1
|
Pu P, Niu Z, Ma M, Tang X, Chen Q. Convergent High O 2 Affinity but Distinct ATP-Mediated Allosteric Regulation of Hemoglobins in Oviparous and Viviparous Eremias Lizards from the Qinghai-Tibet Plateau. Animals (Basel) 2024; 14:1440. [PMID: 38791658 PMCID: PMC11117339 DOI: 10.3390/ani14101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The functional adaptation and underlying molecular mechanisms of hemoglobins (Hbs) have primarily concentrated on mammals and birds, with few reports on reptiles. This study aimed to investigate the convergent and species-specific high-altitude adaptation mechanisms of Hbs in two Eremias lizards from the Qinghai-Tibet Plateau. The Hbs of high-altitude E. argus and E. multiocellata were characterized by significantly high overall and intrinsic Hb-O2 affinity compared to their low-altitude populations. Despite the similarly low Cl- sensitivities, the Hbs of high-altitude E. argus exhibited higher ATP sensitivity and ATP-dependent Bohr effects than that of E. multiocellata, which could facilitate O2 unloading in respiring tissues. Eremias lizards Hbs exhibited similarly low temperature sensitivities and relatively high Bohr effects at lower temperatures, which could help to stably deliver and release O2 to cold extremities at low temperatures. The oxygenation properties of Hbs in high-altitude populations might be attributed to varying ratios of β2/β1 globin and substitutions on the β2-type globin. Notably, the Asn12Ala in lowland E. argus could cause localized destabilization of the E-helix in the tetrameric Hb by elimination of hydrogen bonds, thereby resulting in its lowest O2 affinity. This study provides a valuable reference for the high-altitude adaptation mechanisms of hemoglobins in reptiles.
Collapse
Affiliation(s)
- Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Ming Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| |
Collapse
|
2
|
Natarajan C, Signore AV, Bautista NM, Hoffmann FG, Tame JRH, Fago A, Storz JF. Evolution and molecular basis of a novel allosteric property of crocodilian hemoglobin. Curr Biol 2023; 33:98-108.e4. [PMID: 36549299 PMCID: PMC9839640 DOI: 10.1016/j.cub.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
The extraordinary breath-hold diving capacity of crocodilians has been ascribed to a unique mode of allosterically regulating hemoglobin (Hb)-oxygenation in circulating red blood cells. We investigated the origin and mechanistic basis of this novel biochemical phenomenon by performing directed mutagenesis experiments on resurrected ancestral Hbs. Comparisons of Hb function between the common ancestor of archosaurs (the group that includes crocodilians and birds) and the last common ancestor of modern crocodilians revealed that regulation of Hb-O2 affinity via allosteric binding of bicarbonate ions represents a croc-specific innovation that evolved in combination with the loss of allosteric regulation by ATP binding. Mutagenesis experiments revealed that evolution of the novel allosteric function in crocodilians and the concomitant loss of ancestral function were not mechanistically coupled and were caused by different sets of substitutions. The gain of bicarbonate sensitivity in crocodilian Hb involved the direct effect of few amino acid substitutions at key sites in combination with indirect effects of numerous other substitutions at structurally disparate sites. Such indirect interaction effects suggest that evolution of the novel protein function was conditional on neutral mutations that produced no adaptive benefit when they first arose but that contributed to a permissive background for subsequent function-altering mutations at other sites. Due to the context dependence of causative substitutions, the unique allosteric properties of crocodilian Hb cannot be easily transplanted into divergent homologs of other species.
Collapse
Affiliation(s)
| | - Anthony V Signore
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jeremy R H Tame
- Drug Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Bautista NM, Petersen EE, Jensen RJ, Natarajan C, Storz JF, Crossley DA, Fago A. Changes in hemoglobin function and isoform expression during embryonic development in the American alligator, Alligator mississippiensis. Am J Physiol Regul Integr Comp Physiol 2021; 321:R869-R878. [PMID: 34704846 DOI: 10.1152/ajpregu.00047.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.
Collapse
Affiliation(s)
| | | | | | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
4
|
Lei Y, Yang L, Zhou Y, Wang C, Lv W, Li L, He S. Hb adaptation to hypoxia in high-altitude fishes: Fresh evidence from schizothoracinae fishes in the Qinghai-Tibetan Plateau. Int J Biol Macromol 2021; 185:471-484. [PMID: 34214574 DOI: 10.1016/j.ijbiomac.2021.06.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Uncovering the genetic basis of hypoxic adaptation is one of the most active research areas in evolutionary biology. Among air-breathing vertebrates, modifications of hemoglobin (Hb) play a pivotal role in mediating an adaptive response to high-altitude hypoxia. However, the relative contributions in water-breathing organisms are still unclear. Here, we tested the Hb concentration of fish at different altitudes. All species showed species-specific Hb concentration, which has a non-positive correlation with altitude. Moreover, we investigated the expression of Hb genes by the RNA-seq and quantitative real-time PCR (qRT-PCR), and Hb composition by two-dimensional electrophoresis (2-DE). The results showed that the multiple Hb genes and isoforms are co-expressed in schizothoracinae fishes endemic to the Qinghai-Tibetan Plateau (QTP). Phylogenetic analyses of Hb genes indicated that the evolutionary relationships are not easily reconciled with the organismal phylogeny. Furthermore, evidence of positive selection was found in the Hb genes of schizothoracinae fishes through the selection pressure analysis. We demonstrated that positively selected sites likely facilitated the functional divergence of Hb isoforms. Taken together, this study indicated that the long-term maintenance of high Hb concentration may be a disadvantage for physiologically acclimating to high altitude hypoxia. Meanwhile, the genetically based modification of Hb-O2 affinity in schizothoracinae fishes might facilitate the evolutionary adaptation to Tibetan aqueous environments.
Collapse
Affiliation(s)
- Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
5
|
Transcriptomic and proteomic analysis of Hemidactylus frenatus during initial stages of tail regeneration. Sci Rep 2021; 11:3675. [PMID: 33574494 PMCID: PMC7878758 DOI: 10.1038/s41598-021-83283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Epimorphic regeneration of appendages is a complex and complete phenomenon found in selected animals. Hemidactylus frenatus, house gecko has the remarkable ability to regenerate the tail tissue upon autotomy involving epimorphic regeneration mechanism. This study has identified and evaluated the molecular changes at gene and protein level during the initial stages, i.e., during the wound healing and repair mechanism initiation stage of tail regeneration. Based on next generation transcriptomics and De novo analysis the transcriptome library of the gecko tail tissue was generated. A total of 254 genes and 128 proteins were found to be associated with the regeneration of gecko tail tissue upon amputation at 1, 2 and 5-day post amputation (dpa) against control, 0-dpa through differential transcriptomic and proteomic analysis. To authenticate the expression analysis, 50 genes were further validated involving RTPCR. 327 genes/proteins identified and mapped from the study showed association for Protein kinase A signaling, Telomerase BAG2 signaling, paxillin signaling, VEGF signaling network pathways based on network pathway analysis. This study empanelled list of transcriptome, proteome and the list of genes/proteins associated with the tail regeneration.
Collapse
|
6
|
The rise and fall of globins in the amphibia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100759. [PMID: 33202310 DOI: 10.1016/j.cbd.2020.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
The globin gene repertoire of gnathostome vertebrates is dictated by differential retention and loss of nine paralogous genes: androglobin, neuroglobin, globin X, cytoglobin, globin Y, myoglobin, globin E, and the α- and β-globins. We report the globin gene repertoire of three orders of modern amphibians: Anura, Caudata, and Gymnophiona. Combining phylogenetic and conserved synteny analysis, we show that myoglobin and globin E were lost only in the Batrachia clade, but retained in Gymnophiona. The major amphibian groups also retained different paralogous copies of globin X. None of the amphibian presented αD-globin gene. Nevertheless, two clades of β-globins are present in all amphibians, indicating that the amphibian ancestor possessed two paralogous proto β-globins. We also show that orthologs of the gene coding for the monomeric hemoglobin found in the heart of Rana catesbeiana are present in Neobatrachia and Pelobatoidea species we analyzed. We suggest that these genes might perform myoglobin- and globin E-related functions. We conclude that the repertoire of globin genes in amphibians is dictated by both retention and loss of the paralogous genes cited above and the rise of a new globin gene through co-option of an α-globin, possibly facilitated by a prior event of transposition.
Collapse
|
7
|
Fago A, Natarajan C, Pettinati M, Hoffmann FG, Wang T, Weber RE, Drusin SI, Issoglio F, Martí MA, Estrin D, Storz JF. Structure and function of crocodilian hemoglobins and allosteric regulation by chloride, ATP, and CO 2. Am J Physiol Regul Integr Comp Physiol 2020; 318:R657-R667. [PMID: 32022587 DOI: 10.1152/ajpregu.00342.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO2. Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and β-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO2, which would permit effective O2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O2-affinities, there is considerable variation in sensitivity to Cl- ions and ATP, which appears to be at least partly attributable to variation in the extent of NH2-terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Martín Pettinati
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, Mississippi
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Salvador I Drusin
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Issoglio
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo A Martí
- Departmento de Química Biolόgica/IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
8
|
Storz JF, Natarajan C, Grouleff MK, Vandewege M, Hoffmann FG, You X, Venkatesh B, Fago A. Oxygenation properties of hemoglobin and the evolutionary origins of isoform multiplicity in an amphibious air-breathing fish, the blue-spotted mudskipper ( Boleophthalmus pectinirostris). ACTA ACUST UNITED AC 2020; 223:jeb.217307. [PMID: 31836650 DOI: 10.1242/jeb.217307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Among the numerous lineages of teleost fish that have independently transitioned from obligate water breathing to facultative air breathing, evolved properties of hemoglobin (Hb)-O2 transport may have been shaped by the prevalence and severity of aquatic hypoxia (which influences the extent to which fish are compelled to switch to aerial respiration) as well as the anatomical design of air-breathing structures and the cardiovascular system. Here, we examined the structure and function of Hbs in an amphibious, facultative air-breathing fish, the blue-spotted mudskipper (Boleophthalmus pectinirostris). We also characterized the genomic organization of the globin gene clusters of the species and we integrated phylogenetic and comparative genomic analyses to unravel the duplicative history of the genes that encode the subunits of structurally distinct mudskipper Hb isoforms (isoHbs). The B. pectinirostris isoHbs exhibit high intrinsic O2 affinities, similar to those of hypoxia-tolerant, water-breathing teleosts, and remarkably large Bohr effects. Genomic analysis of conserved synteny revealed that the genes that encode the α-type subunits of the two main adult isoHbs are members of paralogous gene clusters that represent products of the teleost-specific whole-genome duplication. Experiments revealed no appreciable difference in the oxygenation properties of co-expressed isoHbs in spite of extensive amino acid divergence between the alternative α-chain subunit isoforms. It therefore appears that the ability to switch between aquatic and aerial respiration does not necessarily require a division of labor between functionally distinct isoHbs with specialized oxygenation properties.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | | | - Magnus K Grouleff
- Zoophysiology, Department of Biology, Aarhus University, C. F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Michael Vandewege
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.,Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI-Marine, BGI, Shenzhen 518083, China
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, C. F. Møllers Alle 3, Aarhus C 8000, Denmark
| |
Collapse
|
9
|
Hoffmann FG, Vandewege MW, Storz JF, Opazo JC. Gene Turnover and Diversification of the α- and β-Globin Gene Families in Sauropsid Vertebrates. Genome Biol Evol 2018; 10:344-358. [PMID: 29340581 PMCID: PMC5786229 DOI: 10.1093/gbe/evy001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
The genes that encode the α- and β-chain subunits of vertebrate hemoglobin have served as a model system for elucidating general principles of gene family evolution, but little is known about patterns of evolution in amniotes other than mammals and birds. Here, we report a comparative genomic analysis of the α- and β-globin gene clusters in sauropsids (archosaurs and nonavian reptiles). The objectives were to characterize changes in the size and membership composition of the α- and β-globin gene families within and among the major sauropsid lineages, to reconstruct the evolutionary history of the sauropsid α- and β-globin genes, to resolve orthologous relationships, and to reconstruct evolutionary changes in the developmental regulation of gene expression. Our comparisons revealed contrasting patterns of evolution in the unlinked α- and β-globin gene clusters. In the α-globin gene cluster, which has remained in the ancestral chromosomal location, evolutionary changes in gene content are attributable to the differential retention of paralogous gene copies that were present in the common ancestor of tetrapods. In the β-globin gene cluster, which was translocated to a new chromosomal location, evolutionary changes in gene content are attributable to differential gene gains (via lineage-specific duplication events) and gene losses (via lineage-specific deletions and inactivations). Consequently, all major groups of amniotes possess unique repertoires of embryonic and postnatally expressed β-type globin genes that diversified independently in each lineage. These independently derived β-type globins descend from a pair of tandemly linked paralogs in the most recent common ancestor of sauropsids.
Collapse
Affiliation(s)
- Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
10
|
Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science 2017; 354:336-339. [PMID: 27846568 DOI: 10.1126/science.aaf9070] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
To investigate the predictability of genetic adaptation, we examined the molecular basis of convergence in hemoglobin function in comparisons involving 56 avian taxa that have contrasting altitudinal range limits. Convergent increases in hemoglobin-oxygen affinity were pervasive among high-altitude taxa, but few such changes were attributable to parallel amino acid substitutions at key residues. Thus, predictable changes in biochemical phenotype do not have a predictable molecular basis. Experiments involving resurrected ancestral proteins revealed that historical substitutions have context-dependent effects, indicating that possible adaptive solutions are contingent on prior history. Mutations that produce an adaptive change in one species may represent precluded possibilities in other species because of differences in genetic background.
Collapse
Affiliation(s)
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology and Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Christopher C Witt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
11
|
Storz JF. Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport. Physiology (Bethesda) 2017; 31:223-32. [PMID: 27053736 DOI: 10.1152/physiol.00060.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
12
|
Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 2016; 219:3190-3203. [PMID: 27802149 PMCID: PMC5091379 DOI: 10.1242/jeb.127134] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
13
|
Havird JC, Santos SR. Developmental Transcriptomics of the Hawaiian Anchialine Shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Atyidae). Integr Comp Biol 2016; 56:1170-1182. [PMID: 27400978 DOI: 10.1093/icb/icw003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many crustacean species progress through a series of metamorphoses during the developmental transition from embryo to adult. The molecular genetic basis of this transition, however, is not well characterized for a large number of crustaceans. Here, we employ multiple RNA-Seq methodologies to identify differentially expressed genes (DEGs) between "early" (i.e., Z1 - Z2) as well as "late" (i.e., Z3 - Z4) larval and adult developmental stages of Halocaridina rubra Holthuis (1963), an atyid shrimp endemic to the environmentally variable anchialine ecosystem of the Hawaiian Islands. Given the differences in salinity tolerance (narrow vs. wide range), energy acquisition (maternal yolk-bearing vs. microphagous grazing), and behavior (positively phototactic vs. not) between larvae and adults, respectively, of this species, we hypothesized the recovery of numerous DEGs belonging to functional categories relating to these characteristics. Consistent with this and regardless of methodology, hundreds of DEGs were identified, including upregulation of opsins and other light/stimulus detection genes and downregulation of genes related to ion transport, digestion, and reproduction in larvae relative to adults. Furthermore, isoform-switching, which has been largely unexplored in crustacean development, appears to be pervasive between H. rubra larvae and adults, especially among structural and oxygen-transport genes. Finally, by comparing RNA-Seq methodologies, we provide recommendations for future crustacean transcriptomic studies, including a demonstration of the pitfalls associated with identifying DEGs from single replicate samples as well as the utility of leveraging "prepackaged" bioinformatics pipelines.
Collapse
Affiliation(s)
- Justin C Havird
- *Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA .,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott R Santos
- *Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| |
Collapse
|
14
|
The Primary Structure of β(I)-Chain of Hemoglobin from Snake Sindhi Krait (Bungarus sindanus sindanus). Protein J 2016; 35:193-201. [PMID: 27118198 DOI: 10.1007/s10930-016-9661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The amino acid sequence of β(I)-globin chain from Sindhi Krait (Bungarus sindanus sindanus) was determined to study the molecular evolution among snakes. The hemoglobin was isolated from the red blood cells and was analyzed by ion-exchange chromatography (IEX). The crude globin was subjected to reversed phased-high performance liquid chromatography (RP-HPLC) using C4 column. The N-terminal sequences of intact globin chains and tryptic peptides were determined by Edman degradation in a pulsed liquid gas phase sequencer using an online Phenylthiohydantoin analyzer. Sindhi Krait is expected to express three hemoglobin components that are composed of β(II), β(I), α(D) and α(A)-globin chains, as apparent by IEX, RP-HPLC and N-terminal sequence analyses. Sequence alignment and phylogenetic analyses of β(I) globin chain from Sindhi Krait showed closest relationship with β(I) globin chain from Rattlesnake, Water snake and Indigo snake. Interestingly, comparison of primary sequence of β(I) globin chain of Sindhi Krait with human β chain revealed 63 % similarity along with the retention of all heme contact points. Variations among the two sequences were prominent at αβ contact points and in regions directly not important for function.
Collapse
|
15
|
Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ, Kopuchian C, Tubaro PL, Alza L, Bulgarella M, Smith MM, Wilson RE, Fago A, McCracken KG, Storz JF. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level. PLoS Genet 2015; 11:e1005681. [PMID: 26637114 PMCID: PMC4670201 DOI: 10.1371/journal.pgen.1005681] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. The convergent evolution of similar traits in different species could be due to repeated changes at the genetic level or different changes that produce the same phenotypic effect. To investigate the extent to which convergence in phenotype is caused by repeated mutations, we investigated the molecular basis of convergent changes in the oxygenation properties of hemoglobin (Hb) in eight pairs of high- and low-altitude waterfowl taxa from the Andes. The results revealed that convergent increases in Hb-O2 affinity in highland taxa involved a combination of unique and repeated amino acid replacements. However, convergent changes in Hb function generally did not involve parallel substitutions, indicating that repeatability in the evolution of protein function does not require repeatability at the sequence level.
Collapse
Affiliation(s)
- Chandrasekhar Natarajan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Joana Projecto-Garcia
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Roy E. Weber
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Violeta Muñoz-Fuentes
- Estación Biológica de Doñana-CSIC, Sevilla, Spain
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | | | - Cecilia Kopuchian
- Centro de Ecología Aplicada del Litoral (CECOAL), Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Corrientes, Argentina
| | - Pablo L. Tubaro
- División Ornitología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Luis Alza
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Mariana Bulgarella
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Matthew M. Smith
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Robert E. Wilson
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Angela Fago
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Kevin G. McCracken
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, Florida, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
16
|
Storz JF, Natarajan C, Moriyama H, Hoffmann FG, Wang T, Fago A, Malte H, Overgaard J, Weber RE. Oxygenation properties and isoform diversity of snake hemoglobins. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1178-91. [PMID: 26354849 DOI: 10.1152/ajpregu.00327.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Lu S, Xin Y, Tang X, Yue F, Wang H, Bai Y, Niu Y, Chen Q. Differences in Hematological Traits between High- and Low-Altitude Lizards (Genus Phrynocephalus). PLoS One 2015; 10:e0125751. [PMID: 25955247 PMCID: PMC4425549 DOI: 10.1371/journal.pone.0125751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
Phrynocephalus erythrurus (Lacertilia: Agamidae) is considered to be the highest living reptile in the world (about 4500-5000 m above sea level), whereas Phrynocephalus przewalskii inhabits low altitudes (about 1000-1500 m above sea level). Here, we report the differences in hematological traits between these two different Phrynocephalus species. Compared with P. przewalskii, the results indicated that P. erythrurus own higher oxygen carrying capacity by increasing red blood cell count (RBC), hemoglobin concentration ([Hb]) and hematocrit (Hct) and these elevations could promote oxygen carrying capacity without disadvantage of high viscosity. The lower partial pressure of oxygen in arterial blood (PaO2) of P. erythrurus did not cause the secondary alkalosis, which may be attributed to an efficient pulmonary system for oxygen (O2) loading. The elevated blood-O2 affinity in P. erythrurus may be achieved by increasing intrinsic O2 affinity of isoHbs and balancing the independent effects of potential heterotropic ligands. We detected one α-globin gene and three β-globin genes with 1 and 33 amino acid substitutions between these two species, respectively. Molecular dynamics simulation results showed that amino acids substitutions in β-globin chains could lead to the elimination of hydrogen bonds in T-state Hb models of P. erythrurus. Based on the present data, we suggest that P. erythrurus have evolved an efficient oxygen transport system under the unremitting hypobaric hypoxia.
Collapse
Affiliation(s)
- Songsong Lu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Feng Yue
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yucheng Bai
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yonggang Niu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Opazo JC, Hoffmann FG, Natarajan C, Witt CC, Berenbrink M, Storz JF. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol Biol Evol 2015; 32:871-87. [PMID: 25502940 PMCID: PMC4379397 DOI: 10.1093/molbev/msu341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.
Collapse
Affiliation(s)
- Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University
| | | | - Christopher C Witt
- Department of Biology, University of New Mexico Museum of Southwestern Biology, University of New Mexico
| | - Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
19
|
Cheviron ZA, Natarajan C, Projecto-Garcia J, Eddy DK, Jones J, Carling MD, Witt CC, Moriyama H, Weber RE, Fago A, Storz JF. Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean Sparrow, Zonotrichia capensis. Mol Biol Evol 2014; 31:2948-62. [PMID: 25135942 PMCID: PMC4209134 DOI: 10.1093/molbev/msu234] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufous-collared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the α(A)-globin gene, which encodes the α-chain subunits of the major HbA isoform, and one in the α(D)-globin gene, which encodes the α-chain subunits of the minor HbD isoform. We then constructed and experimentally tested single- and double-mutant rHbs representing each of the alternative α(A)-globin genotypes that predominate at different elevations. Although the locus-specific patterns of altitudinal differentiation suggested a history of spatially varying selection acting on Hb polymorphism, the experimental tests demonstrated that the observed amino acid mutations have no discernible effect on respiratory properties of the HbA or HbD isoforms. These results highlight the importance of experimentally validating the hypothesized effects of genetic changes in protein function to avoid the pitfalls of adaptive storytelling.
Collapse
Affiliation(s)
- Zachary A Cheviron
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign School of Biological Sciences, University of Nebraska, Lincoln
| | | | | | - Douglas K Eddy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign
| | - Jennifer Jones
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign
| | | | - Christopher C Witt
- Department of Biology, University of New Mexico Museum of Southwestern Biology, University of New Mexico
| | | | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
20
|
Damsgaard C, Storz JF, Hoffmann FG, Fago A. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta. Am J Physiol Regul Integr Comp Physiol 2013; 305:R961-7. [PMID: 23986362 PMCID: PMC3798770 DOI: 10.1152/ajpregu.00284.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023]
Abstract
When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia.
Collapse
|
21
|
Grispo MT, Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Storz JF. Gene duplication and the evolution of hemoglobin isoform differentiation in birds. J Biol Chem 2012; 287:37647-58. [PMID: 22962007 PMCID: PMC3488042 DOI: 10.1074/jbc.m112.375600] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/06/2012] [Indexed: 11/06/2022] Open
Abstract
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Binding, Competitive
- Birds/blood
- Birds/classification
- Birds/genetics
- Cloning, Molecular
- Evolution, Molecular
- Gene Duplication
- Genetic Variation
- Hemoglobin A/chemistry
- Hemoglobin A/genetics
- Hemoglobin A/metabolism
- Hemoglobins/chemistry
- Hemoglobins/genetics
- Hemoglobins/metabolism
- Hemoglobins, Abnormal/chemistry
- Hemoglobins, Abnormal/genetics
- Hemoglobins, Abnormal/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Oxygen/chemistry
- Oxygen/metabolism
- Protein Binding
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Michael T. Grispo
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| | | | - Joana Projecto-Garcia
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Hideaki Moriyama
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| | - Roy E. Weber
- Zoophysiology, Institute for Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jay F. Storz
- From the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588 and
| |
Collapse
|
22
|
Storz JF, Opazo JC, Hoffmann FG. Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol 2012; 66:469-78. [PMID: 22846683 DOI: 10.1016/j.ympev.2012.07.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/21/2012] [Accepted: 07/16/2012] [Indexed: 11/28/2022]
Abstract
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α(2)β(2)). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | | | |
Collapse
|
23
|
Storz JF, Opazo JC, Hoffmann FG. Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life 2011; 63:313-22. [PMID: 21557448 DOI: 10.1002/iub.482] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/30/2011] [Indexed: 11/11/2022]
Abstract
Phylogenetic reconstructions provide a means of inferring the branching relationships among members of multigene families that have diversified via successive rounds of gene duplication and divergence. Such reconstructions can illuminate the pathways by which particular expression patterns and protein functions evolved. For example, phylogenetic analyses can reveal cases in which similar expression patterns or functional properties evolved independently in different lineages, either through convergence, parallelism, or evolutionary reversals. The purpose of this article is to provide a robust phylogenetic framework for interpreting experimental data and for generating hypotheses about the functional evolution of globin proteins in chordate animals. To do this, we present a consensus phylogeny of the chordate globin gene superfamily. We document the relative roles of gene duplication and whole-genome duplication in fueling the functional diversification of vertebrate globins, and we unravel patterns of shared ancestry among globin genes from representatives of the three chordate subphyla (Craniata, Urochordata, and Cephalochordata). Our results demonstrate the value of integrating phylogenetic analyses with genomic analyses of conserved synteny to infer the duplicative origins and evolutionary histories of globin genes. We also discuss a number of case studies that illustrate the importance of phylogenetic information when making inferences about the evolution of globin gene expression and protein function. Finally, we discuss why the globin gene superfamily presents special challenges for phylogenetic analysis, and we describe methodological approaches that can be used to meet those challenges.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE.
| | | | | |
Collapse
|