1
|
Moguilner S, Tiraboschi E, Fantoni G, Strelevitz H, Soleimani H, Del Torre L, Hasson U, Haase A. Neuronal correlates of sleep in honey bees. Neural Netw 2025; 189:107575. [PMID: 40354697 DOI: 10.1016/j.neunet.2025.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Honey bees Apis mellifera follow the day-night cycle for their foraging activity, entering rest periods during darkness. Despite considerable research on sleep behaviour in bees, its underlying neurophysiological mechanisms are not well understood, partly due to the lack of brain imaging data that allow for analysis from a network- or system-level perspective. This study aims to fill this gap by investigating whether neuronal activity during rest periods exhibits stereotypic patterns comparable to sleep signatures observed in vertebrates. Using two-photon calcium imaging of the antennal lobes (AL) in head-fixed bees, we analysed brain dynamics across motion and rest epochs during the nocturnal period. The recorded activity was computationally characterised, and machine learning was applied to determine whether a classifier could distinguish the two states after motion correction. Out-of-sample classification accuracy reached 93 %, and a feature importance analysis suggested network features to be decisive. Accordingly, the glomerular connectivity was found to be significantly increased in the rest-state patterns. A full simulation of the AL using a leaky spiking neural network revealed that such a transition in network connectivity could be achieved by weakly correlated input noise and a reduction of synaptic conductance of the inhibitive local neurons (LNs) which couple the AL network nodes. The difference in the AL response maps between awake- and sleep-like states generated by the simulation showed a decreased specificity of the odour code in the sleep state, suggesting reduced information processing during sleep. Since LNs in the bee brain are GABAergic, this suggests that the GABAergic system plays a central role in sleep regulation in bees as in many higher species including humans. Our findings support the theoretical view that sleep-related network modulation mechanisms are conserved throughout evolution, highlighting the bee's potential as an invertebrate model for studying sleep at the level of single neurons.
Collapse
Affiliation(s)
| | | | - Giacomo Fantoni
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | | | - Hamid Soleimani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Luca Del Torre
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Department of Physics, University of Trento, Italy.
| |
Collapse
|
2
|
Luo S, Zhou X. Post-transcriptional regulation of behavior plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101329. [PMID: 39708917 DOI: 10.1016/j.cois.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Social insects often show remarkable behavioral plasticity, which is closely associated with their respective castes. The underpinnings of this plasticity are complex, involving genetic differences among individuals within a colony and regulation of gene expression at multiple levels. Post-transcriptional regulation, which increases the complexity of the transcriptome, plays a crucial role in the multilayer regulatory network that influences social insect behavior. We provide an overview of the impact of three post-transcriptional regulatory processes on the reproductive division of labor and worker division of labor in social insects: alternative splicing, RNA modifications, and noncoding RNAs. We also discuss the relationship between post-transcriptional regulation and chromatin modification.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Wang F, Dai J, Xie L, Chen X, Guo S, Wang J, Yao X, Imran M, Li-Byarlay H, Luo S. Insights into adult worker foraging dynamics within a Bombus terrestris (Hymenoptera: Apidae) colony. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:28-36. [PMID: 39739613 DOI: 10.1093/jee/toae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Bombus terrestris, an important eusocial insect, plays a vital role in providing pollination services for both wild plants and greenhouse crops. For the development of the colonies, the workers must leave the hives to collect nectar and pollen. However, limited findings about the foraging behavior of B. terrestris workers (e.g., first foraging period, total foraging duration, and daily foraging bouts). Here, radio-frequency identification (RFID) technology was used to monitor the continuously foraging behavior of B. terrestris workers during August and October, 2021 and August, 2023. The findings of our study indicate that the participation rate in the foraging activity among adult workers was 65.07%. In addition, it was observed that adult workers initiate their initial foraging activities on the second day, with the majority commencing their first foraging endeavors between the ages of 3 and 5 days. It is noteworthy that worker bees will remain within the confines of the hive for the entirety of their lifespan, if they do not begin their first foraging within the first 12 days. Our results also revealed that workers were mainly foraged from 7:00 AM to 10:00 AM and 14:00 PM to 17:00 PM in August, while, and predominantly from 12:00 to 15:00 in October. Furthermore, it was shown that foraging efficiency was notably greater during seasons marked by a plentiful availability of flower resources. This was supported by an observed rise in the frequency of daily foraging activities and the overall duration of foraging.
Collapse
Affiliation(s)
- Feiran Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jiangrui Dai
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- Department of Entomology, Xinjiang Agricultural University, Urumqi, China
| | - Lixing Xie
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Xing Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Shengnan Guo
- Hengshui Center for Disease Prevention and Control, Hengshui, China
| | - Jian Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Xudong Yao
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Muhammad Imran
- Department of Entomology, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, OH, USA
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
4
|
Gonulkirmaz-Cancalar O, Bloch G. Sex-Related Variation in Circadian Rhythms in the Bumble Bee Bombus terrestris. J Biol Rhythms 2024; 39:594-606. [PMID: 39370745 PMCID: PMC11613518 DOI: 10.1177/07487304241283863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mating success depends on many factors, but first of all, a male and a female need to meet at the same place and time. The circadian clock is an endogenous system regulating activity and sex-related behaviors in animals. We studied bumble bees (Bombus terrestris) in which the influence of circadian rhythms on sexual behavior has been little explored. We characterized circadian rhythms in adult emergence and locomotor activity under different illumination regimes for males and gynes (unmated queens). We developed a method to monitor adult emergence from the pupal cocoon and found no circadian rhythms in this behavior for either males or gynes. These results are not consistent with the hypothesis that the circadian clock regulates emergence from the pupa in this species. Consistent with this premise, we found that both gynes and males do not show circadian rhythms in locomotor activity during the first 3 days after pupal emergence, but shortly after developed robust circadian rhythms that are readily shifted by a phase delay in illumination regime. We conclude that the bumble bees do not need strong rhythms in adult emergence and during early adult life in their protected and regulated nest environment, but do need strong activity rhythms for timing flights and mating-related behaviors. Next, we tested the hypothesis that the locomotor activity of males and gynes have a similar phase, which may improve mating success. We found that both males and gynes have strong endogenous circadian rhythms that are entrained by the illumination regime, but males show rhythms at an earlier age, their rhythms are stronger, and their phase is slightly advanced relative to that of gynes. An earlier phase may be advantageous to males competing to mate a receptive gyne. Our results are consistent with the hypothesis that sex-related variations in circadian rhythms is shaped by sexual selection.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Gilgenreiner M, Kurze C. Age dominates flight distance and duration, while body size shapes flight speed in Bombus terrestris L. (Hymenoptera: Apidae). Proc Biol Sci 2024; 291:20241001. [PMID: 39079662 PMCID: PMC11288671 DOI: 10.1098/rspb.2024.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Flight plays a crucial role in the fitness of insect pollinators, such as bumblebees. Despite their relatively large body size compared with their wings, bumblebees can fly under difficult ambient conditions, such as cooler temperatures. While their body size is often positively linked to their foraging range and flight ability, the influence of age remains less explored. Here, we studied the flight performance (distance, duration and speed) of ageing bumblebee workers using tethered flight mills. Additionally, we measured their intertegular distance and dry mass as proxies for their body size. We found that the flight distance and duration were predominantly influenced by age, challenging assumptions that age does not play a key role in foraging and task allocation. From the age of 7 to 14 days, flight distance and duration increased sixfold and fivefold, respectively. Conversely, the body size primarily impacted the maximum and average flight speed of workers. Our findings indicate that age substantially influences the flight distance and duration in bumblebee workers, affecting foraging performance and potentially altering task allocation strategies. This underscores the importance of considering individual age and physiological changes alongside body size/mass in experiments involving bumblebee workers.
Collapse
Affiliation(s)
- Milena Gilgenreiner
- Institute for Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Christoph Kurze
- Institute for Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Chapman KE, Smith MT, Gaston KJ, Hempel de Ibarra N. Bumblebee nest departures under low light conditions at sunrise and sunset. Biol Lett 2024; 20:20230518. [PMID: 38593853 PMCID: PMC11003773 DOI: 10.1098/rsbl.2023.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Only a few diurnal animals, such as bumblebees, extend their activity into the time around sunrise and sunset when illumination levels are low. Low light impairs viewing conditions and increases sensory costs, but whether diurnal insects use low light as a cue to make behavioural decisions is uncertain. To investigate how they decide to initiate foraging at these times of day, we observed bumblebee nest-departure behaviours inside a flight net, under naturally changing light conditions. In brighter light bees did not attempt to return to the nest and departed with minimal delay, as expected. In low light the probability of non-departures increased, as a small number of bees attempted to return after spending time on the departure platform. Additionally, in lower illumination bees spent more time on the platform before flying away, up to 68 s. Our results suggest that bees may assess light conditions once outside the colony to inform the decision to depart. These findings give novel insights into how behavioural decisions are made at the start and the end of a foraging day in diurnal animals when the limits of their vision impose additional costs on foraging efficiency.
Collapse
Affiliation(s)
- Katherine E. Chapman
- Centre for Research in Animal Behaviour, Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Michael T. Smith
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Ge J, Shalem Y, Ge Z, Liu J, Wang X, Bloch G. Integration of information from multiple sources drives and maintains the division of labor in bumble bee colonies. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101115. [PMID: 37704097 DOI: 10.1016/j.cois.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Bumble bees are eusocial bees in which the division of labor (DoL) in reproduction and in task performance changes during their annual lifecycle. The queen monopolizes reproduction in young colonies, but at later stages, some workers start to challenge the queen and lay their own unfertilized eggs. The division of colony maintenance and growth tasks relates to worker body size. Reproduction and task performance are regulated by multiple social signals of the queen, the workers, and the brood. Here, we review recent studies suggesting that bumble bees use multiple sources of information to establish and maintain DoL in both reproduction and in task performance. Juvenile hormone (JH) is an important neuroendocrine signal involved in the regulation of DoL in reproduction but not in worker task performance. The reliance on multiple signals facilitates flexibility in face of changes in the social and geophysical environment.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuval Shalem
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuxi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jinpeng Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
Franco M, Fassler R, Goldberg TS, Chole H, Herz Y, Woodard SH, Reichmann D, Bloch G. Substances in the mandibular glands mediate queen effects on larval development and colony organization in an annual bumble bee. Proc Natl Acad Sci U S A 2023; 120:e2302071120. [PMID: 37903277 PMCID: PMC10636365 DOI: 10.1073/pnas.2302071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/06/2023] [Indexed: 11/01/2023] Open
Abstract
Social organization is commonly dynamic, with extreme examples in annual social insects, but little is known about the underlying signals and mechanisms. Bumble bee larvae with close contact to a queen do not differentiate into gynes, pupate at an earlier age, and are commonly smaller than siblings that do not contact a queen. We combined detailed observations, proteomics, microRNA transcriptomics, and gland removal surgery to study the regulation of brood development and division of labor in the annual social bumble bee Bombus terrestris. We found that regurgitates fed to larvae by queens and workers differ in their protein and microRNA composition. The proteome of the regurgitate overlaps significantly with that of the mandibular (MG) and hypopharyngeal glands (HPG), suggesting that these exocrine glands are sources of regurgitate proteins. The proteome of the MG and HPG, but not the salivary glands, differs between queens and workers, with caste-specificity preserved for the MG and regurgitate proteomes. Queens subjected to surgical removal of the MG showed normal behavior, brood care, and weight gain, but failed to shorten larval development. These findings suggest that substances in the queen MG are fed to larvae and influence their developmental program. We suggest that when workers emerge and contribute to larval feeding, they dilute the effects of the queen substances, until she can no longer manipulate the development of all larvae. Longer developmental duration may allow female larvae to differentiate into gynes rather than to workers, mediating the colony transition from the ergonomic to the reproductive phase.
Collapse
Affiliation(s)
- Maayan Franco
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Rosi Fassler
- Department of Biological Chemistry, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Tzvi S. Goldberg
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Hanna Chole
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Yogev Herz
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - S. Hollis Woodard
- Department of Entomology, University of California, Riverside, CA92521
| | - Dana Reichmann
- Department of Biological Chemistry, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| |
Collapse
|
9
|
Gonulkirmaz-Cancalar O, Shertzer O, Bloch G. Bumble Bees ( Bombus terrestris) Use Time-Memory to Associate Reward with Color and Time of Day. INSECTS 2023; 14:707. [PMID: 37623417 PMCID: PMC10455649 DOI: 10.3390/insects14080707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Circadian clocks regulate ecologically important complex behaviors in honey bees, but it is not clear whether similar capacities exist in other species of bees. One key behavior influenced by circadian clocks is time-memory, which enables foraging bees to precisely time flower visitation to periods of maximal pollen or nectar availability and reduces the costs of visiting a non-rewarding flower patch. Bumble bees live in smaller societies and typically forage over shorter distances than honey bees, and it is therefore not clear whether they can similarly associate reward with time of day. We trained individually marked bumble bee (Bombus terrestris) workers to forage for sugar syrup in a flight cage with yellow or blue feeders rewarding either during the morning or evening. After training for over two weeks, we recorded all visitations to colored feeders filled with only water. We performed two experiments, each with a different colony. We found that bees tended to show higher foraging activity during the morning and evening training sessions compared to other times during the day. During the test day, the trained bees were more likely to visit the rewarding rather than the non-rewarding colored feeders at the same time of day during the test sessions, indicating that they associated time of day and color with the sugar syrup reward. These observations lend credence to the hypothesis that bumble bees have efficient time-memory, indicating that this complex behavior is not limited to honey bees that evolved sophisticated social foraging behaviors over large distances.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
| | - Oded Shertzer
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel; (O.G.-C.); (O.S.)
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
10
|
Grüter C, Balbuena MS, Valadares L. Mechanisms and adaptations that shape division of labour in stingless bees. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101057. [PMID: 37230412 DOI: 10.1016/j.cois.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Stingless bees are a diverse and ecologically important group of pollinators in the tropics. Division of labour allows bee colonies to meet the various demands of their social life, but has been studied in only ∼3% of all described stingless bee species. The available data suggest that division of labour shows both parallels and striking differences compared with other social bees. Worker age is a reliable predictor of worker behaviour in many species, while morphological variation in body size or differences in brain structure are important for specific worker tasks in some species. Stingless bees provide opportunities to confirm general patterns of division of labour, but they also offer prospects to discover and study novel mechanisms underlying the different lifestyles found in eusocial bees.
Collapse
Affiliation(s)
- Christoph Grüter
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ, UK.
| | - María Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Ciencias Naturales y Exactas, Universidad de Buenos Aires, CABA, Argentina
| | - Lohan Valadares
- Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Fitzgerald JL, Ogilvie JE, CaraDonna PJ. Ecological Drivers and Consequences of Bumble Bee Body Size Variation. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1055-1068. [PMID: 36373400 DOI: 10.1093/ee/nvac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Body size is arguably one of the most important traits influencing the physiology and ecology of animals. Shifts in animal body size have been observed in response to climate change, including in bumble bees (Bombus spp. [Hymenoptera: Apidae]). Bumble bee size shifts have occurred concurrently with the precipitous population declines of several species, which appear to be related, in part, to their size. Body size variation is central to the ecology of bumble bees, from their social organization to the pollination services they provide to plants. If bumble bee size is shifted or constrained, there may be consequences for the pollination services they provide and for our ability to predict their responses to global change. Yet, there are still many aspects of the breadth and role of bumble bee body size variation that require more study. To this end, we review the current evidence of the ecological drivers of size variation in bumble bees and the consequences of that variation on bumble bee fitness, foraging, and species interactions. In total we review: (1) the proximate determinants and physiological consequences of size variation in bumble bees; (2) the environmental drivers and ecological consequences of size variation; and (3) synthesize our understanding of size variation in predicting how bumble bees will respond to future changes in climate and land use. As global change intensifies, a better understanding of the factors influencing the size distributions of bumble bees, and the consequences of those distributions, will allow us to better predict future responses of these pollinators.
Collapse
Affiliation(s)
- Jacquelyn L Fitzgerald
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Paul J CaraDonna
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
12
|
Chapman KE, Cozma NE, Hodgkinson AB, English R, Gaston KJ, Hempel de Ibarra N. Bumble bees exploit known sources but return with partial pollen loads when foraging under low evening light. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Chole H, de Guinea M, Woodard SH, Bloch G. Field-realistic concentrations of a neonicotinoid insecticide influence socially regulated brood development in a bumblebee. Proc Biol Sci 2022; 289:20220253. [PMID: 36382527 PMCID: PMC9667354 DOI: 10.1098/rspb.2022.0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/28/2022] [Indexed: 04/20/2024] Open
Abstract
The systemic neonicotinoid insecticides are considered as one of the key culprits contributing to ongoing declines in pollinator health and abundance. Bumblebees are among the most important pollinators of temperate zone plants, making their susceptibility to neonicotinoid exposure of great concern. We report that bumblebee (Bombus terrestris) colonies exposed to field-realistic concentrations of the commonly used neonicotinoid Imidacloprid grew slower, consumed less food, and produced fewer workers, males and gynes, but unexpectedly produced larger workers compared to control colonies. Behavioural observations show that queens in pesticide-treated colonies spend more time inactive and less time caring for the brood. We suggest that the observed effects on brood body size are driven by a decreased queen ability to manipulate the larva developmental programme. These findings reveal an intricate and previously unknown effect of insecticides on the social interactions controlling brood development in social insect colonies. Insecticide influences on the social mechanisms regulating larval development are potentially detrimental for bumblebees, in which body size strongly influences both caste differentiation and the division of labour among workers, two organization principles of insect societies.
Collapse
Affiliation(s)
- Hanna Chole
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Miguel de Guinea
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - S. Hollis Woodard
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
MacKenzie EL, Goulson D, Rotheray EL. Investigating the Foraging, Guarding and Drifting Behaviors of Commercial Bombus terrestris. JOURNAL OF INSECT BEHAVIOR 2022; 34:334-345. [PMID: 35185281 PMCID: PMC8813815 DOI: 10.1007/s10905-021-09790-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Social insects have high levels of cooperation and division of labor. In bumble bees this is partly size-based, with larger bees performing tasks outside the nest and smaller bees remaining inside, although bumble bees still display considerable behavioral plasticity. The level of specialization in tasks outside the colony, including foraging, guarding and drifting (entering a foreign colony), is currently unknown for bumble bees. This study aimed to assess division of labor between outside tasks and the degree of specialization in foraging, guarding, and switching colonies in commercially reared bumble bees placed in the field. Nine factory-bought Bombus terrestris colonies were placed on three farms in Sussex, UK, between June and August 2015. Forty workers from each colony were radio-tagged and a reader on the colony entrance recorded the date, time and bee ID as they passed. The length and frequency of foraging trips and guarding behavior were calculated, and drifting recorded. The mean (±SD) length of foraging trips was 45 ± 36 min, and the mean number of foraging trips per day was 7.75 ± 7.71. Low levels of specialization in guarding or foraging behavior were found; however, some bees appeared to guard more frequently than others, and twenty bees were categorized as guards. Five bees appeared to exhibit repeated "stealing" behavior, which may have been a specialist task. The division of labor between tasks was not size-based. It is concluded that commercial bumble bees are flexible in performing outside nest tasks and may have diverse foraging strategies including intra-specific nest robbing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10905-021-09790-0.
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG UK
| | - Ellen L Rotheray
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG UK
| |
Collapse
|
15
|
Siehler O, Wang S, Bloch G. Remarkable Sensitivity of Young Honey Bee Workers to Multiple Non-photic, Non-thermal, Forager Cues That Synchronize Their Daily Activity Rhythms. Front Physiol 2022; 12:789773. [PMID: 35002771 PMCID: PMC8733668 DOI: 10.3389/fphys.2021.789773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Honey bees live in colonies containing tens of thousands of workers that coordinate their activities to produce efficient colony-level behavior. In free-foraging colonies, nest bees are entrained to the forager daily phase of activity even when experiencing conflicting light-dark illumination regime, but little is known on the cues mediating this potent social synchronization. We monitored locomotor activity in an array of individually caged bees in which we manipulated the contact with neighbour bees. We used circular statistics and coupling function analyses to estimate the degree of social synchronization. We found that young bees in cages connected to cages housing foragers showed stronger rhythms, better synchronization with each other, higher coupling strength, and a phase more similar to that of the foragers compared to similar bees in unconnected cages. These findings suggest that close distance contacts are sufficient for social synchronization or that cage connection facilitated the propagation of time-giving social cues. Coupling strength was higher for bees placed on the same tray compared with bees at a similar distance but on a different tray, consistent with the hypothesis that substrate borne vibrations mediate phase synchronization. Additional manipulation of the contact between cages showed that social synchronization is better among bees in cages connected with tube with a single mesh partition compared to sealed tubes consistent with the notion that volatile cues act additively to substrate borne vibrations. These findings are consistent with self-organization models for social synchronization of activity rhythms and suggest that the circadian system of honey bees evolved remarkable sensitivity to non-photic, non-thermal, time giving entraining cues enabling them to tightly coordinate their behavior in the dark and constant physical environment of their nests.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Fisher K, Sarro E, Miranda CK, Guillen BM, Woodard SH. Worker task organization in incipient bumble bee nests. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Pandey A, Bloch G. Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. BIOLOGY 2021; 10:biology10111188. [PMID: 34827180 PMCID: PMC8614866 DOI: 10.3390/biology10111188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Dominance hierarchies are ubiquitous in invertebrates and vertebrates, but little is known on how genes influence dominance rank. Our gaps in knowledge are specifically significant concerning female hierarchies, particularly in insects. To start filling these gaps, we studied the social bumble bee Bombus terrestris, in which social hierarchies among females are common and functionally significant. Dominance rank in this bee is influenced by multiple factors, including juvenile hormone (JH) that is a major gonadotropin in this species. We tested the hypothesis that the JH responsive transcription factor Krüppel homologue 1 (Kr-h1) mediates hormonal influences on dominance behavior. We first developed and validated a perfluorocarbon nanoparticles-based RNA interference protocol for knocking down Kr-h1 expression. We then used this procedure to show that Kr-h1 mediates the influence of JH, not only on oogenesis and wax production, but also on aggression and dominance rank. To the best of our knowledge, this is the first study causally linking a gene to dominance rank in social insects, and one of only a few such studies on insects or on female hierarchies. These findings are important for determining whether there are general molecular principles governing dominance rank across gender and taxa.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (A.P.); (G.B.)
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: (A.P.); (G.B.)
| |
Collapse
|
18
|
Siehler O, Wang S, Bloch G. Social synchronization of circadian rhythms with a focus on honeybees. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200342. [PMID: 34420390 PMCID: PMC8380977 DOI: 10.1098/rstb.2020.0342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Many animals benefit from synchronizing their daily activities with conspecifics. In this hybrid paper, we first review recent literature supporting and extending earlier evidence for a lack of clear relationship between the level of sociality and social entrainment of circadian rhythms. Social entrainment is specifically potent in social animals that live in constant environments in which some or all individuals do not experience the ambient day-night cycles. We next focus on highly social honeybees in which there is good evidence that social cues entrain the circadian clocks of nest bees and can override the influence of conflicting light-dark cycles. The current understanding of social synchronization in honeybees is consistent with self-organization models in which surrogates of forager activity, such as substrate-borne vibrations and colony volatiles, entrain the circadian clocks of bees dwelling in the dark cavity of the nest. Finally, we present original findings showing that social synchronization is effective even in an array of individually caged callow bees placed on the same substrate and is improved for bees in connected cages. These findings reveal remarkable sensitivity to social time-giving cues and show that bees with attenuated rhythms (weak oscillators) can nevertheless be socially synchronized to a common phase of activity. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Shuo Wang
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Archer CR, Fähnle J, Pretzner M, Üstüner C, Weber N, Sutter A, Doublet V, Wilfert L. Complex relationship between amino acids, fitness and food intake in Bombus terrestris. Amino Acids 2021; 53:1545-1558. [PMID: 34590185 PMCID: PMC8519840 DOI: 10.1007/s00726-021-03075-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/30/2021] [Indexed: 10/31/2022]
Abstract
The ratio of amino acids to carbohydrates (AA:C) that bumble bees consume has been reported to affect their survival. However, it is unknown how dietary AA:C ratio affects other bumble bee fitness traits (e.g., fecundity, condition) and possible trade-offs between them. Moreover, while individual AAs affect phenotype in many species, the effects of AA blend on bumble bee fitness and food intake are unclear. We test how the AA:C ratio that bumble bees (Bombus terrestris) consume affects their condition (abdomen lipid and dry mass), survival following food removal, and ovarian activation. We then compare ovarian activation and food intake in bees fed identical AA:C ratios, but where the blend of AAs in diets differ, i.e., diets contained the same 10 AAs in an equimolar ratio or in the same ratio as in bee collected pollen. We found that AA:C ratio did not significantly affect survival following food removal or ovarian activation; however, high AA intake increased body mass, which is positively correlated with multiple fitness traits in bumble bees. AA blend (i.e., equimolar versus pollen) did not significantly affect overall ovarian activation or consumption of each experimental diet. However, there was an interaction between AA mix and dietary AA:C ratio affecting survival during the feeding experiment, and signs that there may have been weak, interactive effects of AA mix and AA:C ratio on food consumption. These results suggest that the effect of total AA intake on bumble bee phenotype may depend on the blend of individual AAs in experimental diets. We suggest that research exploring how AA blend affects bumble bee performance and dietary intake is warranted, and highlight that comparing research on bee nutrition is complicated by even subtle variation in experimental diet composition.
Collapse
Affiliation(s)
- C Ruth Archer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Johannes Fähnle
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maximilian Pretzner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Cansu Üstüner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Nina Weber
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Sutter
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,College of Life and Environment Sciences, University of Exeter, Tremough Campus, Penryn, TR10 8FL, UK
| |
Collapse
|
20
|
Xu X, Ren Z, Trunschke J, Kuppler J, Zhao Y, Knop E, Wang H. Bimodal activity of diurnal flower visitation at high elevation. Ecol Evol 2021; 11:13487-13500. [PMID: 34646485 PMCID: PMC8495799 DOI: 10.1002/ece3.8074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 11/07/2022] Open
Abstract
Successful pollination in animal-pollinated plants depends on the temporal overlap between flower presentation and pollinator foraging activity. Variation in the temporal dimension of plant-pollinator networks has been investigated intensely across flowering seasons. However, over the course of a day, the dynamics of plant-pollinator interactions may vary strongly due environmental fluctuations. It is usually assumed there is a unimodal, diurnal, activity pattern, while alternative multimodal types of activity patterns are often neglected and deserve greater investigation. Here, we quantified the daily activity pattern of flower visitors in two different habitats contrasting high elevation meadows versus forests in Southwest China to investigate the role of abiotic conditions in the temporal dynamics of plant-pollinator interactions. We examined diurnal activity patterns for the entire pollinator community. Pollinator groups may differ in their ability to adapt to habitats and abiotic conditions, which might be displayed in their patterns of activity. We hypothesized that (a) pollinator communities show multimodal activity patterns, (b) patterns differ between pollinator groups and habitat types, and (c) abiotic conditions explain observed activity patterns. In total, we collected 4,988 flower visitors belonging to six functional groups. There was a bimodal activity pattern when looking at the entire pollinator community and in five out of six flower visitor groups (exempting solitary bees) regardless of habitat types. Bumblebees, honeybees, dipterans, lepidopterans, and other insects showed activity peaks in the morning and afternoon, whereas solitary bees were most active at midday. Activity of all six pollinator groups increased as solar radiation increased and then decreased after reaching a certain threshold. Our findings suggest that in habitats at higher elevations, a bimodal activity pattern of flower visitation is commonly employed across most pollinator groups that are diurnal foragers. This pattern may be caused by insects avoiding overheating due to elevated temperatures when exposed to high solar radiation at midday.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zong‐Xin Ren
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
- Yunnan Lijiang Forest Ecosystem National Observation and Research StationLijiangChina
| | - Judith Trunschke
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Jonas Kuppler
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Yan‐Hui Zhao
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Eva Knop
- Agroecology and EnvironmentAgroscopeZürichSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
21
|
Light exposure mediates circadian rhythms of rhizosphere microbial communities. THE ISME JOURNAL 2021; 15:2655-2664. [PMID: 33746202 PMCID: PMC8397761 DOI: 10.1038/s41396-021-00957-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/01/2023]
Abstract
Microbial community circadian rhythms have a broad influence on host health and even though light-induced environmental fluctuations could regulate microbial communities, the contribution of light to the circadian rhythms of rhizosphere microbial communities has received little attention. To address this gap, we monitored diel changes in the microbial communities in rice (Oryza sativa L.) rhizosphere soil under light-dark and constant dark regimes, identifying microbes with circadian rhythms caused by light exposure and microbial circadian clocks, respectively. While rhizosphere microbial communities displayed circadian rhythms under light-dark and constant dark regimes, taxa possessing circadian rhythms under the two conditions were dissimilar. Light exposure concealed microbial circadian clocks as a regulatory driver, leading to fewer ecological niches in light versus dark communities. These findings disentangle regulation mechanisms for circadian rhythms in the rice rhizosphere microbial communities and highlight the role of light-induced regulation of rhizosphere microbial communities.
Collapse
|
22
|
Maebe K, Hart AF, Marshall L, Vandamme P, Vereecken NJ, Michez D, Smagghe G. Bumblebee resilience to climate change, through plastic and adaptive responses. GLOBAL CHANGE BIOLOGY 2021; 27:4223-4237. [PMID: 34118096 DOI: 10.1111/gcb.15751] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Bumblebees are ubiquitous, cold-adapted eusocial bees found worldwide from subarctic to tropical regions of the world. They are key pollinators in most temperate and boreal ecosystems, and both wild and managed populations are significant contributors to agricultural pollination services. Despite their broad ecological niche at the genus level, bumblebee species are threatened by climate change, particularly by rising average temperatures, intensifying seasonality and the increasing frequency of extreme weather events. While some temperature extremes may be offset at the individual or colony level through temperature regulation, most bumblebees are expected to exhibit specific plastic responses, selection in various key traits, and/or range contractions under even the mildest climate change. In this review, we provide an in-depth and up-to-date review on the various ways by which bumblebees overcome the threats associated with current and future global change. We use examples relevant to the fields of bumblebee physiology, morphology, behaviour, phenology, and dispersal to illustrate and discuss the contours of this new theoretical framework. Furthermore, we speculate on the extent to which adaptive responses to climate change may be influenced by bumblebees' capacity to disperse and track suitable climate conditions. Closing the knowledge gap and improving our understanding of bumblebees' adaptability or avoidance behaviour to different climatic circumstances will be necessary to improve current species climate response models. These models are essential to make correct predictions of species vulnerability in the face of future climate change and human-induced environmental changes to unfold appropriate future conservation strategies.
Collapse
Affiliation(s)
- Kevin Maebe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alex F Hart
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Leon Marshall
- Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Zhu D, Ge J, Guo S, Hou L, Shi R, Zhou X, Nie X, Wang X. Independent variations in genome-wide expression, alternative splicing, and DNA methylation in brain tissues among castes of the buff-tailed bumblebee, Bombus terrestris. J Genet Genomics 2021; 48:681-694. [PMID: 34315685 DOI: 10.1016/j.jgg.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Caste differentiation in social hymenopterans is an intriguing example of phenotypic plasticity. However, the co-ordination among gene regulatory factors to mediate caste differentiation remains inconclusive. In this study, we determined the role of gene regulation and related epigenetic processes in pre-imaginal caste differentiation in the primitively eusocial bumblebee Bombus terrestris. By combining RNA-Seq data from Illumina and PacBio and accurately quantifying methylation at whole-genomic base pair resolution, we found that queens, workers, and drones mainly differentiate in gene expression but not in alternative splicing and DNA methylation. Gynes are the most distinct with the lowest global level of whole-genomic methylation and with the largest number of caste-specific transcripts and alternative splicing events. By contrast, workers exhibit few uniquely expressed or alternatively spliced genes. Moreover, several genes involved in hormone and neurotransmitter metabolism are related to caste differentiation, whereas several neuropeptides are linked with sex differentiation. Despite little genome-wide association among differential gene expression, splicing, and differential DNA methylation, the overlapped gene ontology (GO) terms point to nutrition-related activity. Therefore, variations in gene regulation correlate with the behavioral differences among castes and highlight the specialization of toolkit genes in bumblebee gynes at the beginning of the adult stage.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rangjun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Nie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Watrous KM, Costa CP, Diaz YR, Woodard SH. Flexibility in the Critical Period of Nutrient Sequestration in Bumble Bee Queens. Integr Org Biol 2021; 3:obab009. [PMID: 34104874 PMCID: PMC8179628 DOI: 10.1093/iob/obab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synopsis Bumble bee queens undergo a nutrient storage period prior to entering diapause wherein they sequester glycogen and lipids that are metabolized during overwintering. In the laboratory under optimal food availability conditions, the majority of nutrients are sequestered during the first few days of adulthood. However, if food resources are scarce during this narrow window of time, wild queen bumble bees might be limited in their ability to obtain adequate food resources for overwintering. Here we used a laboratory experiment to examine whether queen bumble bees exhibit flexibility in the timing of pre-overwintering nutrient sequestration, by limiting their access to either nectar (artificial) or pollen, the two primary foods for bumble bees, for varying periods of time. In response to these treatments, we quantified queen survival, changes in weight, and glycogen and lipids levels. We found evidence that queens are able to recuperate almost entirely from food resource limitation, with respect to nutrient storage, especially when it is experienced for shorter durations (up to 6 days). This study sheds light on how bumble bee queens are impacted by food resource availability at a critical life stage. Portuguese As abelhas rainhas do gênero Bombus armazenam nutrientes antes de entrarem em diapausa, sequestrando o glicogênio e os lipídios que serão metabolizados durante o inverno. Em condições ideais de disponibilidade de alimento no laboratório, a maioria dos nutrientes é sequestrada nos primeiros dias de vida adulta. No entanto, em condições de escassez de alimento na natureza, as rainhas podem sofrer limitações em sua capacidade de obter recursos para o inverno. Nesse contexto, em condições controladas, examinamos se as rainhas exibem variações no sequestro de nutrientes, limitando o acesso ao néctar (artificial) ou pólen, seus principais alimentos, em diferentes intervalos de tempo. Em resposta a esses tratamentos, quantificamos a taxa de sobrevivência das rainhas, as mudanças no peso e os níveis de glicogênio e lipídios. Encontramos evidências de que as rainhas são capazes de recuperar a capacidade de armazenar nutrientes quase inteiramente, especialmente em períodos mais curtos de escassez de alimento (até 6 dias). Este estudo lança luz sobre como as rainhas são afetadas pela variação na disponibilidade de recursos alimentares em um estágio crítico da vida. Spanish Las abejas reinas de generó Bombus, mejor conocidas como reinas de abejorro se someten a un período de almacenamiento de nutrientes antes de entrar en diapausa, en el cual secuestran glucógeno y lípidos que se metabolizan durante el invierno. En el laboratorio, en condiciones óptimas de disponibilidad de alimentos, la mayoría de los nutrientes se secuestran durante los primeros días de la edad adulta. Sin embargo, si los recursos alimenticios son escasos durante esta estrecha ventana de tiempo, las abejas reinas silvestres podrían verse limitadas en su capacidad para obtener recursos alimenticios adecuados para pasar el invierno. Aquí utilizamos un experimento de laboratorio para examinar si las abejas reinas exhiben flexibilidad en el momento del secuestro de nutrientes antes de la hibernación, al limitar su acceso al néctar (artificial) o al polen, los dos alimentos principales de los abejorros, durante períodos variables. En respuesta a estos tratamientos, cuantificamos la supervivencia de la reina, los cambios de peso y los niveles de glucógeno y lípidos. Encontramos evidencia de que las reinas pueden recuperarse casi por completo de la limitación de los recursos alimenticios, con respecto al almacenamiento de nutrientes, especialmente cuando se experimenta por períodos más cortos (hasta 6 días). Este estudio arroja luz sobre cómo las abejas reinas se ven afectadas por la disponibilidad de recursos alimenticios en una etapa crítica de la vida.
Collapse
Affiliation(s)
- Kristal M Watrous
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| | - Claudinéia P Costa
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| | - Yadira R Diaz
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| | - S Hollis Woodard
- Department of Entomology, The University of California, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Hall K, Robert T, Gaston KJ, Hempel de Ibarra N. Onset of morning activity in bumblebee foragers under natural low light conditions. Ecol Evol 2021; 11:6536-6545. [PMID: 34141238 PMCID: PMC8207423 DOI: 10.1002/ece3.7506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Foraging on flowers in low light at dusk and dawn comes at an additional cost for insect pollinators with diurnal vision. Nevertheless, some species are known to be frequently active at these times. To explore how early and under which light levels colonies of bumblebees, Bombus terrestris, initiate their foraging activity, we tracked foragers of different body sizes using RFID over 5 consecutive days during warm periods of the flowering season. Bees that left the colony at lower light levels and earlier in the day were larger in size. This result extends the evidence for alloethism in bumblebees and shows that foragers differ in their task specialization depending on body size. By leaving the colony earlier to find and exploit flowers in low light, larger-sized foragers are aided by their more sensitive eyes and can effectively increase their contributions to the colony's food influx. The decision to leave the colony early seems to be further facilitated by knowledge about profitable food resources in specific locations. We observed that experience accrued over many foraging flights determined whether a bee started foraging under lower light levels and earlier in the morning. Larger-sized bees were not more experienced than smaller-sized bees, confirming earlier observations of wide size ranges among active foragers. Overall, we found that most foragers left at higher light levels when they could see well and fly faster. Nevertheless, a small proportion of foragers left the colony shortly after the onset of dawn when light levels were below 10 lux. Our observations suggest that bumblebee colonies have the potential to balance the benefits of deploying large-sized or experienced foragers during dawn against the risks and costs of foraging under low light by regulating the onset of their activity at different stages of the colony's life cycle and in changing environmental conditions.
Collapse
Affiliation(s)
- Katie Hall
- Centre for Research in Animal Behaviour, PsychologyUniversity of ExeterExeterUK
| | - Théo Robert
- Centre for Research in Animal Behaviour, PsychologyUniversity of ExeterExeterUK
- Present address:
Centre for Behaviour and Evolution, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Kevin J. Gaston
- Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | | |
Collapse
|
26
|
Figueroa LL, Compton S, Grab H, McArt SH. Functional traits linked to pathogen prevalence in wild bee communities. Sci Rep 2021; 11:7529. [PMID: 33824396 PMCID: PMC8024325 DOI: 10.1038/s41598-021-87103-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
Reports of pollinator declines have prompted efforts to understand contributing factors and protect vulnerable species. While pathogens can be widespread in bee communities, less is known about factors shaping pathogen prevalence among species. Functional traits are often used to predict susceptibility to stressors, including pathogens, in other species-rich communities. Here, we evaluated the relationship between bee functional traits (body size, phenology, nesting location, sociality, and foraging choice) and prevalence of trypanosomes, neogregarines, and the microsporidian Nosema ceranae in wild bee communities. For the most abundant bee species in our system, Bombus impatiens, we also evaluated the relationship between intra-specific size variation and pathogen prevalence. A trait-based model fit the neogregarine prevalence data better than a taxa-based model, while the taxonomic model provided a better model fit for N. ceranae prevalence, and there was no marked difference between the models for trypanosome prevalence. We found that Augochlorella aurata was more likely to harbor trypanosomes than many other bee taxa. Similarly, we found that bigger bees and those with peak activity later in the season were less likely to harbor trypanosomes, though the effect of size was largely driven by A. aurata. We found no clear intra-specific size patterns for pathogen prevalence in B. impatiens. These results indicate that functional traits are not always better than taxonomic affinity in predicting pathogen prevalence, but can help to explain prevalence depending on the pathogen in species-rich bee communities.
Collapse
Affiliation(s)
- Laura L Figueroa
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Sally Compton
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Heather Grab
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
27
|
Holland JG, Nakayama S, Porfiri M, Nov O, Bloch G. Body Size and Behavioural Plasticity Interact to Influence the Performance of Free-Foraging Bumble Bee Colonies. INSECTS 2021; 12:236. [PMID: 33802199 PMCID: PMC8001989 DOI: 10.3390/insects12030236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Specialisation and plasticity are important for many forms of collective behaviour, but the interplay between these factors is little understood. In insect societies, workers are often developmentally primed to specialise in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labour. Workers may also plastically switch between tasks or vary their effort. The degree to which developmentally primed specialisation limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 free-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse, or a reduced ("homogeneous"), worker body size distribution while keeping the same mean body size, over two trials. Pooling both trials, diverse colonies produced a larger comb mass, an index of colony performance. The link between body size and task was further corroborated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioural profiles based on several thousand observations of individuals, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioural specialisation and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of large and small specialists under certain conditions, but also suggest that plasticity or effort can compensate for reduced (size-related) specialisation. Thus, we suggest that an intricate interplay between specialisation and plasticity is functionally adaptive in bumble bee colonies.
Collapse
Affiliation(s)
- Jacob G. Holland
- Department of Ecology, Evolution & Behaviour, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shinnosuke Nakayama
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; (S.N.); (M.P.)
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; (S.N.); (M.P.)
- Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Oded Nov
- Department of Technology Management and Innovation, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA;
| | - Guy Bloch
- Department of Ecology, Evolution & Behaviour, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
28
|
Costa CP, Fisher K, Guillén BM, Yamanaka N, Bloch G, Woodard SH. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol Evol 2021; 21:20. [PMID: 33563224 PMCID: PMC7871553 DOI: 10.1186/s12862-021-01756-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The developmental fates of offspring have the potential to be influenced by the identity of their care-givers and by the nature of the care that they receive. In animals that exhibit both parental and alloparental care, such as the annually eusocial insects, the influence of care-giver identity can be directly assessed to yield mechanistic and evolutionary insights into the origins and elaboration of brood care. Here, we performed a comparative investigation of maternal and worker brood care in bumble bees, a pollinator group where mothers (queens) rear the first offspring in the nest, and then daughters (workers) assume this role upon their emergence. Specifically, we compared the effects of queen and worker brood care on offspring development and also offspring performance, for a set of traits related to sensory biology, learning, and stress resistance. RESULTS We found that queen-reared workers were smaller-bodied than worker-reared offspring, suggesting that bumble bee queens influence body size determination in their offspring. We also found that queen-reared workers were more resistant to starvation, which might be beneficial for early nesting success. These maternal influences could not be explained by feeding rate, given that we detected a similar offspring feeding frequency in both queens and workers. CONCLUSION Bumble bee queens have a unique influence on the development of the first offspring in the nest, which they rear, relative to worker-reared workers. We propose that bumble bee brood care has been shaped by a suite of evolutionary and ecological factors, which might include a maternal influence on traits that promote survival of incipient colonies.
Collapse
Affiliation(s)
| | - Kaleigh Fisher
- Department of Entomology, University of California, Riverside, CA, USA
| | - Blanca M Guillén
- Department of Entomology, University of California, Riverside, CA, USA
| | - Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, CA, USA.
| |
Collapse
|
29
|
Frasnelli E, Robert T, Chow PKY, Scales B, Gibson S, Manning N, Philippides AO, Collett TS, Hempel de Ibarra N. Small and Large Bumblebees Invest Differently when Learning about Flowers. Curr Biol 2020; 31:1058-1064.e3. [PMID: 33373638 DOI: 10.1016/j.cub.2020.11.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/10/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023]
Abstract
Honeybees1 and bumblebees2 perform learning flights when leaving a newly discovered flower. During these flights, bees spend a portion of the time turning back to face the flower when they can memorize views of the flower and its surroundings. In honeybees, learning flights become longer when the reward offered by a flower is increased.3 We show here that bumblebees behave in a similar way, and we add that bumblebees face an artificial flower more when the concentration of the sucrose solution that the flower provides is higher. The surprising finding is that a bee's size determines what a bumblebee regards as a "low" or "high" concentration and so affects its learning behavior. The larger bees in a sample of foragers only enhance their flower facing when the sucrose concentration is in the upper range of the flowers that are naturally available to bees.4 In contrast, smaller bees invest the same effort in facing flowers whether the concentration is high or low, but their effort is less than that of larger bees. The way in which different-sized bees distribute their effort when learning about flowers parallels the foraging behavior of a colony. Large bumblebees5,6 are able to carry larger loads and explore further from the nest than smaller ones.7 Small ones with a smaller flight range and carrying capacity cannot afford to be as selective and so accept a wider range of flowers. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Elisa Frasnelli
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK
| | - Théo Robert
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK
| | - Pizza Ka Yee Chow
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK
| | - Ben Scales
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK
| | - Sam Gibson
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK
| | - Nicola Manning
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK
| | - Andrew O Philippides
- School of Engineering and Informatics, University of Sussex, Chichester Building, Falmer, Brighton BN1 9QJ, UK
| | - Thomas S Collett
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, UK.
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX1 4QG, UK.
| |
Collapse
|
30
|
Beer K, Helfrich-Förster C. Post-embryonic Development of the Circadian Clock Seems to Correlate With Social Life Style in Bees. Front Cell Dev Biol 2020; 8:581323. [PMID: 33282863 PMCID: PMC7689364 DOI: 10.3389/fcell.2020.581323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Social life style can influence many aspects of an animal’s daily life, but it has not yet been clarified, whether development of the circadian clock in social and solitary living bees differs. In a comparative study, with the social honey bee, Apis mellifera, and the solitary mason bee, Osmia bicornis, we now found indications for a differentially timed clock development in social and solitary bees. Newly emerged solitary bees showed rhythmic locomotion right away and the number of neurons in the brain that produce the clock component pigment-dispersing factor (PDF) did not change during aging of the adult solitary bee. Honey bees on the other hand, showed no circadian locomotion directly after emergence and the neuronal clock network continued to grow after emergence. Social bees appear to emerge at an early developmental stage at which the circadian clock is still immature, but bees are already able to fulfill in-hive tasks.
Collapse
Affiliation(s)
- Katharina Beer
- Department of Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
31
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
32
|
Pandey A, Motro U, Bloch G. Juvenile hormone affects the development and strength of circadian rhythms in young bumble bee (Bombus terrestris) workers. Neurobiol Sleep Circadian Rhythms 2020; 9:100056. [PMID: 33364524 PMCID: PMC7752729 DOI: 10.1016/j.nbscr.2020.100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian and endocrine systems influence many physiological processes in animals, but little is known on the ways they interact in insects. We tested the hypothesis that juvenile hormone (JH) influences circadian rhythms in the social bumble bee Bombus terrestris. JH is the major gonadotropin in this species coordinating processes such as vitellogenesis, oogenesis, wax production, and behaviors associated with reproduction. It is unknown however, whether it also influences circadian processes. We topically treated newly-emerged bees with the allatoxin Precocene-I (P-I) to reduce circulating JH titers and applied the natural JH (JH-III) for replacement therapy. We repeated this experiment in three trials, each with bees from different source colonies. Measurements of ovarian activity suggest that our JH manipulations were effective; bees treated with P-I had inactive ovaries, and this effect was fully recovered by subsequent JH treatment. We found that JH augments the strength of circadian rhythms and the pace of rhythm development in individually isolated newly emerged worker bees. JH manipulation did not affect the free-running circadian period, overall level of locomotor activity, sleep amount, or sleep structure. Given that acute manipulation at an early age produced relatively long-lasting effects, we propose that JH effects on circadian rhythms are mostly organizational, accelerating the development or integration of the circadian system.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uzi Motro
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Iino S, Shiota Y, Nishimura M, Asada S, Ono M, Kubo T. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Sci Rep 2020; 10:7887. [PMID: 32398802 PMCID: PMC7217898 DOI: 10.1038/s41598-020-64701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Honey bees and bumble bees belong to the same family (Apidae) and their workers exhibit a division of labor, but the style of division of labor differs between species. The molecular and neural bases of the species-specific social behaviors of Apidae workers have not been analyzed. Here, we focused on two immediate early genes, hormone receptor 38 (HR38) and early growth response gene-1 (Egr1), and late-upregulated ecdysone receptor (EcR), all of which are upregulated by foraging flight and expressed preferentially in the small-type Kenyon cells of the mushroom bodies (MBs) in the honey bee brain. Gene expression analyses in Bombus ignitus revealed that HR38 and Egr1, but not EcR, exhibited an immediate early response during awakening from CO2 anesthesia. Both premature mRNA for HR38 and mature mRNA for Egr1 were induced during foraging flight, and mRNAs for HR38 and Egr1 were sparsely detected inside the whole MB calyces. In contrast, EcR expression was higher in forager brains than in nurse bees and was expressed preferentially in the small-type Kenyon cells inside the MBs. Our findings suggest that Kenyon cells are active during foraging flight and that the function of late-upregulated EcR in the brain is conserved among these Apidae species.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yurika Shiota
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masakazu Nishimura
- Laboratory of Entomology, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Shinichi Asada
- Bioresource Sciences Major, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Masato Ono
- Laboratory of Entomology, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
34
|
Siehler O, Bloch G. Colony Volatiles and Substrate-borne Vibrations Entrain Circadian Rhythms and Are Potential Cues Mediating Social Synchronization in Honey Bee Colonies. J Biol Rhythms 2020; 35:246-256. [PMID: 32295458 DOI: 10.1177/0748730420913362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Internal circadian clocks organize animal behavior and physiology and are entrained by ecologically relevant external time-givers such as light and temperature cycles. In the highly social honey bee, social time-givers are potent and can override photic entrainment, but the cues mediating social entrainment are unknown. Here, we tested whether substrate-borne vibrations and hive volatiles can mediate social synchronization in honey bees. We first placed newly emerged worker bees on the same or on a different substrate on which we placed cages with foragers entrained to ambient day-night cycles, while minimizing the spread of volatiles between cages. In the second experiment, we exposed young bees to constant airflow drawn from either a free-foraging colony or a similar-size control hive containing only heated empty honeycombs, while minimizing transfer of substrate-borne vibrations between cages. After 6 days, we isolated each focal bee in an individual cage in an environmental chamber and monitored her locomotor activity. We repeated each experiment 5 times, each trial with bees from a different source colony, monitoring a total of more than 1000 bees representing diverse genotypes. We found that bees placed on the same substrate as foragers showed a stronger phase coherence and a phase more similar to that of foragers compared with bees placed on a different substrate. In the second experiment, bees exposed to air drawn from a colony showed a stronger phase coherence and a phase more similar to that of foragers compared with bees exposed to air from an empty hive. These findings lend credence to the hypothesis that surrogates of activity entrain circadian rhythms and suggest that multiple social cues can act in concert to entrain social insect colonies to a common phase.
Collapse
Affiliation(s)
- Oliver Siehler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel.,The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, Israel
| |
Collapse
|
35
|
Pandey A, Motro U, Bloch G. Juvenile hormone interacts with multiple factors to modulate aggression and dominance in groups of orphan bumble bee (Bombus terrestris) workers. Horm Behav 2020; 117:104602. [PMID: 31647921 DOI: 10.1016/j.yhbeh.2019.104602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Juvenile hormone (JH) is a key regulator of insect development and reproduction. Given that JH commonly affects adult insect fertility, it has been hypothesized to also regulate behaviors such as dominance and aggression that are associated with reproduction. We tested this hypothesis in the bumble bee Bombus terrestris for which JH has been shown to be the major gonadotropin. We used the allatoxin Precocene-I (P-I) to reduce hemolymph JH titers and replacement therapy with the natural JH to revert this effect. In small orphan groups of workers with similar body size but mixed treatment, P-I treated bees showed lower aggressiveness, oogenesis, and dominance rank compared with control and replacement therapy treated bees. In similar groups in which all bees were treated similarly, there was a clear dominance hierarchy, even in P-I and replacement therapy treatment groups in which the bees showed similar levels of ovarian activation. In a similar experiment in which bees differed in body size, larger bees were more likely to be dominant despite their similar JH treatment and ovarian state. In the last experiment, we show that JH manipulation does not affect dominance rank in groups that had already established a stable dominance hierarchy. These findings solve previous ambiguities concerning whether or not JH affects dominance in bumble bees. JH positively affects dominance, but bees with similar levels of JH can nevertheless establish dominance hierarchies. Thus, multiple factors including JH, body size, and previous experience affect dominance and aggression in social bumble bees.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Israel
| | - Uzi Motro
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
36
|
Chole H, Woodard SH, Bloch G. Body size variation in bees: regulation, mechanisms, and relationship to social organization. CURRENT OPINION IN INSECT SCIENCE 2019; 35:77-87. [PMID: 31426016 DOI: 10.1016/j.cois.2019.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Size polymorphism is common in bees, and is determined by environmental factors such as temperature, brood cell size, and the diet provided to developing larvae. In social bees, these factors are further influenced by intricate interactions between the queen, workers, and the developing brood which eventually determine the final size and caste of developing larvae. Environmental and social factors act in part on juvenile hormone and ecdysteroids, which are key hormonal regulators of body size and caste determination. In some social bees, body size variation is central for social organization because it structures reproductive division of labor, task allocation among workers, or both. At ecological scales, body size also impacts bee-mediated pollination services in solitary and social species by influencing floral visitation and pollination efficacy.
Collapse
Affiliation(s)
- Hanna Chole
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sarah Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
37
|
Nagari M, Gera A, Jonsson S, Bloch G. Bumble Bee Workers Give Up Sleep to Care for Offspring that Are Not Their Own. Curr Biol 2019; 29:3488-3493.e4. [DOI: 10.1016/j.cub.2019.07.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 01/26/2023]
|
38
|
Watrous KM, Duennes MA, Woodard SH. Pollen Diet Composition Impacts Early Nesting Success in Queen Bumble Bees Bombus impatiens Cresson(Hymenoptera: Apidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:711-717. [PMID: 31173096 DOI: 10.1093/ee/nvz043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Bumble bees are generalist pollinators that typically collect floral rewards from a wide array of flowering plant species. Among the greatest threats to wild bumble bee populations worldwide, many of which are declining, is a loss of floral resource abundance and diversity in the landscapes they inhabit. We examined how composition of pollen diet impacts early nesting success in laboratory-reared queens of the bumble bee Bombus impatiens. Specifically, we provided queens and their young nests with one of three pollen diets, each of which was dominated by a single pollen type, and explored how this diet treatment influenced the length of time until queens initiated nests, total counts of brood in the nest at the end of the experiment (8 wk later), and the size and weight of adult offspring produced. We found that the amount of later-stage brood (pupae and/or adults) produced by recently-initiated nests was strongly impacted by pollen diet. For example, on average 66% fewer later-stage brood were found in nests provided with the Cistus pollen Linnaeus (Cistaceae), relative to the predominantly Asteraceae pollen. This finding suggests that particular pollen diet compositions may delay larval growth, which delays colony development and may ultimately be detrimental for young nests. This study sheds light on how one of the leading stressors for bumble bees (nutritional stress) may negatively impact populations through its influence on brood production during the nest-founding stage of the colony cycle.
Collapse
Affiliation(s)
| | | | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, CA
| |
Collapse
|
39
|
RNA editing is abundant and correlates with task performance in a social bumblebee. Nat Commun 2019; 10:1605. [PMID: 30962428 PMCID: PMC6453909 DOI: 10.1038/s41467-019-09543-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Colonies of the bumblebee Bombus terrestris are characterized by wide phenotypic variability among genetically similar full-sister workers, suggesting a major role for epigenetic processes. Here, we report a high level of ADAR-mediated RNA editing in the bumblebee, despite the lack of an ADAR1-homolog. We identify 1.15 million unique genomic sites, and 164 recoding sites residing in 100 protein coding genes, including ion channels, transporters, and receptors predicted to affect brain function and behavior. Some edited sites are similarly edited in other insects, cephalopods and even mammals. The global editing level of protein coding and non-coding transcripts weakly correlates with task performance (brood care vs. foraging), but not affected by dominance rank or juvenile hormone known to influence physiology and behavior. Taken together, our findings show that brain editing levels are high in naturally behaving bees, and may be regulated by relatively short-term effects associated with brood care or foraging activities.
Collapse
|
40
|
Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C. Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 2019; 8:rsob.170224. [PMID: 29321240 PMCID: PMC5795053 DOI: 10.1098/rsob.170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Pigment-Dispersing Factor (PDF) is an important neuropeptide in the brain circadian network of Drosophila and other insects, but its role in bees in which the circadian clock influences complex behaviour is not well understood. We combined high-resolution neuroanatomical characterizations, quantification of PDF levels over the day and brain injections of synthetic PDF peptide to study the role of PDF in the honey bee Apis mellifera We show that PDF co-localizes with the clock protein Period (PER) in a cluster of laterally located neurons and that the widespread arborizations of these PER/PDF neurons are in close vicinity to other PER-positive cells (neurons and glia). PDF-immunostaining intensity oscillates in a diurnal and circadian manner with possible influences for age or worker task on synchrony of oscillations in different brain areas. Finally, PDF injection into the area between optic lobes and the central brain at the end of the subjective day produced a consistent trend of phase-delayed circadian rhythms in locomotor activity. Altogether, these results are consistent with the hypothesis that PDF is a neuromodulator that conveys circadian information from pacemaker cells to brain centres involved in diverse functions including locomotion, time memory and sun-compass orientation.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Esther Kolbe
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Noa B Kahana
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nadav Yayon
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron Weiss
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Guy Bloch
- Department of Ecology, Evolution, and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
41
|
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pankaj Yadav
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
42
|
Malfi RL, Walter JA, Roulston TH, Stuligross C, McIntosh S, Bauer L. The influence of conopid flies on bumble bee colony productivity under different food resource conditions. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rosemary L. Malfi
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia 22904 USA
| | - Jonathan A. Walter
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia 22904 USA
- Department of Biology; Virginia Commonwealth University; Richmond Virginia 23284 USA
| | - T'ai H. Roulston
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia 22904 USA
| | - Clara Stuligross
- Department of Environmental Studies; Earlham College; Richmond Indiana 47374 USA
| | - Sarah McIntosh
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia 22904 USA
| | - Lewis Bauer
- Charlottesville City Public Schools; Charlottesville Virginia 22903 USA
| |
Collapse
|
43
|
Bloch G, Bar-Shai N, Cytter Y, Green R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0256. [PMID: 28993499 DOI: 10.1098/rstb.2016.0256] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/28/2022] Open
Abstract
The interactions between flowering plants and insect pollinators shape ecological communities and provide one of the best examples of coevolution. Although these interactions have received much attention in both ecology and evolution, their temporal aspects are little explored. Here we review studies on the circadian organization of pollination-related traits in bees and flowers. Research, mostly with the honeybee, Apis mellifera, has implicated the circadian clock in key aspects of their foraging for flower rewards. These include anticipation, timing of visits to flowers at specified locations and time-compensated sun-compass orientation. Floral rhythms in traits such as petal opening, scent release and reward availability also show robust daily rhythms. However, in only few studies was it possible to adequately determine whether these oscillations are driven by external time givers such as light and temperature cycles, or endogenous circadian clocks. The interplay between the timing of flower and pollinator rhythms may be ecologically significant. Circadian regulation of pollination-related traits in only few species may influence the entire pollination network and thus affect community structure and local biodiversity. We speculate that these intricate chronobiological interactions may be vulnerable to anthropogenic effects such as the introduction of alien invasive species, pesticides or environmental pollutants.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Noam Bar-Shai
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel.,Jerusalem Botanical Gardens, Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Yotam Cytter
- Department of Plant and Environmental Sciences, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Rachel Green
- Department of Plant and Environmental Sciences, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
44
|
Parmentier A, Meeus I, Van Nieuwerburgh F, Deforce D, Vandamme P, Smagghe G. A different gut microbial community between larvae and adults of a wild bumblebee nest (Bombus pascuorum). INSECT SCIENCE 2018; 25:66-74. [PMID: 27531583 DOI: 10.1111/1744-7917.12381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 05/14/2023]
Abstract
Although the gut microbial communities in adult bumblebees and their associated functionalities are widely studied, descriptive data on the larval gut microbiota are still limited. The gut microbiota of a fully sampled wild Bombus pascuorum nest has been characterized, using the multiplexed Illumina MiSeq 16S ribosomal RNA amplicon sequencing technique. The nesters and foragers inhabiting the same nest showed the typical core bacterial sequences and only marginal differences in their characterized gut microbiota. The gut microbial communities within the adult and larval specimens differed strongly, as the typical core gut bacteria in the adult bumblebees are absent in the larval bumblebees. The bacterial communities within the larval gut are dominated by bacterial phylotypes of Enterobacteriaceae and Lactobacillaceae, supplemented with genera belonging to Corynebacteriales and Bacillales. The function of this larval gut microbiota, being different from the adult, remains to be determined.
Collapse
Affiliation(s)
- Anneleen Parmentier
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ivan Meeus
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Fujioka H, Abe MS, Fuchikawa T, Tsuji K, Shimada M, Okada Y. Ant circadian activity associated with brood care type. Biol Lett 2017; 13:rsbl.2016.0743. [PMID: 28148829 DOI: 10.1098/rsbl.2016.0743] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 11/12/2022] Open
Abstract
In group-living animals, social interactions influence various traits including circadian activity. Maternal care, in particular, can have a strong effect on the circadian activity of parents or nurses across taxa. In social insects, nest-mates are known to have diverse activity rhythms; however, what kind of social environment is crucial in shaping an individual's rhythm is largely unknown. Here, we show that the focal brood types being taken care of (i.e. egg, larva and pupa) have significant effects on individual activity/rest rhythm, using the monomorphic ant Diacamma (putative species indicum). When isolated from a colony, nurses exhibited a clear circadian rhythm. However, when paired with eggs or larvae, they exhibited around-the-clock activity with no apparent rhythm. In contrast, a clear activity rhythm emerged when nurses were paired with a pupa, requiring little care. Such brood-type-specific changes in circadian activity are considered to arise from the difference in caretaking demands. Our finding may contribute to the understanding of the organization of a colony in the context of behavioural variability under different microenvironments.
Collapse
Affiliation(s)
- Haruna Fujioka
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Masato S Abe
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan.,National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.,JST, ERATO, Kawarabayashi Large Graph Project, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Taro Fuchikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Kazuki Tsuji
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Masakazu Shimada
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yasukazu Okada
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
46
|
Nagari M, Szyszka P, Galizia G, Bloch G. Task-Related Phasing of Circadian Rhythms in Antennal Responsiveness to Odorants and Pheromones in Honeybees. J Biol Rhythms 2017; 32:593-608. [PMID: 28984167 DOI: 10.1177/0748730417733573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The insect antennae receive olfactory information from the environment. In some insects, it has been shown that antennal responsiveness is dynamically regulated by circadian clocks. However, it is unknown how general this phenomenon is and what functions it serves. Circadian regulation in honeybee workers is particularly interesting in this regard because they show natural task-related chronobiological plasticity. Forager bees show strong circadian rhythms in behavior and brain gene expression, whereas nurse bees tend brood around-the-clock and have attenuated circadian rhythms in activity and whole-brain gene expression. Here, we tested the hypothesis that there is task-related plasticity in circadian rhythms of antennal responsiveness to odorants in worker honeybees. We used electroantennogram (EAG) to measure the antennal responsiveness of nurses and foragers to general odorants and pheromones around the day. The capacity to track 10-Hz odorant pulses varied with time of day for both task groups but with different phases. The antennal pulse-tracking capacity was higher during the subjective day for the day-active foragers, whereas it was better during the night for around-the-clock active nurses. The task-related phases of pulse-tracking rhythms were similar for all the tested stimuli. We also found evidence for circadian rhythms in the EAG response magnitude of foragers but not of nurses. To the best of our knowledge, these results provide the first evidence for circadian regulation of antennal olfactory responsiveness and odorant pulse-tracking capacity in bees or any other hymenopteran insect. Importantly, our study shows for the first time that the circadian phase of olfactory responsiveness may be socially regulated.
Collapse
Affiliation(s)
- Moshe Nagari
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Szyszka
- Department of Neuroscience, University of Konstanz, Germany
| | | | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
47
|
Nagari M, Brenner Y, Bloch G. Nurse honeybee workers tend capped-brood, which does not require feeding, around-the-clock. J Exp Biol 2017; 220:4130-4140. [DOI: 10.1242/jeb.166884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
“Nurse” honeybees tend brood around-the-clock with attenuated or no circadian rhythms, but the brood signals inducing this behavior remain elusive. We first tested the hypothesis that worker circadian rhythms are regulated by brood pheromones. We monitored locomotor activity of individually isolated nurse bees that were either exposed to various doses of larval extracts or synthetic brood ester pheromone (BEP). Bees orally treated with larvae extracts showed attenuated circadian rhythms in one of four tested colonies; a similar but statistically non-significant trend was seen in two additional colonies. Nurse bees treated with synthetic BEP showed rhythm attenuation in one of three tested colonies. Next, we tested the hypothesis that capped brood, which does not require feeding, nevertheless induces around-the-clock activity in nurses. By combining a new protocol that enables brood care by individually isolated nurse bees, detailed behavioral observations, and automatic high resolution monitoring of locomotor activity, we found that isolated nurses tended capped brood around-the-clock with attenuated circadian rhythms. Bees individually isolated in similar cages but without brood, showed strong circadian rhythms in locomotor activity and rest. This study shows for the first time that the need to feed hungry larvae is not the only factor accounting for around-the-clock activity in nurse bees. Our results further suggest that the transition between activity with and without circadian rhythms is not a simple switch triggered by brood pheromones. Around-the-clock tending may enhance brood development and health in multiple ways that may include improved larval feeding, thermoregulation and hygienic behavior.
Collapse
Affiliation(s)
- Moshe Nagari
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| | - Yafit Brenner
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| | - Guy Bloch
- The Hebrew University of Jerusalem, The Alexander A. Silberman Institute of Life Sciences, The Department of Evolution, Ecology and Behavior, Israel
| |
Collapse
|
48
|
Steen R. Diel activity, frequency and visit duration of pollinators in focal plants:
in situ
automatic camera monitoring and data processing. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12654] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ronny Steen
- Department of Ecology and Natural Resource Management Norwegian University of Life Sciences Ås NO‐1432 Norway
| |
Collapse
|
49
|
Shpigler HY, Siegel AJ, Huang ZY, Bloch G. No effect of juvenile hormone on task performance in a bumblebee (Bombus terrestris) supports an evolutionary link between endocrine signaling and social complexity. Horm Behav 2016; 85:67-75. [PMID: 27503109 DOI: 10.1016/j.yhbeh.2016.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023]
Abstract
A hallmark of insect societies is a division of labor among workers specializing in different tasks. In bumblebees the division of labor is related to body size; relatively small workers are more likely to stay inside the nest and tend ("nurse") brood, whereas their larger sisters are more likely to forage. Despite their ecological and economic importance, very little is known about the endocrine regulation of division of labor in bumblebees. We studied the influence of juvenile hormone (JH) on task performance in the bumblebee Bombus terrestris. We first used a radioimmunoassay to measure circulating JH titers in workers specializing in nursing and foraging activities. Next, we developed new protocols for manipulating JH titers by combining a size-adjusted topical treatment with the allatotoxin Precocene-I and replacement therapy with JH-III. Finally, we used this protocol to test the influence of JH on task performance. JH levels were either similar for nurses and foragers (three colonies), or higher in nurses (two colonies). Nurses had better developed ovaries and JH levels were typically positively correlated with ovarian state. Manipulation of JH titers influenced ovarian development and wax secretion, consistent with earlier allatectomy studies. These manipulations however, did not affect nursing or foraging activity, or the likelihood to specialize in nursing or foraging activity. These findings contrast with honeybees in which JH influences age-related division of labor but not adult female fertility. Thus, the evolution of complex societies in bees was associated with modifications in the way JH influences social behavior.
Collapse
Affiliation(s)
- Hagai Y Shpigler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam J Siegel
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
50
|
Meshi A, Bloch G. Monitoring Circadian Rhythms of Individual Honey Bees in a Social Environment Reveals Social Influences on Postembryonic Ontogeny of Activity Rhythms. J Biol Rhythms 2016; 22:343-55. [PMID: 17660451 DOI: 10.1177/0748730407301989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Social factors constitute an important component of the environment of many animals and have a profound influence on their physiology and behavior. Studies of social influences on circadian rhythms have been hampered by a methodological trade-off: automatic data acquisition systems obtain high-quality data but are effective only for individually isolated animals and therefore compromise by requiring a context that may not be sociobiologically relevant. Human observers can monitor animal activity in complex social environments but are limited in the resolution and quality of data that can be gathered. The authors developed and validated a method for prolonged, automatic, high-quality monitoring of focal honey bees in a relatively complex social environment and with minimal illumination. The method can be adapted for studies on other animals. The authors show that the system provides a reliable estimation of the actual path of a focal bee, only rarely misses its location for > 1 min, and removes most nonspecific signals from the background. Using this system, the authors provide the first evidence of social influence on the ontogeny of activity rhythms. Young bees that were housed with old foragers show ~24-h rhythms in locomotor activity at a younger age and with stronger rhythms than bees housed with a similar number of young bees. By contrast, the maturation of the hypopharyngeal glands was slower in bees housed with foragers, similar to findings in previous studies. The morphology and function of the hypopharyngeal glands vary along with age-based division of labor. Therefore, these findings indicate that social inhibition of task-related maturation was effective in the experimental setup. This study suggests that although the ontogeny of circadian rhythms is typically correlated with the age-based division of labor, their social regulation is different.
Collapse
Affiliation(s)
- A Meshi
- Department of Evolution, Systematics and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|