1
|
Rue MCP, Baas‐Thomas N, Iyengar PS, Scaria LK, Marder E. Localization of chemical synapses and modulatory release sites in the cardiac ganglion of the crab, Cancer borealis. J Comp Neurol 2022; 530:2954-2965. [PMID: 35882035 PMCID: PMC9560961 DOI: 10.1002/cne.25385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/07/2023]
Abstract
The crustacean cardiac ganglion (CG) comprises nine neurons that provide rhythmic drive to the heart. The CG is the direct target of multiple modulators. Synapsin-like immunoreactivity was found clustered around the somata of the large cells (LC) and in a neuropil at the anterior branch of the CG trunk of Cancer borealis. This implicates the soma as a key site of synaptic integration, an unusual configuration in invertebrates. Proctolin is an excitatory neuromodulator of the CG, and proctolin-like immunoreactivity exhibited partial overlap with putative chemical synapses near the LCs and at the neuropil. A proctolin-like projection was also found in a pair of excitatory nerves entering the CG. GABA-like immunoreactivity was nearly completely colocalized with chemical synapses near the LCs but absent at the anterior branch neuropil. GABA-like projections were found in a pair of inhibitory nerves entering the CG. C. borealis Allatostatin B1 (CbASTB), red pigment concentrating hormone, and FLRFamide-like immunoreactivity each had a unique pattern of staining and co-localization with putative chemical synapses. These results provide morphological evidence that synaptic input is integrated at LC somata in the CG. Our findings provide a topographical organization for some of the multiple inhibitory and excitatory modulators that alter the rhythmic output of this semi-autonomous motor circuit.
Collapse
Affiliation(s)
- Mara C. P. Rue
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Natasha Baas‐Thomas
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Priya S. Iyengar
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Lara K. Scaria
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| | - Eve Marder
- Biology Department and Volen CenterBrandeis UniversityWalthamMassachusettsUSA
| |
Collapse
|
2
|
Robert A, Monsinjon T, Péden R, Rasoamampianina V, Le Mével JC, Knigge T. In vivo effects of serotonin and fluoxetine on cardio-ventilatory functions in the shore crab Carcinus maenas (L. 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:132-141. [PMID: 30557758 DOI: 10.1016/j.aquatox.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Serotonin (5-HT) takes a key position in regulating vital functions, such as cardio-ventilatory activity, locomotion and behaviour. Selective serotonin reuptake inhibitors (SSRIs) modulate the serotonergic system and thus affect these functions. Rhythmic behaviours, such as cardio-ventilatory activity, are controlled by central pattern generators, which in turn are regulated by 5-HT. In crustaceans, 5-HT also regulates the synthesis and secretion of crustacean hyperglycaemic hormone, a pleiotropic hormone involved in the mobilisation and release of glucose into the haemolymph, thus stimulating the animal's activity. As a matter of consequence, SSRIs may affect cardio-ventilatory activity. In order to examine how the SSRIs affect fundamental physiological parameters based on rhythmic behaviours in decapods, cardio-respiratory activity in the shore crab Carcinus maenas was assessed after pericardial injection of a single dose of either 0.5 μM, 0.75 μM or 1 μM fluoxetine, respectively. Simultaneous recordings of heart and scaphognathite movements in both brachial chambers were conducted by measuring impedance changes in the respective body compartments. Injection of 5-HT had an immediate effect on cardio-ventilatory activities and strongly upregulated both cardiac and ventilatory activities. Fluoxetine showed similar effects, entailing moderate tachycardia and increased ventilation rates. Compared to 5-HT, these effects were delayed in time and much less pronounced. Metabolism of fluoxetine into the active compound nor-fluoxetine might account for the delayed action, whereas compensatory regulation of cardio-ventilatory frequencies and amplitudes are likely to explain the attenuation of the responses compared to the strong and immediate increase by 5-HT. Overall, the results suggest increased 5-HT levels in invertebrates following fluoxetine exposure, which are able to disturb physiological functions regulated by 5-HT, such as cardiac and respiratory activity.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Romain Péden
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Virginie Rasoamampianina
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, CHU de Brest, 22 Avenue Camille Desmoulins, CS 93837, F-29238, Brest Cedex 3, France
| | - Thomas Knigge
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France.
| |
Collapse
|
3
|
Stegner MEJ, Stemme T, Iliffe TM, Richter S, Wirkner CS. The brain in three crustaceans from cavernous darkness. BMC Neurosci 2015; 16:19. [PMID: 25880533 PMCID: PMC4387709 DOI: 10.1186/s12868-015-0138-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND While a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae. This first detailed description of the brain in a representative of each taxon is largely based on a combination of serial semi-thin sectioning and computer-aided 3D-reconstructions. In addition, the mictocaridid Mictocaris halope was studied with a combination of immunolabeling (tubulin, nuclear counter-stains) and confocal laser scanning microscopy, addressing also the ventral nerve cord. RESULTS Adjacent to the terminal medulla, all three representatives exhibit a distal protocerebral neuropil, which is reminiscent of the lobula in other Malacostraca, but also allows for an alternative interpretation in M. halope and the thermosbaenacean Tethysbaena argentarii. A central complex occurs in all three taxa, most distinctively in the spelaeogriphacean Spelaeogriphus lepidops. The deutocerebral olfactory lobe in M. halope and S. lepidops is large. The comparably smaller olfactory lobe in T. argentarii appears to be associated with a unique additional deutocerebral neuropil. A small hemiellipsoid body exists only in the protocerebrum of T. argentarii. Distinctive mechanosensory neuropils corresponding to other malacostracans are missing. CONCLUSIONS The considerable reduction of the optic lobe in the studied taxa is higher than in any other blind malacostracan. The large size of deutocerebral olfactory centers implies an important role of the olfactory sense. The presence of a distinctive central complex in the blind S. lepidops adds further support to a central-coordinating over a visual function of this structure. The lack of a hemiellipsoid body in M. halope and S. lepidops suggests that their terminal medulla takes over the function of a second order olfactory center completely, as in some other peracarids. The reduction of the optic lobe and hemiellipsoid body is suggested to have occurred several times independently within Peracarida. The missing optic sense in the studied taxa is not correlated with an emphasized mechanosense.
Collapse
Affiliation(s)
- Martin E J Stegner
- Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, 18055, Rostock, Germany.
| | - Torben Stemme
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischhofsholer Damm 15, 30173, Hannover, Germany.
| | - Thomas M Iliffe
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX, 77553, USA.
| | - Stefan Richter
- Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, 18055, Rostock, Germany.
| | - Christian S Wirkner
- Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, 18055, Rostock, Germany.
| |
Collapse
|
4
|
Yamagishi M, Watanabe T, Hatakeyama D, Ito E. Effects of serotonin on the heartbeat of pond snails in a hunger state. Biophysics (Nagoya-shi) 2015; 11:1-5. [PMID: 27493507 PMCID: PMC4736785 DOI: 10.2142/biophysics.11.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT) is a multimodal transmitter that controls both feeding response and heartbeat in snails. However, the effects of 5-HT on the hunger state are still unknown. We therefore examined the relation among the hunger state, the heartbeat rate and the 5-HT action in food-starved snails. We found that the hunger state was significantly distinguished by the heartbeat rate in snails. The heartbeat rate was high in the food-satiated snails, whereas it was low in the food-starved snails. An increase in 5-HT concentration in the body boosted the heartbeat rate in the food-starved snails, but did not affect the rate in the food-satiated snails. These results suggest that 5-HT application may mimic the change from a starvation to a satiation state normally achieved by direct ingestion of food.
Collapse
Affiliation(s)
- Miki Yamagishi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| |
Collapse
|
5
|
Canero EM, Hermitte G. New evidence on an old question: is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans? ACTA ACUST UNITED AC 2014; 108:174-86. [PMID: 25237011 DOI: 10.1016/j.jphysparis.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
The ability to stay alert to subtle changes in the environment and to freeze, fight or flight in the presence of predators requires integrating sensory information as well as triggering motor output to target tissues, both of which are associated with the autonomic nervous system. These reactions, which are commonly related to vertebrates, are the fundamental physiological responses that allow an animal to survive danger. The circulatory activity in vertebrates changes in opposite phases. The stage where circulatory activity is high is termed the "fight or flight stage", while the stage where circulatory activity slows down is termed the "rest and digest stage". It may be assumed that highly evolved invertebrates possess a comparable response system as they also require rapid cardiovascular and respiratory regulation to be primed when necessary. However, in invertebrates, the body plan may have developed such a system very differently. Since this topic is insufficiently studied, it is necessary to extend studies for a comparative analysis. In the present review, we use our own experimental results obtained in the crab Neohelice granulata and both older and newer findings obtained by other authors in decapod crustaceans as well as in other invertebrates, to compare the pattern of change in circulatory activity, especially in the "fight or flight" stage. We conclude that the main features of neuroautonomic regulation of the cardiac function were already present early in evolution, at least in highly evolved invertebrates, although conspicuous differences are also evident.
Collapse
Affiliation(s)
- Eliana M Canero
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Argentina
| | - Gabriela Hermitte
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Argentina.
| |
Collapse
|
6
|
Stegner ME, Brenneis G, Richter S. The ventral nerve cord in Cephalocarida (Crustacea): New insights into the ground pattern of Tetraconata. J Morphol 2013; 275:269-94. [DOI: 10.1002/jmor.20213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Martin E.J. Stegner
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| |
Collapse
|
7
|
Picrotoxin but not bicuculline partially abolishes the cardio-inhibitory responses induced by visual stimulation in the crab Neohelice granulata. Physiol Behav 2013; 110-111:198-205. [DOI: 10.1016/j.physbeh.2012.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/21/2022]
|
8
|
Yang M, Carbó Tano M, Freudenthal R, Hermitte G. Characterization of the cardiac ganglion in the crab Neohelice granulata and immunohistochemical evidence of GABA-like extrinsic regulation. ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:17-25. [PMID: 22986313 DOI: 10.1016/j.asd.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 07/18/2012] [Accepted: 09/09/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present work is to provide an anatomical description of the cardiac system in the crab Neohelice granulata and evidence of the presence of GABA by means of immunohistochemistry. The ganglionic trunk was found lying on the inner surface of the heart's dorsal wall. After dissection, this structure appeared as a Y-shaped figure with its major axis perpendicular to the major axis of the heart. Inside the cardiac ganglion, we identified four large neurons of 63.7 μm ± 3.7 in maximum diameter, which were similar to the motor neurons described in other decapods. All the GABA-like immunoreactivity (GABAi) was observed as processes entering mainly the ganglionic trunk and branching in slender varicose fibers, forming a network around the large neurons suggesting that GABAi processes contact them. Our findings strengthen previous results suggesting that the GABAergic system mediates the cardio-inhibitory response upon sensory stimulation.
Collapse
Affiliation(s)
- Margarita Yang
- Laboratorio de Neurobiología de la Memoria, IFIByNE-CONICET, Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Tanaka K, Kuwasawa K, Kurokawa M. Neural pathways to cardioaccelerator neurons in the isopod crustacean Bathynomus doederleini: Cholinergic activation by somatic movements. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:66-74. [PMID: 21300170 DOI: 10.1016/j.cbpa.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/16/2022]
Abstract
We investigated the excitatory and inhibitory input to cardioaccelerator (CA) and cardioinhibitor (CI) neurons located in the thoracic ganglia of the isopod crustacean Bathynomus doederleini by extracellular and intracellular recording. Electrical stimuli applied to the anterior and posterior connectives of single-ganglion preparations, containing either the 2nd or 3rd thoracic ganglion alone, and each of three paired ganglionic nerve roots produced excitatory postsynaptic potentials (EPSPs) in the cell body of a CA neuron. Artificial movements of appendages, such as the thoracic limbs and the swimmerets, also evoked EPSPs in the CA neuron. Electrical stimuli applied to the peripheral nerves running to appendages induced inhibitory postsynaptic potentials (IPSPs) in a CI neuron. Since artificial movements of the appendages caused decrease of CI impulse rate, these IPSPs in the CI neuron may be caused by mechanoproprioceptors in the appendages. Since tachycardia was accompanied by excitation of CA neurons and inhibition of CI neurons, activation of the mechanoproprioceptors may be responsible for tachycardia. EPSPs in CA neurons produced by stimulation of peripheral nerves were augumented by eserinization and blocked by curarization. The activation of CA neurons by ganglionic roots may be mediated by cholinergic processes ascending from mechanoproprioceptors.
Collapse
Affiliation(s)
- Kosuke Tanaka
- Department of Biology, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka-shi, Tokyo 181-8611, Japan.
| | | | | |
Collapse
|
10
|
Krönström J, Karlsson W, Johansson BR, Holmgren S. Involvement of contractile elements in control of bioluminescence in Northern krill, Meganyctiphanes norvegica (M. Sars). Cell Tissue Res 2009; 336:299-308. [DOI: 10.1007/s00441-009-0774-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/26/2009] [Indexed: 12/01/2022]
|
11
|
|
12
|
Uchimura K, Ai H, Kuwasawa K, Matsushita T, Kurokawa M. Excitatory neural control of posterograde heartbeat by the frontal ganglion in the last instar larva of a lepidopteran, Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:175-85. [PMID: 16231186 DOI: 10.1007/s00359-005-0059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/10/2005] [Accepted: 09/11/2005] [Indexed: 11/27/2022]
Abstract
The frontal ganglion of the silkworm (Bombyx mori) gives rise to a visceral nerve, branches of which include a pair of anterior cardiac nerves and a pair of the posterior cardiac nerves. Forward-fill of the visceral nerve with dextran labeled with tetramethyl rhodamine shows the anterior cardiac nerves innervate the anterior region of the dorsal vessel. Back-fill of the anterior cardiac nerves with Co(2+) and Ni(2+) ions and the fluorescent dye reveals that the cell bodies of two motor neurons are located in the frontal ganglion. Injection of 5, 6-carboxyfluorescein into the cell body of an identified motor neuron shows that the neuron gives rise to an axon running to the visceral nerve. Unitary excitatory junctional potentials (EJPs) were recorded from a myocardial cell at the anterior end of the heart. They responded in a one-to-one manner to electrical stimuli applied to the visceral nerve, or to impulses generated by a depolarizing current injected into the cell body. EJPs induced by stimuli at higher than 0.5 Hz showed facilitation while those induced at higher than 2 Hz showed summation. Individual EJPs without summation, or a train of EJPs with summation, caused acceleration in the phase of posterograde heartbeat and heart reversal from anterograde heartbeat to posterograde heartbeat. It is likely that the innervation of the anterior region of the dorsal vessel by the motor neurons, through the anterior cardiac nerves is responsible for the control of heartbeat in Lepidoptera, at least in part.
Collapse
Affiliation(s)
- Kazuyuki Uchimura
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|