1
|
Gupta S, Alluri RK, Rose GJ, Bee MA. Neural basis of acoustic species recognition in a cryptic species complex. J Exp Biol 2021; 224:jeb243405. [PMID: 34796902 PMCID: PMC10658901 DOI: 10.1242/jeb.243405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
Abstract
Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
| | - Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Koenig LA, Gallant JR. Sperm competition, sexual selection and the diverse reproductive biology of Osteoglossiformes. JOURNAL OF FISH BIOLOGY 2021; 99:740-754. [PMID: 33973234 DOI: 10.1111/jfb.14779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Osteoglossiformes are an order of "bony tongue" fish considered the most primitive living order of teleosts. This review seeks to consolidate known hypotheses and identify gaps in the literature regarding the adaptive significance of diverse reproductive traits and behaviour of osteoglossiforms within the context of sperm competition and the wider lens of sexual selection. Many of the unusual traits observed in osteoglossiforms indicate low levels of sperm competition; most species have unpaired gonads, and mormyroids are the only known vertebrate species with aflagellate sperm. Several osteoglossiform families have reproductive anatomy associated with internal fertilization but perform external fertilization, which may be representative of the evolutionary transition from external to internal fertilization and putative trade-offs between sperm competition and the environment. They also employ every type of parental care seen in vertebrates. Geographically widespread and basally situated within teleosts, osteoglossiforms present an effective study system for understanding how sperm competition and sexual selection have shaped the evolution of teleost reproductive behaviour, sperm and gonad morphology, fertilization strategies, courtship and paternal care, and sexual conflict. The authors suggest that the patterns seen in osteoglossiform reproduction are a microcosm of teleost reproductive diversity, potentially signifying the genetic plasticity that contributed to the adaptive radiation of teleost fishes.
Collapse
Affiliation(s)
- Lauren A Koenig
- Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Jason R Gallant
- Department of Integrative Biology, Graduate Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Waddell JC, Caputi AA. Electrocommunication in pulse Gymnotiformes: the role of electric organ discharge (EOD) time course in species identification. ACTA ACUST UNITED AC 2020; 223:jeb.226340. [PMID: 32748795 DOI: 10.1242/jeb.226340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022]
Abstract
Understanding how individuals detect and recognize signals emitted by conspecifics is fundamental to discussions of animal communication. The species pair Gymnotus omarorum and Brachyhypopomus gauderio, found in syntopy in Uruguay, emit species-specific electric organ discharge (EOD) that can be sensed by both species. The aim of this study was to unveil whether either of these species is able to identify a conspecific EOD, and to investigate distinctive recognition signal features. We designed a forced-choice experiment using a natural behavior (i.e. tracking electric field lines towards their source) in which each fish had to choose between a conspecific and a heterospecific electric field. We found a clear pattern of preference for a conspecific waveform even when pulses were played within 1 Hz of the same rate. By manipulating the time course of the explored signals, we found that the signal features for preference between conspecific and heterospecific waveforms were embedded in the time course of the signals. This study provides evidence that pulse Gymnotiformes can recognize a conspecific exclusively through species-specific electrosensory signals. It also suggests that the key signal features for species differentiation are probably encoded by burst coder electroreceptors. Given these results, and because receptors are sharply tuned to amplitude spectra and also tuned to phase spectra, we extend the electric color hypothesis used in the evaluation of objects to apply to communication signals.
Collapse
Affiliation(s)
- Joseph C Waddell
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| |
Collapse
|
4
|
Picq S, Sperling J, Cheng CJ, Carlson BA, Gallant JR. Genetic drift does not sufficiently explain patterns of electric signal variation among populations of the mormyrid electric fish Paramormyrops kingsleyae. Evolution 2020; 74:911-935. [PMID: 32187650 PMCID: PMC7816287 DOI: 10.1111/evo.13953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Communication signals serve crucial survival and reproductive functions. In Gabon, the widely distributed mormyrid fish Paramormyrops kingsleyae emits an electric organ discharge (EOD) signal with a dual role in communication and electrolocation that exhibits remarkable variation: populations of P. kingsleyae have either biphasic or triphasic EODs, a feature that characterizes interspecific signal diversity among the Paramormyrops genus. We quantified variation in EODs of 327 P. kingsleyae from nine populations and compared it to genetic variation estimated from microsatellite loci. We found no correlation between electric signal and genetic distances, suggesting that EOD divergence cannot be explained by drift alone. An alternative hypothesis is that EOD differences are used for mate discrimination, which would require P. kingsleyae be capable of differentiating between divergent EOD waveforms. Using a habituation-dishabituation assay, we found that P. kingsleyae can discriminate between biphasic and triphasic EOD types. Nonetheless, patterns of genetic and electric organ morphology divergence provide evidence for hybridization between these signal types. Although reproductive isolation with respect to signal type is incomplete, our results suggest that EOD variation in P. kingsleyae could be a cue for assortative mating.
Collapse
Affiliation(s)
- Sophie Picq
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| | - Joshua Sperling
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Catherine J. Cheng
- Cornell University Department of Neurobiology and Behavior, Ithaca NY 14853 USA
| | - Bruce A. Carlson
- Washington University in St. Louis Department of Biology, St. Louis, MO 63130 USA
| | - Jason R. Gallant
- Michigan State University Department of Integrative Biology, East Lansing MI 48824 USA
| |
Collapse
|
5
|
Abstract
Neuroscience has a long, rich history in embracing unusual animals for research. Over the past several decades, there has been a technology-driven bottleneck in the species used for neuroscience research. However, an oncoming wave of technologies applicable to many animals hold promise for enabling researchers to address challenging scientific questions that cannot be solved using traditional laboratory animals. Here, we discuss how leveraging the convergent evolution of physiological or behavioral phenotypes can empower research mapping genotype to phenotype interactions. We present two case studies using electric fish and poison frogs and discuss how comparative work can teach us about evolutionary constraint and flexibility at various levels of biological organization. We also offer advice on the potential and pitfalls of establishing novel model systems in neuroscience research. Finally, we end with a discussion on the use of charismatic animals in neuroscience research and their utility in public outreach. Overall, we argue that convergent evolution frameworks can help identify generalizable principles of neuroscience.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
6
|
Losilla M, Luecke DM, Gallant JR. The transcriptional correlates of divergent electric organ discharges in Paramormyrops electric fish. BMC Evol Biol 2020; 20:6. [PMID: 31918666 PMCID: PMC6953315 DOI: 10.1186/s12862-019-1572-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
Background Understanding the genomic basis of phenotypic diversity can be greatly facilitated by examining adaptive radiations with hypervariable traits. In this study, we focus on a rapidly diverged species group of mormyrid electric fish in the genus Paramormyrops, which are characterized by extensive phenotypic variation in electric organ discharges (EODs). The main components of EOD diversity are waveform duration, complexity and polarity. Using an RNA-sequencing based approach, we sought to identify gene expression correlates for each of these EOD waveform features by comparing 11 specimens of Paramormyrops that exhibit variation in these features. Results Patterns of gene expression among Paramormyrops are highly correlated, and 3274 genes (16%) were differentially expressed. Using our most restrictive criteria, we detected 145–183 differentially expressed genes correlated with each EOD feature, with little overlap between them. The predicted functions of several of these genes are related to extracellular matrix, cation homeostasis, lipid metabolism, and cytoskeletal and sarcomeric proteins. These genes are of significant interest given the known morphological differences between electric organs that underlie differences in the EOD waveform features studied. Conclusions In this study, we identified plausible candidate genes that may contribute to phenotypic differences in EOD waveforms among a rapidly diverged group of mormyrid electric fish. These genes may be important targets of selection in the evolution of species-specific differences in mate-recognition signals.
Collapse
Affiliation(s)
- Mauricio Losilla
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.,Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - David Michael Luecke
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.,Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Jason R Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
8
|
Nagel R, Kirschbaum F, Hofmann V, Engelmann J, Tiedemann R. Electric pulse characteristics can enable species recognition in African weakly electric fish species. Sci Rep 2018; 8:10799. [PMID: 30018286 PMCID: PMC6050243 DOI: 10.1038/s41598-018-29132-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/21/2018] [Indexed: 12/02/2022] Open
Abstract
Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon.
Collapse
Affiliation(s)
- Rebecca Nagel
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry/Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Frank Kirschbaum
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, 10115, Berlin, Germany
| | - Volker Hofmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University, 33602, Bielefeld, Germany
- Faculty of Medicine, Department of Physiology, McGill University, H3G1Y6 Montreal, Quebec, Canada
| | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology - Center of Excellence, Bielefeld University, 33602, Bielefeld, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry/Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
9
|
Nagel R, Kirschbaum F, Engelmann J, Hofmann V, Pawelzik F, Tiedemann R. Male-mediated species recognition among African weakly electric fishes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170443. [PMID: 29515818 PMCID: PMC5830707 DOI: 10.1098/rsos.170443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/15/2018] [Indexed: 05/16/2023]
Abstract
Effective communication among sympatric species is often instrumental for behavioural isolation, where the failure to successfully discriminate between potential mates could lead to less fit hybrid offspring. Discrimination between con- and heterospecifics tends to occur more often in the sex that invests more in offspring production, i.e. females, but males may also mediate reproductive isolation. In this study, we show that among two Campylomormyrus African weakly electric fish species, males preferentially associate with conspecific females during choice tests using live fish as stimuli, i.e. when all sensory modalities potentially used for communication were present. We then conducted playback experiments to determine whether the species-specific electric organ discharge (EOD) used for electrocommunication serves as the cue for this conspecific association preference. Interestingly, only C. compressirostris males associated significantly more with the conspecific EOD waveform when playback stimuli were provided, while no such association preference was observed in C. tamandua males. Given our results, the EOD appears to serve, in part, as a male-mediated pre-zygotic isolation mechanism among sympatric species. However, the failure of C. tamandua males to discriminate between con- and heterospecific playback discharges suggests that multiple modalities may be necessary for species recognition in some African weakly electric fish species.
Collapse
Affiliation(s)
- Rebecca Nagel
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, 14476 Potsdam, Germany
| | - Frank Kirschbaum
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Unit of Biology and Ecology of Fishes, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Jacob Engelmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology – Center of Excellence, Bielefeld University, 33602 Bielefeld, Germany
| | - Volker Hofmann
- Active Sensing, Faculty of Biology, Cognitive Interaction Technology – Center of Excellence, Bielefeld University, 33602 Bielefeld, Germany
| | - Felix Pawelzik
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, 14476 Potsdam, Germany
| | - Ralph Tiedemann
- Institute of Biochemistry and Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Gallant JR, Losilla M, Tomlinson C, Warren WC. The Genome and Adult Somatic Transcriptome of the Mormyrid Electric Fish Paramormyrops kingsleyae. Genome Biol Evol 2017; 9:3525-3530. [PMID: 29240929 PMCID: PMC5751062 DOI: 10.1093/gbe/evx265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
Several studies have begun to elucidate the genetic and developmental processes underlying major vertebrate traits. Few of these traits have evolved repeatedly in vertebrates, preventing the analysis of molecular mechanisms underlying these traits comparatively. Electric organs have evolved multiple times among vertebrates, presenting a unique opportunity to understand the degree of constraint and repeatability of the evolutionary processes underlying novel vertebrate traits. As there is now a completed genome sequence representing South American electric eels, we were motivated to obtain genomic sequence from a linage that independently evolved electric organs to facilitate future comparative analyses of the evolution and development of electric organs. We report here the sequencing and de novo assembly of the genome of the mormyrid Paramormyrops kingsleyae using short-read sequencing. In addition, we have completed a somatic transcriptome from 11 tissues to construct a gene expression atlas of predicted genes from this assembly, enabling us to identify candidate housekeeping genes as well as genes differentially expressed in the major somatic tissues of the mormyrid electric fish. We anticipate that this resource will greatly facilitate comparative studies on the evolution and development of electric organs and electroreceptors.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Integrative Biology, Michigan State University
| | | | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St Louis
| | | |
Collapse
|
11
|
Picq S, Alda F, Bermingham E, Krahe R. Drift-driven evolution of electric signals in a Neotropical knifefish. Evolution 2016; 70:2134-44. [PMID: 27436179 DOI: 10.1111/evo.13010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 04/12/2016] [Accepted: 07/11/2016] [Indexed: 11/29/2022]
Abstract
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.
Collapse
Affiliation(s)
- Sophie Picq
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada. .,Smithsonian Tropical Research Institute, Apartado 0843-03092 Balboa, Ancón, Republic of Panama. .,Current Address: GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes, Düsternbrooker Weg 20, Kiel, 24105, Germany.
| | - Fernando Alda
- Smithsonian Tropical Research Institute, Apartado 0843-03092 Balboa, Ancón, Republic of Panama.,Current Address: Museum of Natural Science, Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA
| | - Eldredge Bermingham
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada.,Smithsonian Tropical Research Institute, Apartado 0843-03092 Balboa, Ancón, Republic of Panama.,Current Address: Patricia and Phillip Frost Museum of Science, 3280 South Miami Avenue, Miami, FL
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
12
|
Carlson BA. Differences in electrosensory anatomy and social behavior in an area of sympatry between two species of mormyrid electric fishes. ACTA ACUST UNITED AC 2015; 219:31-43. [PMID: 26567347 DOI: 10.1242/jeb.127720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 01/15/2023]
Abstract
Sensory systems play a key role in social behavior by mediating the detection and analysis of communication signals. In mormyrid fishes, electric signals are processed within a dedicated sensory pathway, providing a unique opportunity to relate sensory biology to social behavior. Evolutionary changes within this pathway led to new perceptual abilities that have been linked to increased rates of signal evolution and species diversification in a lineage called 'clade A'. Previous field observations suggest that clade-A species tend to be solitary and territorial, whereas non-clade-A species tend to be clustered in high densities suggestive of schooling or shoaling. To explore behavioral differences between species in these lineages in greater detail, I studied population densities, social interactions, and electric signaling in two mormyrid species, Gnathonemus victoriae (clade A) and Petrocephalus degeni (non-clade A), from Lwamunda Swamp, Uganda. Petrocephalus degeni was found at higher population densities, but intraspecific diversity in electric signal waveform was greater in G. victoriae. In the laboratory, G. victoriae exhibited strong shelter-seeking behavior and competition for shelter, whereas P. degeni were more likely to abandon shelter in the presence of conspecifics as well as electric mimics of signaling conspecifics. In other words, P. degeni exhibited social affiliation whereas G. victoriae exhibited social competition. Further, P. degeni showed correlated electric signaling behavior whereas G. victoriae showed anti-correlated signaling behavior. These findings extend previous reports of social spacing, territoriality, and habitat preference among mormyrid species, suggesting that evolutionary divergence in electrosensory processing relates to differences in social behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| |
Collapse
|
13
|
Delay-Dependent Response in Weakly Electric Fish under Closed-Loop Pulse Stimulation. PLoS One 2015; 10:e0141007. [PMID: 26473597 PMCID: PMC4608794 DOI: 10.1371/journal.pone.0141007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/02/2015] [Indexed: 11/19/2022] Open
Abstract
In this paper, we apply a real time activity-dependent protocol to study how freely swimming weakly electric fish produce and process the timing of their own electric signals. Specifically, we address this study in the elephant fish, Gnathonemus petersii, an animal that uses weak discharges to locate obstacles or food while navigating, as well as for electro-communication with conspecifics. To investigate how the inter pulse intervals vary in response to external stimuli, we compare the response to a simple closed-loop stimulation protocol and the signals generated without electrical stimulation. The activity-dependent stimulation protocol explores different stimulus delivery delays relative to the fish's own electric discharges. We show that there is a critical time delay in this closed-loop interaction, as the largest changes in inter pulse intervals occur when the stimulation delay is below 100 ms. We also discuss the implications of these findings in the context of information processing in weakly electric fish.
Collapse
|
14
|
Baker CA, Huck KR, Carlson BA. Peripheral sensory coding through oscillatory synchrony in weakly electric fish. eLife 2015; 4:e08163. [PMID: 26238277 PMCID: PMC4522468 DOI: 10.7554/elife.08163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 01/28/2023] Open
Abstract
Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony.
Collapse
Affiliation(s)
- Christa A Baker
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Kevin R Huck
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
15
|
Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA. Multiplexed temporal coding of electric communication signals in mormyrid fishes. ACTA ACUST UNITED AC 2014; 216:2365-79. [PMID: 23761462 DOI: 10.1242/jeb.082289] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coding of stimulus information into patterns of spike times occurs widely in sensory systems. Determining how temporally coded information is decoded by central neurons is essential to understanding how brains process sensory stimuli. Mormyrid weakly electric fishes are experts at time coding, making them an exemplary organism for addressing this question. Mormyrids generate brief, stereotyped electric pulses. Pulse waveform carries information about sender identity, and it is encoded into submillisecond-to-millisecond differences in spike timing between receptors. Mormyrids vary the time between pulses to communicate behavioral state, and these intervals are encoded into the sequence of interspike intervals within receptors. Thus, the responses of peripheral electroreceptors establish a temporally multiplexed code for communication signals, one consisting of spike timing differences between receptors and a second consisting of interspike intervals within receptors. These signals are processed in a dedicated sensory pathway, and recent studies have shed light on the mechanisms by which central circuits can extract behaviorally relevant information from multiplexed temporal codes. Evolutionary change in the anatomy of this pathway is related to differences in electrosensory perception, which appears to have influenced the diversification of electric signals and species. However, it remains unknown how this evolutionary change relates to differences in sensory coding schemes, neuronal circuitry and central sensory processing. The mormyrid electric communication pathway is a powerful model for integrating mechanistic studies of temporal coding with evolutionary studies of correlated differences in brain and behavior to investigate neural mechanisms for processing temporal codes.
Collapse
Affiliation(s)
- Christa A Baker
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
16
|
Stevens JA, Sukhum KV, Carlson BA. Independent evolution of visual and electrosensory specializations in different lineages of mormyrid electric fishes. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:185-98. [PMID: 24192131 DOI: 10.1159/000355369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022]
Abstract
African mormyrid fishes are by far the most diverse group of osteoglossomorph (bony tongue) fishes. Mormyrids communicate using pulses of electricity, and they process electric communication signals in the midbrain exterolateral nucleus (EL). In its ancestral form, the EL is relatively small and homogenous. In two different lineages, however, the EL expanded in size and increased in cytological complexity. This evolutionary change established the perceptual ability to distinguish variation in electric pulse waveform, which plays an important role in species recognition and mate choice. However, the sensory basis of social behavior in species with a small, homogenous EL remains unknown. Using published species descriptions, we found that species in one of these lineages have relatively large eyes. Using sectioned brains, we measured the volume of a major visual region, the optic tectum (OT), and found that this same lineage also has an enlarged OT. We also found that eye size and OT size are highly correlated across species. Phylogenetic analysis suggests that a reduced visual system evolved with the origins of an active electrosense, and that this one particular lineage secondarily evolved an enlarged visual system. Behavioral tests revealed that this enlargement of the visual system established increased visual acuity. Thus, our findings demonstrate that different lineages of mormyrids have evolved visual or electrosensory specializations, but that no lineages have specialized in both. This sensory divergence likely reflects fundamentally different ecologies and suggests that vision may play an especially important role in the social behavior of mormyrids that cannot detect variation in electric signal waveform. Our findings provide an example of evolutionary change in multiple sensory systems among closely related species that lays a foundation for relating ecological adaptation to evolutionary change in multisensory perception and social behavior.
Collapse
Affiliation(s)
- Jennifer A Stevens
- Department of Biology, Washington University in St. Louis, St. Louis, Mo., USA
| | | | | |
Collapse
|
17
|
Lyons-Warren AM, Kohashi T, Mennerick S, Carlson BA. Detection of submillisecond spike timing differences based on delay-line anticoincidence detection. J Neurophysiol 2013; 110:2295-311. [PMID: 23966672 DOI: 10.1152/jn.00444.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detection of submillisecond interaural timing differences is the basis for sound localization in reptiles, birds, and mammals. Although comparative studies reveal that different neural circuits underlie this ability, they also highlight common solutions to an inherent challenge: processing information on timescales shorter than an action potential. Discrimination of small timing differences is also important for species recognition during communication among mormyrid electric fishes. These fishes generate a species-specific electric organ discharge (EOD) that is encoded into submillisecond-to-millisecond timing differences between receptors. Small, adendritic neurons (small cells) in the midbrain are thought to analyze EOD waveform by comparing these differences in spike timing, but direct recordings from small cells have been technically challenging. In the present study we use a fluorescent labeling technique to obtain visually guided extracellular recordings from individual small cell axons. We demonstrate that small cells receive 1-2 excitatory inputs from 1 or more receptive fields with latencies that vary by over 10 ms. This wide range of excitatory latencies is likely due to axonal delay lines, as suggested by a previous anatomic study. We also show that inhibition of small cells from a calyx synapse shapes stimulus responses in two ways: through tonic inhibition that reduces spontaneous activity and through precisely timed, stimulus-driven, feed-forward inhibition. Our results reveal a novel delay-line anticoincidence detection mechanism for processing submillisecond timing differences, in which excitatory delay lines and precisely timed inhibition convert a temporal code into a population code.
Collapse
|
18
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
19
|
Feulner PG, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. Magic trait electric organ discharge (EOD): Dual function of electric signals promotes speciation in African weakly electric fish. Commun Integr Biol 2013; 2:329-31. [PMID: 19721881 DOI: 10.4161/cib.2.4.8386] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
A unique evolutionary specialization of African weakly electric fish (Mormyridae) is their ability to produce and perceive electric signals. Mormyrids use their electric organs discharge (EOD) for electrolocation and electrocommunication. Here we discuss the adaptive significance of the EOD in foraging (electric prey detection) in light of recent results demonstrating that mormyrid fish mate assortatively according to EOD waveform characteristics (electric mate choice). Therefore the EOD as a single trait pleiotropically combines natural divergent selection and reproductive isolation. Consequently we postulate the EOD as a "magic trait" promoting the diversification of African weakly electric fish.
Collapse
Affiliation(s)
- Philine Gd Feulner
- Institute of Biochemistry and Biology; University of Potsdam; Potsdam, Germany
| | | | | | | | | |
Collapse
|
20
|
Lyons-Warren AM, Hollmann M, Carlson BA. Sensory receptor diversity establishes a peripheral population code for stimulus duration at low intensities. ACTA ACUST UNITED AC 2012; 215:2586-600. [PMID: 22786635 DOI: 10.1242/jeb.064733] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peripheral filtering is a fundamental mechanism for establishing frequency tuning in sensory systems. By contrast, detection of temporal features, such as duration, is generally thought to result from temporal coding in the periphery, followed by an analysis of peripheral response times within the central nervous system. We investigated how peripheral filtering properties affect the coding of stimulus duration in the electrosensory system of mormyrid fishes using behavioral and electrophysiological measures of duration tuning. We recorded from individual knollenorgans, the electrosensory receptors that mediate communication, and found correlated variation in frequency tuning and duration tuning, as predicted by a simple circuit model. In response to relatively high intensity stimuli, knollenorgans responded reliably with fixed latency spikes, consistent with a temporal code for stimulus duration. At near-threshold intensities, however, both the reliability and the temporal precision of responses decreased. Evoked potential recordings from the midbrain, as well as behavioral responses to electrosensory stimulation, revealed changes in sensitivity across the range of durations associated with the greatest variability in receptor sensitivity. Further, this range overlapped with the natural range of variation in species-specific communication signals, suggesting that peripheral duration tuning affects the coding of behaviorally relevant stimuli. We measured knollenorgan, midbrain and behavioral responses to natural communication signals and found that each of them were duration dependent. We conclude that at relatively low intensities for which temporal coding is ineffective, diversity among sensory receptors establishes a population code, in which duration is reflected in the population of responding knollenorgans.
Collapse
Affiliation(s)
- Ariel M Lyons-Warren
- Department of Biology, Washington University in St Louis, St Louis, MO 63130-4899, USA
| | | | | |
Collapse
|
21
|
Carlson BA, Arnegard ME. Neural innovations and the diversification of African weakly electric fishes. Commun Integr Biol 2012; 4:720-5. [PMID: 22446537 DOI: 10.4161/cib.17483] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In African mormyrid fishes, evolutionary change in a sensory region of the brain established an ability to detect subtle variation in electric communication signals. In one lineage, this newfound perceptual ability triggered a dramatic increase in the rates of signal evolution and species diversification. This particular neural innovation is just one in a series of nested evolutionary novelties that characterize the sensory and motor systems of mormyrids, the most speciose group of extant osteoglossomorph fishes. Here we discuss the behavioral significance of these neural innovations, relate them to differences in extant species diversity, and outline possible scenarios by which some of these traits may have fueled diversification. We propose that sensory and motor capabilities limit the extent to which signals evolve and, by extension, the role of communication behavior in the process of speciation. By expanding these capabilities, neural innovations increase the potential for signal evolution and species diversification.
Collapse
|
22
|
Carlson BA, Hasan SM, Hollmann M, Miller DB, Harmon LJ, Arnegard ME. Brain Evolution Triggers Increased Diversification of Electric Fishes. Science 2011; 332:583-6. [DOI: 10.1126/science.1201524] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Gallant JR, Arnegard ME, Sullivan JP, Carlson BA, Hopkins CD. Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:799-817. [PMID: 21505877 DOI: 10.1007/s00359-011-0643-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
We describe patterns of geographic variation in electric signal waveforms among populations of the mormyrid electric fish species Paramormyrops kingsleyae. This analysis includes study of electric organs and electric organ discharge (EOD) signals from 553 specimens collected from 12 localities in Gabon, West-Central Africa from 1998 to 2009. We measured time, slope, and voltage values from nine defined EOD "landmarks" and determined peak spectral frequencies from each waveform; these data were subjected to principal components analysis. The majority of variation in EODs is explained by two factors: the first related to EOD duration, the second related to the magnitude of the weak head-negative pre-potential, P0. Both factors varied clinally across Gabon. EODs are shorter in eastern Gabon and longer in western Gabon. Peak P0 is slightly larger in northern Gabon and smaller in southern Gabon. P0 in the EOD is due to the presence of penetrating-stalked (Pa) electrocytes in the electric organ while absence is due to the presence of non-penetrating stalked electrocytes (NPp). Across Gabon, the majority of P. kingsleyae populations surveyed have only individuals with P0-present EODs and Pa electrocytes. We discovered two geographically distinct populations, isolated from others by barriers to migration, where all individuals have P0-absent EODs with NPp electrocytes. At two sites along a boundary between P0-absent and P0-present populations, P0-absent and P0-present individuals were found in sympatry; specimens collected there had electric organs of intermediate morphology. This pattern of geographic variation in EODs is considered in the context of current phylogenetic work. Multiple independent paedomorphic losses of penetrating stalked electrocytes have occurred within five Paramormyrops species and seven genera of mormyrids. We suggest that this key anatomical feature in EOD signal evolution may be under a simple mechanism of genetic control, and may be easily influenced by selection or drift throughout the evolutionary history of mormyrids.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
24
|
Crampton WGR, Lovejoy NR, Waddell JC. Reproductive character displacement and signal ontogeny in a sympatric assemblage of electric fish. Evolution 2011; 65:1650-66. [PMID: 21644955 DOI: 10.1111/j.1558-5646.2011.01245.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The reproductive signals of two or more taxa may diverge in areas of sympatry, due to selection against costly reproductive interference. This divergence, termed reproductive character displacement (RCD), is expected in species-rich assemblages, where interspecific signal partitioning among closely related species is common. However, RCD is usually documented from simple two-taxon cases, via geographical tests for greater divergence of reproductive traits in sympatry than in allopatry. We propose a novel approach to recognizing and understanding RCD in multi-species communities--one that traces the displacement of signals within multivariate signal space during the ontogeny of individual animals. We argue that a case for RCD can be made if the amount of signal displacement between a pair of species after maturation is negatively correlated to distance in signal space before maturation. Our application of this approach, using a dataset of communication signals from a sympatric Amazonian assemblage of the electric fish genus Gymnotus, provides strong evidence for RCD among multiple species. We argue that RCD arose from the costs of heterospecific mismating, but interacted with sexual selection--favoring the evolution of conspicuous male signals that not only serve for mate-choice, but which simultaneously facilitate species recognition.
Collapse
Affiliation(s)
- William G R Crampton
- Department of Biology, University of Central Florida, 4000 Central Florida Boulevard, Orlando, 32816-2368 Florida, USA.
| | | | | |
Collapse
|
25
|
Communication in troubled waters: responses of fish communication systems to changing environments. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9450-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Arnegard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WGR, Davis JK, Sullivan JP, Lavoué S, Hopkins CD. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am Nat 2010; 176:335-56. [PMID: 20653442 DOI: 10.1086/655221] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural selection arising from resource competition and environmental heterogeneity can drive adaptive radiation. Ecological opportunity facilitates this process, resulting in rapid divergence of ecological traits in many celebrated radiations. In other cases, sexual selection is thought to fuel divergence in mating signals ahead of ecological divergence. Comparing divergence rates between naturally and sexually selected traits can offer insights into processes underlying species radiations, but to date such comparisons have been largely qualitative. Here, we quantitatively compare divergence rates for four traits in African mormyrid fishes, which use an electrical communication system with few extrinsic constraints on divergence. We demonstrate rapid signal evolution in the Paramormyrops species flock compared to divergence in morphology, size, and trophic ecology. This disparity in the tempo of trait evolution suggests that sexual selection is an important early driver of species radiation in these mormyrids. We also found slight divergence in ecological traits among closely related species, consistent with a supporting role for natural selection in Paramormyrops diversification. Our results highlight the potential for sexual selection to drive explosive signal divergence when innovations in communication open new opportunities in signal space, suggesting that opportunity can catalyze species radiations through sexual selection, as well as natural selection.
Collapse
Affiliation(s)
- Matthew E Arnegard
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fugère V, Krahe R. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. J Exp Biol 2010; 213:225-36. [DOI: 10.1242/jeb.034751] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Gymnotiformes are South American weakly electric fish that produce weak electric organ discharges (EOD) for orientation, foraging and communication purposes. It has been shown that EOD properties vary widely across species and could thus be used as species recognition signals. We measured and quantified the electric signals of various species using a landmark-based approach. Using discriminant function analysis to verify whether these signals are species specific based on different signal parameters, we found that the EOD waveform is a more specific cue than EOD frequency, which shows large overlap across species. Using Apteronotus leptorhynchus as a focal species, we then performed a series of playback experiments using stimuli of different species (varying in frequency, waveform, or both). In an experiment with restrained fish, we found, in contrast to what we predicted, that the choice of stimulus waveform did not affect the production of communication signals. In an experiment with free-swimming fish, the animals spent more time near the playback electrodes and produced more communication signals when the stimuli were within their conspecific frequency range. Waveform again had no measurable effect. The production of communication signals correlated with the frequency difference between the stimulus and the fish's own EOD, but approach behavior did not.
Collapse
Affiliation(s)
- V. Fugère
- Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1
| | - R. Krahe
- Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1
| |
Collapse
|
28
|
Abstract
Weakly electric fishes emit electric organ discharges (EODs) from their tail electric organs and sense feedback signals from their EODs by electroreceptors in the skin. The electric sense is utilized for various behaviors, including electrolocation, electrocommunication, and the Jamming avoidance response (JAR). For each behavior, various types of sensory Information are embedded in the transient electrical signals produced by the fish. These temporal signals are sampled, encoded, and further processed by peripheral and central neurons specialized for time coding. There are time codes for the sex or species Identities of other fish or the resistance and capacitance of objects. In the central nervous system, specialized neural elements exist for decoding time codes for different behavioral functions. Comparative studies allow phylogenetic comparison of time-coding neural systems among weakly electric fishes.
Collapse
Affiliation(s)
- Masashi Kawasaki
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
29
|
Moritz T, Engelmann J, Linsenmair KE, von der Emde G. The electric organ discharges of the Petrocephalus species (Teleostei: Mormyridae) of the Upper Volta system. JOURNAL OF FISH BIOLOGY 2009; 74:54-76. [PMID: 20735524 DOI: 10.1111/j.1095-8649.2008.02111.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, a first comparative investigation of all four species of Petrocephalus (P. bovei, P. bane, P. soudanensis and P. cf. pallidomaculatus) present in the Upper Volta system and their electric organ discharges (EOD) was conducted. It was found that P. bovei was the most widespread (in terms of habitat use), but in several places P. bovei, P. soudanensis and P. cf. pallidomaculatus occurred syntopically. All species emitted a triphasic signal, and with very few exceptions, the Petrocephalus species of the Upper Volta system could clearly be identified on the basis of their EOD waveforms. The most obvious differences between species in EOD waveforms were in amplitude of the last phase, total duration and fast Fourier transformation (FFT) peak frequency. No sexual dimorphism was present in the EOD of any species although external dimorphism, i.e. an indentation at the base of the anal fin of mature males, was common. The EOD waveform diversity in the Upper Volta principally resembled that found in four sympatric Petrocephalus species from the Ogooué system (Gabon) and might play a role in species recognition and speciation processes.
Collapse
Affiliation(s)
- T Moritz
- Lehrstuhl für Tierökologie und Tropenbiologie (Zoologie III), Theodor-Boveri-Institut (Biozentrum), Am Hubland, Universität Würzburg, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
30
|
Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R. Electrifying love: electric fish use species-specific discharge for mate recognition. Biol Lett 2008; 5:225-8. [PMID: 19033131 DOI: 10.1098/rsbl.2008.0566] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mate choice is mediated by a range of sensory cues, and assortative mating based on these cues can drive reproductive isolation among diverging populations. A specific feature of mormyrid fish, the electric organ discharge (EOD), is used for electrolocation and intraspecific communication. We hypothesized that the EOD also facilitates assortative mating and ultimately promotes prezygotic reproductive isolation in African weakly electric fishes. Our behavioural experiments using live males as well as EOD playback demonstrated that female mate recognition is influenced by EOD signals and that females are attracted to EOD characteristics of conspecific males. The dual function of the EOD for both foraging and social communication (including mate recognition leading to assortative mating) underlines the importance of electric signal differentiation for the divergence of African weakly electric fishes. Thus, the EOD provides an intriguing mechanism promoting trophic divergence and reproductive isolation between two closely related Campylomormyrus species occurring in sympatry in the lower Congo rapids.
Collapse
Affiliation(s)
- Philine G D Feulner
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
| | | | | | | | | |
Collapse
|
31
|
Lavoué S, Arnegard ME, Sullivan JP, Hopkins CD. Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa. ACTA ACUST UNITED AC 2008; 102:322-39. [PMID: 18992333 DOI: 10.1016/j.jphysparis.2008.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electric signals of mormyrid fishes have recently been described from several regions of Africa. Members of the Mormyridae produce weak electric organ discharges (EODs) as part of a specialized electrosensory communication and orientation system. Sympatric species often express distinctive EODs, which may contribute to species recognition during mate choice in some lineages. Striking examples of interspecific EOD variation within assemblages have been reported for two monophyletic radiations: the Paramormyrops of Gabon and the Campylomormyrus of Lower Congo. Here, we describe a speciose assemblage of Petrocephalus in the Lékoli River system of Odzala National Park, Republic of Congo. This widespread genus comprises the subfamily (Petrocephalinae) that is the sister group to all other mormyrids (Mormyrinae). Eleven Petrocephalus species were collected in Odzala, five of which are not described taxonomically. We quantify EOD variation within this assemblage and show that all eleven species produce EOD waveforms of brief duration (species means range from 144 to 663mus) compared to many other mormyrids. We also present reconstructed phylogenetic relationships among species based on cytochrome b sequences. Discovery of the Odzala assemblage greatly increases the number of Petrocephalus species for which EODs and DNA sequence data are available, permitting a first qualitative comparison between mormyrid subfamilies of the divergence patterns that have been described within lineages. We find that the Petrocephalus assemblage in Odzala is not a monophyletic radiation. Genetic divergence among Petrocephalus species often appears higher than among Paramormyrops or Campylomormyrus species. In contrast, results of this study and others suggest that Petrocephalus may generally exhibit less interspecific EOD divergence, as well as smaller sex differences in EOD waveforms, compared to Paramormyrops and Campylomormyrus. We discuss possible causes and consequences of EOD diversification patterns observed within mormyrid subfamilies as a framework for future comparative studies of signal evolution using this emerging model system.
Collapse
Affiliation(s)
- Sébastien Lavoué
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
32
|
Zakon HH, Zwickl DJ, Lu Y, Hillis DM. Molecular evolution of communication signals in electric fish. ACTA ACUST UNITED AC 2008; 211:1814-8. [PMID: 18490397 DOI: 10.1242/jeb.015982] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal communication systems are subject to natural selection so the imprint of selection must reside in the genome of each species. Electric fish generate electric organ discharges (EODs) from a muscle-derived electric organ (EO) and use these fields for electrolocation and communication. Weakly electric teleosts have evolved at least twice (mormyriforms, gymnotiforms) allowing a comparison of the workings of evolution in two independently evolved sensory/motor systems. We focused on the genes for two Na(+) channels, Nav1.4a and Nav1.4b, which are orthologs of the mammalian muscle-expressed Na(+) channel gene Nav1.4. Both genes are expressed in muscle in non-electric fish. Nav1.4b is expressed in muscle in electric fish, but Nav1.4a expression has been lost from muscle and gained in the evolutionarily novel EO in both groups. We hypothesized that Nav1.4a might be evolving to optimize the EOD for different sensory environments and the generation of species-specific communication signals. We obtained the sequence for Nav1.4a from non-electric, mormyriform and gymnotiform species, estimated a phylogenetic tree, and determined rates of evolution. We observed elevated rates of evolution in this gene in both groups coincident with the loss of Nav1.4a from muscle and its compartmentalization in EO. We found amino acid substitutions at sites known to be critical for channel inactivation; analyses suggest that these changes are likely to be the result of positive selection. We suggest that the diversity of EOD waveforms in both groups of electric fish is correlated with accelerations in the rate of evolution of the Nav1.4a Na(+) channel gene due to changes in selection pressure on the gene once it was solely expressed in the EO.
Collapse
Affiliation(s)
- Harold H Zakon
- Sections of Neurobiology and Integrative Biology, The University of Texas, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
33
|
Effect of conductivity changes on the stability of electric signal waveforms in dwarf stonebashers (Mormyridae; Pollimyrus castelnaui, P. marianne). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:915-9. [DOI: 10.1007/s00359-008-0360-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/16/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
34
|
Lavoué S, Sullivan JP, Arnegard ME, Hopkins CD. Differentiation of morphology, genetics and electric signals in a region of sympatry between sister species of African electric fish (Mormyridae). J Evol Biol 2008; 21:1030-45. [PMID: 18513358 DOI: 10.1111/j.1420-9101.2008.01544.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mormyrid fishes produce and sense weak electric organ discharges (EODs) for object detection and communication, and they have been increasingly recognized as useful model organisms for studying signal evolution and speciation. EOD waveform variation can provide important clues to sympatric species boundaries between otherwise similar or morphologically cryptic forms. Endemic to the watersheds of Gabon (Central Africa), Ivindomyrus marchei and Ivindomyrus opdenboschi are morphologically similar to one another. Using morphometric, electrophysiological and molecular characters [cytochrome b sequences and amplified fragment length polymorphism (AFLP) genotypes], we investigated to what extent these nominal mormyrid species have diverged into biological species. Our sampling covered the known distribution of each species with a focus on the Ivindo River, where the two taxa co-occur. An overall pattern of congruence among datasets suggests that I. opdenboschi and I. marchei are mostly distinct. Electric signal analysis showed that EODs of I. opdenboschi tend to have a smaller initial head-positive peak than those of I. marchei, and they often possess a small third waveform peak that is typically absent in EODs of I. marchei. Analysis of sympatric I. opdenboschi and I. marchei populations revealed slight, but significant, genetic partitioning between populations based on AFLP data (F(ST) approximately 0.04). Taken separately, however, none of the characters we evaluated allowed us to discriminate two completely distinct or monophyletic groups. Lack of robust separation on the basis of any single character set may be a consequence of incomplete lineage sorting due to recent ancestry and/or introgressive hybridization. Incongruence between genetic datasets in one individual, which exhibited a mitochondrial haplotype characteristic of I. marchei but nevertheless fell within a genetic cluster of I. opdenboschi based on AFLP genotypes, suggests that a low level of recent hybridization may also be contributing to patterns of character variation in sympatry. Nevertheless, despite less than perfect separability based on any one dataset and inconclusive evidence for complete reproductive isolation between them in the Ivindo River, we find sufficient evidence to support the existence of two distinctive species, I. opdenboschi and I. marchei, even if not 'biological species' in the Mayrian sense.
Collapse
Affiliation(s)
- S Lavoué
- Department of Neurobiology and Behavior, W263 Seeley G. Mudd Hall, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
35
|
Rodríguez-Cattaneo A, Pereira AC, Aguilera PA, Crampton WGR, Caputi AA. Species-specific diversity of a fixed motor pattern: the electric organ discharge of Gymnotus. PLoS One 2008; 3:e2038. [PMID: 18461122 PMCID: PMC2323572 DOI: 10.1371/journal.pone.0002038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 02/27/2008] [Indexed: 11/18/2022] Open
Abstract
Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattaneo
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana Carolina Pereira
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pedro A. Aguilera
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - William G. R. Crampton
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Angel A. Caputi
- Department of Integrative and Computational Neurosciences, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
36
|
MORITZ TIMO, LINSENMAIR KEDUARD, VON DER EMDE GERHARD. Electric organ discharge variability of Mormyridae (Teleostei: Osteoglossomorpha) in the Upper Volta system. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.00956.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Phillips K. SPOT THE DIFFERENCE. J Exp Biol 2006. [DOI: 10.1242/jeb.02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|