, dynamic camouflage and communication. In the species Euprymna scolopes, the light-organ iridescence is static and is due to reflectin protein-based platelets assembled into lamellar thin-film reflectors called iridosomes, contained within iridescent cells called iridocytes. Squid in the family Loliginidae appear to be unique in which the dermis possesses a dynamic iridescent component with reflective, coloured structures that are assembled and disassembled under the control of the muscarinic cholinergic system and the associated neurotransmitter acetylcholine (ACh). Here we present the sequences and characterization of three new members of the reflectin family associated with the dynamically changeable iridescence in Loligo and not found in static Euprymna iridophores. In addition, we show that application of genistein, a protein tyrosine kinase inhibitor, suppresses ACh- and calcium-induced iridescence in Loligo. We further demonstrate that two of these novel reflectins are extensively phosphorylated in concert with the activation of iridescence by exogenous ACh. This phosphorylation and the correlated iridescence can be blocked with genistein. Our results suggest that tyrosine phosphorylation of reflectin proteins is involved in the regulation of dynamic iridescence in Loligo.
Collapse
Affiliation(s)
- Michi Izumi
- Institute for Collaborative Biotechnologies, Materials Research Laboratory, California Nano-Systems Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mäthger LM, Shashar N, Hanlon RT. Do cephalopods communicate using polarized light reflections from their skin? J Exp Biol 2009; 212:2133-40. [DOI: 10.1242/jeb.020800] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Cephalopods (squid, cuttlefish and octopus) are probably best known for their ability to change color and pattern for camouflage and communication. This is made possible by their complex skin, which contains pigmented chromatophore organs and structural light reflectors (iridophores and leucophores). Iridophores create colorful and linearly polarized reflective patterns. Equally interesting, the photoreceptors of cephalopod eyes are arranged in a way to give these animals the ability to detect the linear polarization of incoming light. The capacity to detect polarized light may have a variety of functions, such as prey detection, navigation, orientation and contrast enhancement. Because the skin of cephalopods can produce polarized reflective patterns, it has been postulated that cephalopods could communicate intraspecifically through this visual system. The term `hidden' or`private' communication channel has been given to this concept because many cephalopod predators may not be able to see their polarized reflective patterns. We review the evidence for polarization vision as well as polarization signaling in some cephalopod species and provide examples that tend to support the notion – currently unproven – that some cephalopods communicate using polarized light signals.
Collapse
Affiliation(s)
- Lydia M. Mäthger
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543,USA
| | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben Gurion University, Beer Sheva,84105, Israel
| | - Roger T. Hanlon
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543,USA
| |
Collapse
|
18
|
Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT. Mechanisms and behavioural functions of structural coloration in cephalopods. J R Soc Interface 2008; 6 Suppl 2:S149-63. [PMID: 19091688 DOI: 10.1098/rsif.2008.0366.focus] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra- and interspecific behavioural interactions including camouflage.
Collapse
|
19
|
Piscopo S, Moccia F, Di Cristo C, Caputi L, Di Cosmo A, Brown ER. Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the 'presynaptic bags'. Eur J Neurosci 2008; 26:2196-203. [PMID: 17953617 DOI: 10.1111/j.1460-9568.2007.05833.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic transmission was examined in the plexiform zone of Octopus vulgaris optic lobes using field-potential recording from optic lobe slices. Stimulation of the optic nerve produced pre- and postsynaptic field potentials. Transmission was abolished in calcium-free seawater, L- glutamate or the AMPA/Kainate receptor blocker CNQX (EC(50), 40 microm), leaving an intact presynaptic field potential. ACh markedly reduced or blocked and d-tubocurarine augmented both pre- and postsynaptic field potentials, while alpha-bungarotoxin and atropine were without effect. Paired-pulse stimulation showed short-term depression of pre- and postsynaptic components with a half-time of recovery of approximately 500 ms. The depression was partially relieved in the presence of d-tubocurarine (half-time of recovery, 350 ms). No long-term changes in synaptic strength were induced by repetitive stimulation. A polyclonal antibody raised against a squid glutamate receptor produced positive staining in the third radial layer of the plexiform zone. No positive staining was observed in the other layers. Taking into account previous morphological data and our results, we propose that the excitatory terminations of the photoreceptors are in the innermost layer of the plexiform zone where the transmitter is likely to be glutamate and postsynaptic receptors are AMPA/kainate-like. Thus, the function of the terminal bags is to provide a location for a presynaptic cholinergic inhibitory shunt. The results imply that this arrangement provides a temporal filter for visual processing and enhances the perception of moving vs. stationary objects.
Collapse
Affiliation(s)
- Stefania Piscopo
- Neurobiology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale I, 80121 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Chiou TH, Mäthger LM, Hanlon RT, Cronin TW. Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalisL.). J Exp Biol 2007; 210:3624-35. [DOI: 10.1242/jeb.006932] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYOn every arm of cuttlefish and squid there is a stripe of high-reflectance iridophores that reflects highly polarized light. Since cephalopods possess polarization vision, it has been hypothesized that these polarized stripes could serve an intraspecific communication function. We determined how polarization changes when these boneless arms move. By measuring the spectral and polarizing properties of the reflected light from samples at various angles of tilt and rotation, we found that the actual posture of the arm has little or no effect on partial polarization or the e-vector angle of the reflected light. However, when the illumination angle changed, the partial polarization of the reflected light also changed. The spectral reflections of the signals were also affected by the angle of illumination but not by the orientation of the sample. Electron microscope samples showed that these stripes are composed of several groups of multilayer platelets within the iridophores. The surface normal to each group is oriented at a different angle, which produces essentially constant reflection of polarized light over a range of viewing angles. These results demonstrate that cuttlefish and squid could send out reliable polarization signals to a receiver regardless of arm orientation.
Collapse
Affiliation(s)
- Tsyr-Huei Chiou
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Lydia M. Mäthger
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Roger T. Hanlon
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Thomas W. Cronin
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
21
|
Kramer RM, Crookes-Goodson WJ, Naik RR. The self-organizing properties of squid reflectin protein. NATURE MATERIALS 2007; 6:533-8. [PMID: 17546036 DOI: 10.1038/nmat1930] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/02/2007] [Indexed: 05/15/2023]
Abstract
Reflectins, a recently identified protein family that is enriched in aromatic and sulphur-containing amino acids, are used by certain cephalopods to manage and manipulate incident light in their environment. These proteins are the predominant constituent of nanoscaled photonic structures that function in static and adaptive colouration, extending visual performance and intra-species communication. Our investigation into recombinantly expressed reflectin has revealed unanticipated self-assembling and behavioural properties, and we demonstrate that reflectin can be easily processed into thin films, photonic grating structures and fibres. Our findings represent a key step in our understanding of the property-function relationships of this unique family of reflective proteins.
Collapse
Affiliation(s)
- Ryan M Kramer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Biotechnology Group, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA
| | | | | |
Collapse
|
22
|
Mäthger LM, Hanlon RT. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res 2007; 329:179-86. [PMID: 17410381 DOI: 10.1007/s00441-007-0384-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from "off" to various degrees of "on", revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.
Collapse
Affiliation(s)
- Lydia M Mäthger
- Marine Resources Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, 02543 MA, USA.
| | | |
Collapse
|
23
|
Bellanger C, Halm MP, Dauphin F, Chichery R. In vitro evidence and age-related changes for nicotinic but not muscarinic acetylcholine receptors in the central nervous system of Sepia officinalis. Neurosci Lett 2005; 387:162-7. [PMID: 16026931 DOI: 10.1016/j.neulet.2005.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/26/2005] [Accepted: 06/08/2005] [Indexed: 11/16/2022]
Abstract
Binding putative muscarinic ([3H]-NMS and [3H]-QNB) or nicotinic ([3H]-cytisine) acetylcholine receptors was quantitatively studied through the use of in vitro binding experiments on either membrane preparations or brain sections of juvenile (3 months), mature (15 months) or senescent (23 months) cuttlefish. No specific binding could be detected with muscarinic receptor ligands under any of the experimental conditions employed (ligand concentrations, buffers, ionic charges, types of tissue, i.e., brain sections or membrane preparations). On the other hand, [3H]-cytisine demonstrated a specific and saturable binding with a single class of high affinity binding sites (Kd of 2.6-34.6 nM; Bmax of 128-1682 fmol/mg tissue equivalent, depending on the central structure). This binding was found to be heterogeneous throughout the central regions (optic lobe>pedal lobe; superior frontal lobe>...precommissural lobe; vertical lobe>...anterior basal lobe; subvertical lobe; inferior frontal lobe; median basal lobe). These results question the existence of muscarinic-like receptors in the cuttlefish brain, or at least of a pharmacological dissimilarity from vertebrate muscarinic receptors. In contrast, nicotinic-like receptors are widely present; interestingly, their density was found to be significantly reduced in most nervous central lobes of senescent cuttlefish when compared with mature animals. The most significant decrease (-71%) was found in the anterior part of the superior frontal lobe, which is involved in visual learning; this might be related to the changes, previously demonstrated, in cholinergic neurons in this lobe in the course of aging.
Collapse
Affiliation(s)
- Cécile Bellanger
- Laboratoire de Psychophysiologie du Comportement des Céphalopodes, Université de Caen, Esplanade de la Paix, 14032 Caen Cedex, France.
| | | | | | | |
Collapse
|