1
|
Garg V, Möbius W, Heinrich R, Ruhwedel T, Perera RP, Scholz P, Ischebeck T, Salinas G, Dullin C, Göpfert MC, Engelmann J, Dosch R, Geurten BRH. Patient-specific mutation of contact site protein Tomm70 causes neurodegeneration. Dis Model Mech 2025; 18:dmm052029. [PMID: 40151845 PMCID: PMC12067081 DOI: 10.1242/dmm.052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | | | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University33615 Bielefeld, Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
- Department of Zoology, University of Otago39054 Dunedin, New Zealand
| |
Collapse
|
2
|
Heagy FK, Clements KN, Adams CL, Blain E, Issa FA. Socially induced plasticity of the posterior tuberculum and motor behavior in zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248148. [PMID: 39422204 PMCID: PMC11626077 DOI: 10.1242/jeb.248148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Social dominance is prevalent throughout the animal kingdom. It facilitates the stabilization of social relationships and allows animals to divide resources according to social rank. Zebrafish form stable dominance relationships that consist of dominants and subordinates. Although social status-dependent differences in behavior must arise as a result of neural plasticity, mechanisms by which neural circuits are reconfigured to cope with social dominance are poorly described. Here, we describe how the posterior tuberculum nucleus (PTN), which integrates sensory social information to modulate spinal motor circuits, is morphologically and functionally influenced by social status. We combined non-invasive behavioral monitoring of motor activity (startle escape and swim) and histological approaches to investigate how social dominance affects the morphological structure, axosomatic synaptic connectivity and functional activity of the PTN in relation to changes in motor behavior. We show that dopaminergic cell number significantly increases in dominants compared with subordinates, while PTN synaptic interconnectivity, demonstrated with PSD-95 expression, is higher in subordinates than in dominants. Secondly, these socially induced morphological differences emerge after 1 week of dominance formation and correlate with differences in cellular activities illustrated with higher phosphor-S6 ribosomal protein expression in dominants compared with subordinates. Thirdly, these morphological differences are reversible as the social environment evolves and correlate with adaptations in startle escape and swim behaviors. Our results provide new insights into the neural bases of social behavior that may be applicable to other social species with similar structural and functional organization.
Collapse
Affiliation(s)
- Faith K. Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Katie N. Clements
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Carrie L. Adams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elena Blain
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Fadi A. Issa
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
3
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
4
|
Meserve JH, Navarro MF, Ortiz EA, Granato M. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit. PLoS Genet 2024; 20:e1011415. [PMID: 39432544 PMCID: PMC11527297 DOI: 10.1371/journal.pgen.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/31/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024] Open
Abstract
In the developing brain, groups of neurons organize into functional circuits that direct diverse behaviors. One such behavior is the evolutionarily conserved acoustic startle response, which in zebrafish is mediated by a well-defined hindbrain circuit. While numerous molecular pathways that guide neurons to their synaptic partners have been identified, it is unclear if and to what extent distinct neuron populations in the startle circuit utilize shared molecular pathways to ensure coordinated development. Here, we show that the planar cell polarity (PCP)-associated atypical cadherins Celsr3 and Celsr2, as well as the Celsr binding partner Frizzled 3a/Fzd3a, are critical for axon guidance of two neuron types that form synapses with each other: the command-like neuron Mauthner cells that drive the acoustic startle escape response, and spiral fiber neurons which provide excitatory input to Mauthner cells. We find that Mauthner axon growth towards synaptic targets is vital for Mauthner survival. We also demonstrate that symmetric spiral fiber input to Mauthner cells is critical for escape direction, which is necessary to respond to directional threats. Moreover, we identify distinct roles for Celsr3 and Celsr2, as Celsr3 is required for startle circuit development while Celsr2 is dispensable, though Celsr2 can partially compensate for loss of Celsr3 in Mauthner cells. This contrasts with facial branchiomotor neuron migration in the hindbrain, which requires Celsr2 while we find that Celsr3 is dispensable. Combined, our data uncover critical and distinct roles for individual PCP components during assembly of the acoustic startle hindbrain circuit.
Collapse
Affiliation(s)
- Joy H. Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria F. Navarro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elelbin A. Ortiz
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Meserve JH, Navarro MF, Ortiz EA, Granato M. Celsr3 drives development and connectivity of the acoustic startle hindbrain circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583806. [PMID: 38496637 PMCID: PMC10942420 DOI: 10.1101/2024.03.07.583806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the developing brain, groups of neurons organize into functional circuits that direct diverse behaviors. One such behavior is the evolutionarily conserved acoustic startle response, which in zebrafish is mediated by a well-defined hindbrain circuit. While numerous molecular pathways that guide neurons to their synaptic partners have been identified, it is unclear if and to what extent distinct neuron populations in the startle circuit utilize shared molecular pathways to ensure coordinated development. Here, we show that the planar cell polarity (PCP)-associated atypical cadherins Celsr3 and Celsr2, as well as the Celsr binding partner Frizzled 3a/Fzd3a, are critical for axon guidance of two neuron types that form synapses with each other: the command-like neuron Mauthner cells that drive the acoustic startle escape response, and spiral fiber neurons which provide excitatory input to Mauthner cells. We find that Mauthner axon growth towards synaptic targets is vital for Mauthner survival. We also demonstrate that symmetric spiral fiber input to Mauthner cells is critical for escape direction, which is necessary to respond to directional threats. Moreover, we identify distinct roles for Celsr3 and Celsr2, as Celsr3 is required for startle circuit development while Celsr2 is dispensable, though Celsr2 can partially compensate for loss of Celsr3 in Mauthner cells. This contrasts with facial branchiomotor neuron migration in the hindbrain, which requires Celsr2 while we find that Celsr3 is dispensable. Combined, our data uncover critical and distinct roles for individual PCP components during assembly of the acoustic startle hindbrain circuit.
Collapse
Affiliation(s)
- Joy H Meserve
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maria F Navarro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elelbin A Ortiz
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Clements KN, Ahn S, Park C, Heagy FK, Miller TH, Kassai M, Issa FA. Socially Mediated Shift in Neural Circuits Activation Regulated by Synergistic Neuromodulatory Signaling. eNeuro 2023; 10:ENEURO.0311-23.2023. [PMID: 37914408 PMCID: PMC10683552 DOI: 10.1523/eneuro.0311-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023] Open
Abstract
Animals exhibit context-dependent behavioral decisions that are mediated by specific motor circuits. In social species these decisions are often influenced by social status. Although social status-dependent neural plasticity of motor circuits has been investigated in vertebrates, little is known of how cellular plasticity translates into differences in motor activity. Here, we used zebrafish (Danio rerio) as a model organism to examine how social dominance influences the activation of swimming and the Mauthner-mediated startle escape behaviors. We show that the status-dependent shift in behavior patterns whereby dominants increase swimming and reduce sensitivity of startle escape while subordinates reduce their swimming and increase startle sensitivity is regulated by the synergistic interactions of dopaminergic, glycinergic, and GABAergic inputs to shift the balance of activation of the underlying motor circuits. This shift is driven by socially induced differences in expression of dopaminergic receptor type 1b (Drd1b) on glycinergic neurons and dopamine (DA) reuptake transporter (DAT). Second, we show that GABAergic input onto glycinergic neurons is strengthened in subordinates compared with dominants. Complementary neurocomputational modeling of the empirical results show that drd1b functions as molecular regulator to facilitate the shift between excitatory and inhibitory pathways. The results illustrate how reconfiguration in network dynamics serves as an adaptive strategy to cope with changes in social environment and are likely conserved and applicable to other social species.
Collapse
Affiliation(s)
- Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC 27858
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC 27411
| | - Faith K Heagy
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC 27858
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC 27858
| |
Collapse
|
7
|
Light-stimulus intensity modulates startle reflex habituation in larval zebrafish. Sci Rep 2021; 11:22410. [PMID: 34789729 PMCID: PMC8599482 DOI: 10.1038/s41598-021-00535-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research.
Collapse
|
8
|
The Formin Fmn2b Is Required for the Development of an Excitatory Interneuron Module in the Zebrafish Acoustic Startle Circuit. eNeuro 2021; 8:ENEURO.0329-20.2021. [PMID: 34193512 PMCID: PMC8272403 DOI: 10.1523/eneuro.0329-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
The formin family member Fmn2 is a neuronally enriched cytoskeletal remodeling protein conserved across vertebrates. Recent studies have implicated Fmn2 in neurodevelopmental disorders, including sensory processing dysfunction and intellectual disability in humans. Cellular characterization of Fmn2 in primary neuronal cultures has identified its function in the regulation of cell-substrate adhesion and consequently growth cone translocation. However, the role of Fmn2 in the development of neural circuits in vivo, and its impact on associated behaviors have not been tested. Using automated analysis of behavior and systematic investigation of the associated circuitry, we uncover the role of Fmn2b in zebrafish neural circuit development. As reported in other vertebrates, the zebrafish ortholog of Fmn2 is also enriched in the developing zebrafish nervous system. We find that Fmn2b is required for the development of an excitatory interneuron pathway, the spiral fiber neuron, which is an essential circuit component in the regulation of the Mauthner cell (M-cell)-mediated acoustic startle response. Consistent with the loss of the spiral fiber neurons tracts, high-speed video recording revealed a reduction in the short latency escape events while responsiveness to the stimuli was unaffected. Taken together, this study provides evidence for a circuit-specific requirement of Fmn2b in eliciting an essential behavior in zebrafish. Our findings underscore the importance of Fmn2 in neural development across vertebrate lineages and highlight zebrafish models in understanding neurodevelopmental disorders.
Collapse
|
9
|
Orr SA, Ahn S, Park C, Miller TH, Kassai M, Issa FA. Social Experience Regulates Endocannabinoids Modulation of Zebrafish Motor Behaviors. Front Behav Neurosci 2021; 15:668589. [PMID: 34045945 PMCID: PMC8144649 DOI: 10.3389/fnbeh.2021.668589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.
Collapse
Affiliation(s)
- Stephen A Orr
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| | - Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Thomas H Miller
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
10
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Schakmann M, Becker V, Søgaard M, Johansen JL, Steffensen JF, Domenici P. Latency of mechanically stimulated escape responses in the Pacific spiny dogfish, Squalus suckleyi. J Exp Biol 2021; 224:jeb.230698. [PMID: 33431597 DOI: 10.1242/jeb.230698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
Fast escape responses to a predator threat are fundamental to the survival of mobile marine organisms. However, elasmobranchs are often underrepresented in such studies. Here, we measured the escape latency (time interval between the stimulus and first visible reaction) of mechanically induced escape responses in the Pacific spiny dogfish, Squalus suckleyi, and in two teleosts from the same region, the great sculpin, Myoxocephalus polyacanthocephalus, and the pile perch, Rhacochilus vacca We found that the dogfish had a longer minimum latency (66.7 ms) compared with that for the great sculpin (20.8 ms) and pile perch (16.7 ms). Furthermore, the dogfish had a longer latency than that of 48 different teleosts identified from 35 different studies. We suggest such long latencies in dogfish may be due to the absence of Mauthner cells, the giant neurons that control fast escape responses in fishes.
Collapse
Affiliation(s)
- Mathias Schakmann
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96815, USA .,Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - Victoria Becker
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Mathias Søgaard
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Paolo Domenici
- CNR- IAS, Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino Torregrande, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
12
|
A model-based quantification of startle reflex habituation in larval zebrafish. Sci Rep 2021; 11:846. [PMID: 33436805 PMCID: PMC7804396 DOI: 10.1038/s41598-020-79923-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Zebrafish is an established animal model for the reproduction and study of neurobiological pathogenesis of human neurological conditions. The 'startle reflex' in zebrafish larvae is an evolutionarily preserved defence response, manifesting as a quick body-bend in reaction to sudden sensory stimuli. Changes in startle reflex habituation characterise several neuropsychiatric disorders and hence represent an informative index of neurophysiological health. This study aimed at establishing a simple and reliable experimental protocol for the quantification of startle reflex response and habituation. The fish were stimulated with 20 repeated pulses of specific vibratory frequency, acoustic intensity/power, light-intensity and interstimulus-interval, in three separate studies. The cumulative distance travelled, namely the sum of the distance travelled (mm) during all 20 stimuli, was computed as a group-level description for all the experimental conditions in each study. Additionally, by the use of bootstrapping, the data was fitted to a model of habituation with a first-order exponential representing the decay of locomotor distance travelled over repeated stimulation. Our results suggest that startle habituation is a stereotypic first-order process with a decay constant ranging from 1 to 2 stimuli. Habituation memory lasts no more than 5 min, as manifested by the locomotor activity recovering to baseline levels. We further observed significant effects of vibratory frequency, acoustic intensity/power and interstimulus-interval on the amplitude, offset, decay constant and cumulative distance travelled. Instead, the intensity of the flashed light did not contribute to significant behavioural variations. The findings provide novel insights as to the influence of different stimuli parameters on the startle reflex habituation and constitute a helpful reference framework for further investigation.
Collapse
|
13
|
Recording Channelrhodopsin-Evoked Field Potentials and Startle Responses from Larval Zebrafish. Methods Mol Biol 2021; 2191:201-220. [PMID: 32865747 DOI: 10.1007/978-1-0716-0830-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion. Channelrhodopsin (ChR2) can be expressed in the lateral line and ear hair cells of zebrafish and can be excited in vivo to elicit these rapid forms of escape. Here we review our methods for studying transgenic ChR2-expressing zebrafish larvae, including screening for positive expression of ChR2 and recording field potentials and high-speed videos of optically evoked escape responses. We also highlight important features of the acquired data and provide a brief review of other zebrafish research that utilizes or has the potential to benefit from ChR2 and optogenetics.
Collapse
|
14
|
Paz A, McDole B, Kowalko JE, Duboue ER, Keene AC. Evolution of the acoustic startle response of Mexican cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:474-485. [PMID: 32779370 DOI: 10.1002/jez.b.22988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/08/2022]
Abstract
The ability to detect threatening stimuli and initiate an escape response is essential for survival and under stringent evolutionary pressure. In diverse fish species, acoustic stimuli activate Mauthner neurons, which initiate a C-start escape response. This reflexive behavior is highly conserved across aquatic species and provides a model for investigating the neural mechanism underlying the evolution of escape behavior. Here, we characterize evolved differences in the C-start response between populations of the Mexican cavefish, Astyanax mexicanus. Cave populations of A. mexicanus inhabit an environment devoid of light and macroscopic predators, resulting in evolved differences in various morphological and behavioral traits. We find that the C-start is present in river-dwelling surface fish and multiple populations of cavefish, but that response kinematics and probability differ between populations. The Pachón population of cavefish exhibits an increased response probability, a slower response latency and speed, and reduction of the maximum bend angle, revealing evolved differences between surface and cave populations. Analysis of the responses of two other independently evolved populations of cavefish, revealed the repeated evolution of reduced angular speed. Investigation of surface-cave hybrids reveals a correlation between angular speed and peak angle, suggesting these two kinematic characteristics are related at the genetic or functional levels. Together, these findings provide support for the use of A. mexicanus as a model to investigate the evolution of escape behavior.
Collapse
Affiliation(s)
- Alexandra Paz
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Erik R Duboue
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
15
|
Behavioral Characterization of dmrt3a Mutant Zebrafish Reveals Crucial Aspects of Vertebrate Locomotion through Phenotypes Related to Acceleration. eNeuro 2020; 7:ENEURO.0047-20.2020. [PMID: 32357958 PMCID: PMC7235372 DOI: 10.1523/eneuro.0047-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate locomotion is orchestrated by spinal interneurons making up a central pattern generator. Proper coordination of activity, both within and between segments, is required to generate the desired locomotor output. This coordination is altered during acceleration to ensure the correct recruitment of muscles for the chosen speed. The transcription factor Dmrt3 has been proposed to shape the patterned output at different gaits in horses and mice. Vertebrate locomotion is orchestrated by spinal interneurons making up a central pattern generator. Proper coordination of activity, both within and between segments, is required to generate the desired locomotor output. This coordination is altered during acceleration to ensure the correct recruitment of muscles for the chosen speed. The transcription factor Dmrt3 has been proposed to shape the patterned output at different gaits in horses and mice. Here, we characterized dmrt3a mutant zebrafish, which showed a strong, transient, locomotor phenotype in developing larvae. During beat-and-glide swimming, mutant larvae showed fewer and shorter movements with decreased velocity and acceleration. Developmental compensation likely occurs as the analyzed behaviors did not differ from wild-type at older larval stages. However, analysis of maximum swim speed in juveniles suggests that some defects persist within the mature locomotor network of dmrt3a mutants. Our results reveal the pivotal role Dmrt3 neurons play in shaping the patterned output during acceleration in vertebrates.
Collapse
|
16
|
Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA. Prepontine non-giant neurons drive flexible escape behavior in zebrafish. PLoS Biol 2019; 17:e3000480. [PMID: 31613896 PMCID: PMC6793939 DOI: 10.1371/journal.pbio.3000480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Many species execute ballistic escape reactions to avoid imminent danger. Despite fast reaction times, responses are often highly regulated, reflecting a trade-off between costly motor actions and perceived threat level. However, how sensory cues are integrated within premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are driven by a cluster of 38 prepontine neurons that are completely separate from the fast escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input and drive motor neurons, input and output pathways for delayed escapes are indirect, facilitating integration of cross-modal sensory information. These results show that rapid decision-making in the escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the vertebrate nervous system.
Collapse
Affiliation(s)
- Gregory D. Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, Maryland, United States of America
| | - Kathryn M. Tabor
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Sadie A. Bergeron
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Kevin L. Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Not so fast: giant interneurons control precise movements of antennal scales during escape behavior of crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:687-698. [PMID: 31267220 DOI: 10.1007/s00359-019-01356-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
High-speed video recordings of escape responses in freely behaving crayfish revealed precisely coordinated movements of conspicuous head appendages, the antennal scales, during tail-flips that are produced by giant interneurons. For tail-flips that are generated by the medial giants (MG) in response to frontal attacks, the scales started to extend immediately after stimulation and extension was completed before the animal began to propel backwards. For tail-flips that are elicited by caudal stimuli and controlled by the lateral giants (LG), scale extensions began with significant delay after the tail-flip movement was initiated, and full extension of the scales coincided with full flexion of the tail. When we used implanted electrodes and stimulated the giant neurons directly, we observed the same patterns of scale extensions and corresponding timing. In addition, single action potentials of MG and LG neurons evoked with intracellular current injections in minimally restrained preparations were sufficient to activate scale extensions with similar delays as seen in freely behaving animals. Our results suggest that the giant interneurons, which have been assumed to be part of hardwired reflex circuits that lead to caudal motor outputs and stereotyped behavior, are also responsible for activating a pair of antennal scales with high temporal precision.
Collapse
|
18
|
Clements KN, Miller TH, Keever JM, Hall AM, Issa FA. Social Status-Related Differences in Motor Activity Between Wild-Type and Mutant Zebrafish. THE BIOLOGICAL BULLETIN 2018; 235:71-82. [PMID: 30358446 DOI: 10.1086/699514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Use of zebrafish as a model organism in biomedical research has led to the generation of many genetically modified mutant lines to investigate various aspects of developmental and cellular processes. However, the broader effects of the underlying mutations on social and motor behavior remain poorly examined. Here, we compared the dynamics of social interactions in the Tüpfel long-fin nacre mutant line, which lacks skin pigmentation, to wild-type zebrafish; and we determined whether status-dependent differences in escape and swimming behavior existed within each strain. We show that despite similarities in aggressive activity, Tüpfel long-fin nacre pairs exhibit unstable social relationships characterized by frequent reversals in social dominance compared to wild-type pairs. The lack of strong dominance relationships in Tüpfel long-fin nacre pairs correlates with weak territoriality and overlapping spatial distribution of dominants and subordinates. Conversely, wild-type dominants displayed strong territoriality that severely limited the movement of subordinates. Additionally, the sensitivity of the startle escape response was significantly higher in wild-type subordinates compared to dominants. However, status-related differences in sensitivity of escape response in Tüpfel long-fin nacre pairs were absent. Finally, we present evidence suggesting that these differences could be a consequence of a disruption of proper visual social signals. We show that in wild-type pairs dominants are more conspicuous, and that in wild-type and Tüpfel long-fin nacre pairings wild-type fish are more likely to dominate Tüpfel long-fin nacres. Our results serve as a cautionary note in research design when morphologically engineered zebrafish for color differences are utilized in the study of social behavior and central nervous system function.
Collapse
|
19
|
Park C, Clements KN, Issa FA, Ahn S. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses. Front Neural Circuits 2018; 12:7. [PMID: 29459823 PMCID: PMC5807392 DOI: 10.3389/fncir.2018.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
While the effects of social experience on nervous system function have been extensively investigated in both vertebrate and invertebrate systems, our understanding of how social status differentially affects learning remains limited. In the context of habituation, a well-characterized form of non-associative learning, we investigated how the learning processes differ between socially dominant and subordinate in zebrafish (Danio rerio). We found that social status and frequency of stimulus inputs influence the habituation rate of short latency C-start escape response that is initiated by the Mauthner neuron (M-cell). Socially dominant animals exhibited higher habituation rates compared to socially subordinate animals at a moderate stimulus frequency, but low stimulus frequency eliminated this difference of habituation rates between the two social phenotypes. Moreover, habituation rates of both dominants and subordinates were higher at a moderate stimulus frequency compared to those at a low stimulus frequency. We investigated a potential mechanism underlying these status-dependent differences by constructing a simplified neurocomputational model of the M-cell escape circuit. The computational study showed that the change in total net excitability of the model M-cell was able to replicate the experimental results. At moderate stimulus frequency, the model M-cell with lower total net excitability, that mimicked a dominant-like phenotype, exhibited higher habituation rates. On the other hand, the model with higher total net excitability, that mimicked the subordinate-like phenotype, exhibited lower habituation rates. The relationship between habituation rates and characteristics (frequency and amplitude) of the repeated stimulus were also investigated. We found that habituation rates are decreasing functions of amplitude and increasing functions of frequency while these rates depend on social status (higher for dominants and lower for subordinates). Our results show that social status affects habituative learning in zebrafish, which could be mediated by a summative neuromodulatory input to the M-cell escape circuit, which enables animals to readily learn to adapt to changes in their social environment.
Collapse
Affiliation(s)
- Choongseok Park
- Department of Mathematics, North Carolina A&T State University, Greensboro, NC, United States
| | - Katie N Clements
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Fadi A Issa
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Sungwoo Ahn
- Department of Mathematics, East Carolina University, Greenville, NC, United States
| |
Collapse
|
20
|
Peimani AR, Zoidl G, Rezai P. A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae. BIOMICROFLUIDICS 2018; 12:014113. [PMID: 29464011 PMCID: PMC5803004 DOI: 10.1063/1.5016381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The zebrafish is a lower vertebrate model organism offering multiple applications for both fundamental and biomedical research into the nervous system from genes to behaviour. Investigation of zebrafish larvae's movement in response to various stimuli, which involves the dopaminergic system, is of interest in the field of sensory-motor integration. Nevertheless, the conventional methods of movement screening in Petri dishes and multi-well plates are mostly qualitative, uncontrollable, and inaccurate in terms of stimulus delivery and response analysis. We recently presented a microfluidic device built as a versatile platform for fluid flow stimulation and high speed time-lapse imaging of rheotaxis behaviour of zebrafish larvae. Here, we describe for the first time that this microfluidic device can also be used to test zebrafish larvae's sense of the electric field and electrotaxis in a systemic manner. We further show that electrotaxis is correlated with the dopamine signalling pathway in a time of day dependent manner and by selectively involving the D2-like dopamine receptors. The primary outcomes of this research opens avenues to study the molecular and physiological basis of electrotaxis, the effects of known agonist and antagonist compounds on the dopaminergic system, and the screen of novel pharmacological tools in the context of neurodegenerative disorders. We propose that this microfluidic device has broad application potential, including the investigation of complex stimuli, biological pathways, behaviors, and brain disorders.
Collapse
Affiliation(s)
- Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
21
|
Abstract
Zebrafish is a model organism for various sensory-motor biological studies. Rheotaxis, or the ability of zebrafish to orient and swim against the water stream, is a common behavior that involves multiple sensory-motor processes such as their lateral line and visual systems. Due to the lack of a controllable and easy-to-use assay, zebrafish rheotaxis at larval stages is not well-understood. In this paper, we report a microfluidic device that can be used to apply the flow stimulus precisely and repeatedly along the longitudinal axis of individual zebrafish larvae to study their coaxial rheotaxis. We quantified rheotaxis in terms of the response rate and location along the channel at various flow velocities (9.5-38 mm.sec-1). The larvae effectively exhibited a similarly high rheotactic response at low and medium velocities (9.5 and 19 mm.sec-1); however, at high velocity of 38 mm.sec-1, despite sensing the flow, their rheotactic response decreased significantly. The flow velocity also affected the response location along the channel. At 9.5 mm.sec-1, responses were distributed evenly along the channel length while, at 19 and 38 mm.sec-1, the larvae demonstrated higher rheotaxis responses at the anterior and posterior ends of the channel, respectively. This result shows that although the response is similarly high at low and medium flow velocities, zebrafish larvae become more sensitive to the flow at medium velocity, demonstrating a modulated rheotactic behavior. Employing our device, further investigations can be conducted to study the sensory-motor systems involved in rheotaxis of zebrafish larvae and other fish species.
Collapse
|
22
|
Takahashi M, Inoue M, Tanimoto M, Kohashi T, Oda Y. Short-term desensitization of fast escape behavior associated with suppression of Mauthner cell activity in larval zebrafish. Neurosci Res 2017; 121:29-36. [DOI: 10.1016/j.neures.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023]
|
23
|
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making. J Neurosci 2017; 37:2137-2148. [PMID: 28093472 DOI: 10.1523/jneurosci.1548-16.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish (Danio rerio) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response.SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability.
Collapse
|
24
|
Troconis EL, Ordoobadi AJ, Sommers TF, Aziz‐Bose R, Carter AR, Trapani JG. Intensity-dependent timing and precision of startle response latency in larval zebrafish. J Physiol 2017; 595:265-282. [PMID: 27228964 PMCID: PMC5199724 DOI: 10.1113/jp272466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Using high-speed videos time-locked with whole-animal electrical recordings, simultaneous measurement of behavioural kinematics and field potential parameters of C-start startle responses allowed for discrimination between short-latency and long-latency C-starts (SLCs vs. LLCs) in larval zebrafish. Apart from their latencies, SLC kinematics and SLC field potential parameters were intensity independent. Increasing stimulus intensity increased the probability of evoking an SLC and decreased mean SLC latencies while increasing their precision; subtraction of field potential latencies from SLC latencies revealed a fixed time delay between the two measurements that was intensity independent. The latency and the precision in the latency of the SLC field potentials were linearly correlated to the latencies and precision of the first evoked action potentials (spikes) in hair-cell afferent neurons of the lateral line. Together, these findings indicate that first spike latency (FSL) is a fast encoding mechanism that can serve to precisely initiate startle responses when speed is critical for survival. ABSTRACT Vertebrates rely on fast sensory encoding for rapid and precise initiation of startle responses. In afferent sensory neurons, trains of action potentials (spikes) encode stimulus intensity within the onset time of the first evoked spike (first spike latency; FSL) and the number of evoked spikes. For speed of initiation of startle responses, FSL would be the more advantageous mechanism to encode the intensity of a threat. However, the intensity dependence of FSL and spike number and whether either determines the precision of startle response initiation is not known. Here, we examined short-latency startle responses (SLCs) in larval zebrafish and tested the hypothesis that first spike latencies and their precision (jitter) determine the onset time and precision of SLCs. We evoked startle responses via activation of Channelrhodopsin (ChR2) expressed in ear and lateral line hair cells and acquired high-speed videos of head-fixed larvae while simultaneously recording underlying field potentials. This method allowed for discrimination between primary SLCs and less frequent, long-latency startle responses (LLCs). Quantification of SLC kinematics and field potential parameters revealed that, apart from their latencies, they were intensity independent. We found that increasing stimulus intensity decreased SLC latencies while increasing their precision, which was significantly correlated with corresponding changes in field potential latencies and their precision. Single afferent neuron recordings from the lateral line revealed a similar intensity-dependent decrease in first spike latencies and their jitter, which could account for the intensity-dependent changes in timing and precision of startle response latencies.
Collapse
Affiliation(s)
| | | | | | | | - Ashley R. Carter
- Department of Physics and AstronomyAmherst CollegeAmherstMA01002USA
| | - Josef G. Trapani
- Department of BiologyAmherst CollegeAmherstMA01002USA
- Neuroscience ProgramAmherst CollegeAmherstMA01002USA
| |
Collapse
|
25
|
Roberts AC, Pearce KC, Choe RC, Alzagatiti JB, Yeung AK, Bill BR, Glanzman DL. Long-term habituation of the C-start escape response in zebrafish larvae. Neurobiol Learn Mem 2016; 134 Pt B:360-8. [PMID: 27555232 DOI: 10.1016/j.nlm.2016.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023]
Abstract
The cellular and molecular basis of long-term memory in vertebrates remains poorly understood. Knowledge regarding long-term memory has been impeded by the enormous complexity of the vertebrate brain, particularly the mammalian brain, as well as by the relative complexity of the behavioral alterations examined in most studies of long-term memory in vertebrates. Here, we demonstrate a long-term form of nonassociative learning-specifically, long-term habituation (LTH)-of a simple reflexive escape response, the C-start, in zebrafish larvae. The C-start is triggered by the activation of one of a pair of giant neurons in the zebrafish's hindbrain, the Mauthner cells. We show that LTH of the C-start requires the activity of NMDA receptors and involves macromolecular synthesis. We further show that the long-term habituated reflex can by rapidly dishabituated by a brief tactile stimulus. Our results set the stage for rigorous, mechanistic investigations of the long-term memory for habituation of a reflexive behavioral response, one that is mediated by a relatively simple, neurobiologically tractable, neural circuit. Moreover, the demonstration of NMDAR and transcriptionally dependent LTH in a translucent vertebrate organism should facilitate the use of optical recording, and optogenetic manipulation, of neuronal activity to elucidate the cellular basis of a long-term vertebrate memory.
Collapse
Affiliation(s)
- Adam C Roberts
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Kaycey C Pearce
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Ronny C Choe
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Joseph B Alzagatiti
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Anthony K Yeung
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Brent R Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, United States; Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Biology, University of Texas at Tyler, Tyler, TX, United States
| | - David L Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Integrative Center for Learning and Memory, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
26
|
Giacomotto J, Carroll AP, Rinkwitz S, Mowry B, Cairns MJ, Becker TS. Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish. Transl Psychiatry 2016; 6:e818. [PMID: 27219344 PMCID: PMC5070046 DOI: 10.1038/tp.2016.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The neurodevelopmentally regulated microRNA miR-137 was strongly implicated as risk locus for schizophrenia in the most recent genome wide association study coordinated by the Psychiatric Genome Consortium (PGC). This molecule is highly conserved in vertebrates enabling the investigation of its function in the developing zebrafish. We utilized this model system to achieve overexpression and suppression of miR-137, both transiently and stably through transgenesis. While miR-137 overexpression was not associated with an observable specific phenotype, downregulation by antisense morpholino and/or transgenic expression of miR-sponge RNA induced significant impairment of both embryonic and larval touch-sensitivity without compromising overall anatomical development. We observed miR-137 expression and activity in sensory neurons including Rohon-Beard neurons and dorsal root ganglia, two neuronal cell types that confer touch-sensitivity in normal zebrafish, suggesting a role of these cell types in the observed phenotype. The lack of obvious anatomical or histological pathology in these cells, however, suggested that subtle axonal network defects or a change in synaptic function and neural connectivity might be responsible for the behavioral phenotype rather than a change in the cellular morphology or neuroanatomy.
Collapse
Affiliation(s)
- J Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,Psychiatric Genomics Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| | - A P Carroll
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - S Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - B Mowry
- Psychiatric Genomics Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Queensland Centre for Mental Health Research, University of Queensland, Brisbane, QLD, Australia
| | - M J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| | - T S Becker
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| |
Collapse
|
27
|
Veldman MB, Rios-Galdamez Y, Lu XH, Gu X, Qin W, Li S, Yang XW, Lin S. The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington's disease model. Mol Neurodegener 2015; 10:67. [PMID: 26645399 PMCID: PMC4673728 DOI: 10.1186/s13024-015-0063-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/30/2015] [Indexed: 01/14/2023] Open
Abstract
Background Although the genetic cause for Huntington’s disease (HD) has been known for over 20 years, the mechanisms that cause the neurotoxicity and behavioral symptoms of this disease are not well understood. One hypothesis is that N-terminal fragments of the HTT protein are the causative agents in HD and that peptide sequences adjacent to the poly-glutamine (Q) repeats modify its toxicity. Here we test the function of the N-terminal 17 amino acids (N17) in the context of the exon 1 fragment of HTT in a novel, inducible zebrafish model of HD. Results Deletion of N17 coupled with 97Q expansion (mHTT-ΔN17-exon1) resulted in a robust, rapidly progressing movement deficit, while fish with intact N17 and 97Q expansion (mHTT-exon1) have more delayed-onset movement deficits with slower progression. The level of mHTT-ΔN17-exon1 protein was significantly higher than mHTT-exon1, although the mRNA level of each transgene was marginally different, suggesting that N17 may regulate HTT protein stability in vivo. In addition, cell lineage specific induction of the mHTT-ΔN17-exon1 transgene in neurons was sufficient to recapitulate the consequences of ubiquitous transgene expression. Within neurons, accelerated nuclear accumulation of the toxic HTT fragment was observed in mHTT-ΔN17-exon1 fish, demonstrating that N17 also plays an important role in sub-cellular localization in vivo. Conclusions We have developed a novel, inducible zebrafish model of HD. These animals exhibit a progressive movement deficit reminiscent of that seen in other animal models and human patients. Deletion of the N17 terminal amino acids of the huntingtin fragment results in an accelerated HD-like phenotype that may be due to enhanced protein stability and nuclear accumulation of HTT. These transgenic lines will provide a valuable new tool to study mechanisms of HD at the behavioral, cellular, and molecular levels. Future experiments will be focused on identifying genetic modifiers, mechanisms and therapeutics that alleviate polyQ aggregation in the nucleus of neurons. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0063-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew B Veldman
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Yesenia Rios-Galdamez
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Xiao-Hong Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Qin
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Song Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA. .,Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Gao Y, Zhang G, Jelfs B, Carmer R, Venkatraman P, Ghadami M, Brown SA, Pang CP, Leung YF, Chan RHM, Zhang M. Computational classification of different wild-type zebrafish strains based on their variation in light-induced locomotor response. Comput Biol Med 2015; 69:1-9. [PMID: 26688204 DOI: 10.1016/j.compbiomed.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022]
Abstract
Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Beth Jelfs
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Robert Carmer
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Statistics, Purdue University, 250N. University Street, West Lafayette, IN 47907, USA
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Mohammad Ghadami
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Skye A Brown
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, 915W. State Street, West Lafayette, IN 47907, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-Lafayette, 625 Harrison Street, West Lafayette, IN 47907, USA.
| | - Rosa H M Chan
- Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
29
|
Bergeron SA, Carrier N, Li GH, Ahn S, Burgess HA. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 2015; 20:974-85. [PMID: 25224259 PMCID: PMC4362800 DOI: 10.1038/mp.2014.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.
Collapse
Affiliation(s)
- Sadie A. Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nicole Carrier
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Grace H. Li
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sohyun Ahn
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A. Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA,6 Center Drive, Building 6B, Rm 3B308, Bethesda, MD 20892, , tel: 301-402-6018; fax: 301-496-0243
| |
Collapse
|
30
|
Lacoste AMB, Schoppik D, Robson DN, Haesemeyer M, Portugues R, Li JM, Randlett O, Wee CL, Engert F, Schier AF. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Curr Biol 2015; 25:1526-34. [PMID: 25959971 DOI: 10.1016/j.cub.2015.04.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 12/20/2022]
Abstract
The Mauthner cell (M-cell) is a command-like neuron in teleost fish whose firing in response to aversive stimuli is correlated with short-latency escapes [1-3]. M-cells have been proposed as evolutionary ancestors of startle response neurons of the mammalian reticular formation [4], and studies of this circuit have uncovered important principles in neurobiology that generalize to more complex vertebrate models [3]. The main excitatory input was thought to originate from multisensory afferents synapsing directly onto the M-cell dendrites [3]. Here, we describe an additional, convergent pathway that is essential for the M-cell-mediated startle behavior in larval zebrafish. It is composed of excitatory interneurons called spiral fiber neurons, which project to the M-cell axon hillock. By in vivo calcium imaging, we found that spiral fiber neurons are active in response to aversive stimuli capable of eliciting escapes. Like M-cell ablations, bilateral ablations of spiral fiber neurons largely eliminate short-latency escapes. Unilateral spiral fiber neuron ablations shift the directionality of escapes and indicate that spiral fiber neurons excite the M-cell in a lateralized manner. Their optogenetic activation increases the probability of short-latency escapes, supporting the notion that spiral fiber neurons help activate M-cell-mediated startle behavior. These results reveal that spiral fiber neurons are essential for the function of the M-cell in response to sensory cues and suggest that convergent excitatory inputs that differ in their input location and timing ensure reliable activation of the M-cell, a feedforward excitatory motif that may extend to other neural circuits.
Collapse
Affiliation(s)
- Alix M B Lacoste
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - David Schoppik
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Drew N Robson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ruben Portugues
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jennifer M Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Owen Randlett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline L Wee
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, MA 02138, USA.
| |
Collapse
|
31
|
Monesson-Olson BD, Troconis EL, Trapani JG. Recording field potentials from zebrafish larvae during escape responses. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2014; 13:A52-A58. [PMID: 25565920 PMCID: PMC4281049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 06/04/2023]
Abstract
Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the "C-bend" due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials.
Collapse
Affiliation(s)
| | | | - Josef G. Trapani
- Address correspondence to: Dr. Josef G. Trapani, Biology Department, Amherst College, Amherst, MA 01002.
| |
Collapse
|
32
|
Medan V, Preuss T. The Mauthner-cell circuit of fish as a model system for startle plasticity. ACTA ACUST UNITED AC 2014; 108:129-40. [PMID: 25106811 DOI: 10.1016/j.jphysparis.2014.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.
Collapse
Affiliation(s)
- Violeta Medan
- Dept. de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires 1428, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Argentina.
| | - Thomas Preuss
- Psychology Dept. Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA.
| |
Collapse
|
33
|
Zhao Y, Lin MCA, Mock A, Yang M, Wayne NL. Kisspeptins modulate the biology of multiple populations of gonadotropin-releasing hormone neurons during embryogenesis and adulthood in zebrafish (Danio rerio). PLoS One 2014; 9:e104330. [PMID: 25093675 PMCID: PMC4122407 DOI: 10.1371/journal.pone.0104330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/12/2014] [Indexed: 11/19/2022] Open
Abstract
Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an additional role in stimulating embryonic development of the trigeminal neuronal population, but is an RFamide that inhibits electrical activity of hypophysiotropic GnRH3 neurons in the adult.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Meng-Chin A. Lin
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Allan Mock
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Nancy L. Wayne
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T, Haspel G, Burgess HA. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J Neurophysiol 2014; 112:834-44. [PMID: 24848468 DOI: 10.1152/jn.00228.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Sadie A Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Eric J Horstick
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Diana C Jordan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Vilma Aho
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland; and
| | | | - Gal Haspel
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Harold A Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland;
| |
Collapse
|
35
|
Monesson-Olson BD, Browning-Kamins J, Aziz-Bose R, Kreines F, Trapani JG. Optical stimulation of zebrafish hair cells expressing channelrhodopsin-2. PLoS One 2014; 9:e96641. [PMID: 24791934 PMCID: PMC4008597 DOI: 10.1371/journal.pone.0096641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
Vertebrate hair cells are responsible for the high fidelity encoding of mechanical stimuli into trains of action potentials (spikes) in afferent neurons. Here, we generated a transgenic zebrafish line expressing Channelrhodopsin-2 (ChR2) under the control of the hair-cell specific myo6b promoter, in order to examine the role of the mechanoelectrical transduction (MET) channel in sensory encoding in afferent neurons. We performed in vivo recordings from afferent neurons of the zebrafish lateral line while activating hair cells with either mechanical stimuli from a waterjet or optical stimuli from flashes of ∼470-nm light. Comparison of the patterns of encoded spikes during 100-ms stimuli revealed no difference in mean first spike latency between the two modes of activation. However, there was a significant increase in the variability of first spike latency during optical stimulation as well as an increase in the mean number of spikes per stimulus. Next, we compared encoding of spikes during hair-cell stimulation at 10, 20, and 40-Hz. Consistent with the increased variability of first spike latency, we saw a significant decrease in the vector strength of phase-locked spiking during optical stimulation. These in vivo results support a physiological role for the MET channel in the high fidelity of first spike latency seen during encoding of mechanical sensory stimuli. Finally, we examined whether remote activation of hair cells via ChR2 activation was sufficient to elicit escape responses in free-swimming larvae. In transgenic larvae, 100-ms flashes of ∼470-nm light resulted in escape responses that occurred concomitantly with field recordings indicating Mauthner cell activity. Altogether, the myo6b:ChR2 transgenic line provides a platform to investigate hair-cell function and sensory encoding, hair-cell sensory input to the Mauthner cell, and the ability to remotely evoke behavior in free-swimming zebrafish.
Collapse
Affiliation(s)
| | - Jenna Browning-Kamins
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Razina Aziz-Bose
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Fabiana Kreines
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
| | - Josef G. Trapani
- Department of Biology, Amherst College, Amherst, Massachusetts, United States of America
- Neuroscience Program, Amherst College, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits 2013; 7:126. [PMID: 23935566 PMCID: PMC3731533 DOI: 10.3389/fncir.2013.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023] Open
Abstract
Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
| | - Brent R. Bill
- Center for Autism Research and Program in Neurobehavioral Genetics, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California at Los AngelesLos Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los AngelesLos Angeles, CA, USA
- Integrative Center for Learning and Memory, David Geffen School of Medicine, Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA
| |
Collapse
|
37
|
Lebold KM, Löhr CV, Barton CL, Miller GW, Labut EM, Tanguay RL, Traber MG. Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:382-9. [PMID: 23570751 PMCID: PMC3653440 DOI: 10.1016/j.cbpc.2013.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 11/25/2022]
Abstract
We hypothesized that zebrafish (Danio rerio) undergoing long-term vitamin E deficiency with marginal vitamin C status would develop myopathy resulting in impaired swimming. Zebrafish were fed for 1 y a defined diet without (E-) and with (E+) vitamin E (500 mg α-tocopherol/kg diet). For the last 150 days, dietary ascorbic acid concentrations were decreased from 3500 to 50 mg/kg diet and the fish sampled periodically to assess ascorbic acid concentrations. The ascorbic acid depletion curves were faster in the E- compared with E+ fish (P < 0.0001); the estimated half-life of depletion in the E- fish was 34 days, while in it was 55 days in the E+ fish. To assess swimming behavior, zebrafish were monitored individually following a "startle-response" stimulus, using computer and video technology. Muscle histopathology was assessed using hematoxylin and eosin staining on paramedian sections of fixed zebrafish. At study end, E- fish contained 300-fold less α-tocopherol (p < 0.0001), half the ascorbic acid (p = 0.0001) and 3-fold more malondialdehyde (p = 0.0005) than did E+ fish. During the first minute following a tap stimulus (p < 0.05), E+ fish swam twice as far as did E- fish. In the E- fish, the sluggish behavior was associated with a multifocal, polyphasic, degenerative myopathy of the skeletal muscle. The myopathy severity ranged from scattered acute necrosis to widespread fibrosis and was accompanied by increased anti-hydroxynonenal staining. Thus, vitamin E deficiency in zebrafish causes increased oxidative stress and a secondary depletion of ascorbic acid, resulting in severe damage to muscle tissue and impaired muscle function.
Collapse
Affiliation(s)
- Katie M Lebold
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Stewart WJ, Cardenas GS, McHenry MJ. Zebrafish larvae evade predators by sensing water flow. J Exp Biol 2013; 216:388-98. [DOI: 10.1242/jeb.072751] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMMARY
The ability of fish to evade predators is central to the ecology and evolution of a diversity of species. However, it is largely unclear how prey fish detect predators in order to initiate their escape. We tested whether larval zebrafish (Danio rerio) sense the flow created by adult predators of the same species. When placed together in a cylindrical arena, we found that larvae were able to escape 70% of predator strikes (mean escape probability Pescape=0.7, N=13). However, when we pharmacologically ablated the flow-sensitive lateral line system, larvae were rarely capable of escape (mean Pescape=0.05, N=11). In order to explore the rapid events that facilitate a successful escape, we recorded freely swimming predators and prey using a custom-built camera dolly. This device permitted two-dimensional camera motion to manually track prey and record their escape response with high temporal and spatial resolution. These recordings demonstrated that prey were more than 3 times more likely to evade a suction-feeding predator if they responded before (Pescape=0.53, N=43), rather than after (Pescape=0.15, N=13), a predator's mouth opened, which is a highly significant difference. Therefore, flow sensing plays an essential role in predator evasion by facilitating a response prior to a predator's strike.
Collapse
Affiliation(s)
- William J. Stewart
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA
| | - Gilberto S. Cardenas
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA
| | - Matthew J. McHenry
- Department of Ecology and Evolution, 321 Steinhaus Hall, University of California, Irvine, CA 92697-2525, USA
| |
Collapse
|
39
|
Blaker-Lee A, Gupta S, McCammon JM, De Rienzo G, Sive H. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech 2012; 5:834-51. [PMID: 22566537 PMCID: PMC3484866 DOI: 10.1242/dmm.009944] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 01/19/2023] Open
Abstract
Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.
Collapse
Affiliation(s)
- Alicia Blaker-Lee
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Sunny Gupta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Jasmine M. McCammon
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Gianluca De Rienzo
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Effective sensory modality activating an escape triggering neuron switches during early development in zebrafish. J Neurosci 2012; 32:5810-20. [PMID: 22539843 DOI: 10.1523/jneurosci.6169-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Developing nervous systems grow to integrate sensory signals from different modalities and to respond through various behaviors. Here, we examined the development of escape behavior in zebrafish [45-170 h postfertilization (hpf)] to study how developing sensory inputs are integrated into sensorimotor circuits. Mature fish exhibit fast escape upon both auditory/vestibular (AV) and head-tactile stimuli. Newly hatched larvae, however, do not respond to AV stimuli before 75 hpf. Because AV-induced fast escape in mature fish is triggered by a pair of hindbrain neurons known as Mauthner (M) cells, we studied functional development of the M-cell circuit accounting for late acquisition of AV-induced escape. In fast escape elicited by head-directed water jet, minimum onset latency decreased throughout development (5 ms at 45-59 hpf, 3 ms after 75 hpf). After 75 hpf, lesioning the otic vesicle (OV) to eliminate AV input resulted in loss of short-latency (<5 ms) fast escape, whereas ablation of the sensory trigeminal ganglion (gV) to block head-tactile input did not. Before 75 hpf, however, fast escape persisted after OV lesion but disappeared after gV ablation. Laser ablation of the M-cell and Ca²⁺ imaging of the M-cell during escape demonstrated that M-cell firing is required to initiate short-latency fast escapes at every developmental stage and further suggest that head-tactile input activates the M-cell before 75 hpf, but that after this point AV input activates the M-cell instead. Thus, a switch in the effective sensory input to the M-cells mediates the acquisition of a novel modality for initiating fast escape.
Collapse
|
41
|
Abstract
The social rank of an animal is distinguished by its behavior relative to others in its community. Although social-status-dependent differences in behavior must arise because of differences in neural function, status-dependent differences in the underlying neural circuitry have only begun to be described. We report that dominant and subordinate crayfish differ in their behavioral orienting response to an unexpected unilateral touch, and that these differences correlate with functional differences in local neural circuits that mediate the responses. The behavioral differences correlate with simultaneously recorded differences in leg depressor muscle EMGs and with differences in the responses of depressor motor neurons recorded in reduced, in vitro preparations from the same animals. The responses of local serotonergic interneurons to unilateral stimuli displayed the same status-dependent differences as the depressor motor neurons. These results indicate that the circuits and their intrinsic serotonergic modulatory components are configured differently according to social status, and that these differences do not depend on a continuous descending signal from higher centers.
Collapse
|
42
|
de Soysa TY, Ulrich A, Friedrich T, Pite D, Compton SL, Ok D, Bernardos RL, Downes GB, Hsieh S, Stein R, Lagdameo MC, Halvorsen K, Kesich LR, Barresi MJF. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol 2012; 10:40. [PMID: 22559716 PMCID: PMC3364156 DOI: 10.1186/1741-7007-10-40] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 11/24/2022] Open
Abstract
Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. Conclusions Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.
Collapse
|
43
|
Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, Pearce K, Esdin J, Glanzman DL. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 2011; 6:e29132. [PMID: 22216183 PMCID: PMC3247236 DOI: 10.1371/journal.pone.0029132] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/21/2011] [Indexed: 01/28/2023] Open
Abstract
The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start). This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5–2.0 Hz. A more extended form (termed “short-term habituation” here), which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block). We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs), whereas the rapid form does not.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Reichl
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Monica Y. Song
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Amanda D. Dearinger
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Naseem Moridzadeh
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elaine D. Lu
- Undergraduate Interdepartmental Neuroscience Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaycey Pearce
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph Esdin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at University of Calfornia Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|