1
|
Lv W, Jiang X, Li P, Xie D, Wang D, Stanley D, Zhang L. Interactions between migration and immunity among oriental armyworm populations infected with the insect pathogenic fungus, Beauveria bassiana. PEST MANAGEMENT SCIENCE 2024; 80:6167-6178. [PMID: 39119843 DOI: 10.1002/ps.8345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Migration and immunity are behavioral and physiological traits that protect organisms from environmental stressors or pathogen infection. Shifting from migration to residency has become more common in some wildlife populations owing to environmental changes. However, other biological shifts, such as interactions between migration and immunity among populations within a species are largely unexplored for many agricultural migratory pests. In the field, entomopathogenic fungi infection and transmission, particularly Beauveria bassiana, can cause reduced fitness and population declines across a broad range of insect species. RESULTS Here, we investigated migration-immunity interactions between migrant and resident populations of the oriental armyworm, Mythimna separata, infected with B. bassiana (the sole fungus used in this work). We found that migratory M. separata exerted stronger pathogen resistance, faster development and lower pupal weight than residents. High-dose infections (5.0 × 105 and 5.0 × 106 conidia mL-1) led to seriously decreased reproductive capacity in migrants and residents. Low-dose infections (1.0 × 104 and 5.0 × 104 conidia mL-1) led to significantly increased host flight capacities. Consecutive flight tests showed that five flight nights inhibited the reproduction of paternal infected M. separata populations. The flights also led to far-reaching transgenerational impairment of larval development and immune defense among offspring populations. By contrast, two flight nights enhanced the reproductive capacities of both M. separata populations and did not exert negative transgenerational effects on offspring populations, which may facilitate migration. CONCLUSIONS This study provides insights into interactions between migration and immunity among M. separata populations. These insights will guide development of future monitoring and management technologies of this pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weixiang Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengjie Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, China
| | - David Stanley
- Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, Columbia, MO, USA
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Urca T, Levin E, Gefen E, Ribak G. Intraspecific scaling and early life history determine the cost of free-flight in a large beetle (Batocera rufomaculata). INSECT SCIENCE 2024; 31:524-532. [PMID: 37469199 DOI: 10.1111/1744-7917.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 07/21/2023]
Abstract
The scaling of the energetic cost of locomotion with body mass is well documented at the interspecific level. However, methodological restrictions limit our understanding of the scaling of flight metabolic rate (MR) in free-flying insects. This is particularly true at the intraspecific level, where variation in body mass and flight energetics may have direct consequences for the fitness of an individual. We applied a 13C stable isotope method to investigate the scaling of MR with body mass during free-flight in the beetle Batocera rufomaculata. This species exhibits large intraspecific variation in adult body mass as a consequence of the environmental conditions during larval growth. We show that the flight-MR scales with body mass to the power of 0.57, with smaller conspecifics possessing up to 2.3 fold higher mass-specific flight MR than larger ones. Whereas the scaling exponent of free-flight MR was found to be like that determined for tethered-flight, the energy expenditure during free-flight was more than 2.7 fold higher than for tethered-flight. The metabolic cost of flight should therefore be studied under free-flight conditions, a requirement now enabled by the 13C technique described herein for insect flight.
Collapse
Affiliation(s)
- Tomer Urca
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Eran Levin
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv, Israel
| | - Eran Gefen
- Department of Biology, University of Haifa-Oranim, Kiryat Tivon, Israel
| | - Gal Ribak
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv, Israel
| |
Collapse
|
3
|
Hao J, Liu C, Zhang N, Li J, Ni T, Qu M, Li XD. Alternative relay regulates the adenosine triphosphatase activity of Locusta migratoria striated muscle myosin. INSECT SCIENCE 2024; 31:435-447. [PMID: 37489033 DOI: 10.1111/1744-7917.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/26/2023]
Abstract
Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.
Collapse
Affiliation(s)
- Jie Hao
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Zhang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong Ni
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingbo Qu
- School of Bioengeering, Dalian University of Technology, Dalian, China
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Kou G, Wang Y, Ge S, Yin Y, Sun Y, Li D. Moderate mass loss enhances flight performance via alteration of flight kinematics and postures in a passerine bird. J Exp Biol 2023; 226:jeb245862. [PMID: 37947199 DOI: 10.1242/jeb.245862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Many birds experience fluctuations in body mass throughout the annual life cycle. The flight efficiency hypothesis posits that adaptive mass loss can enhance avian flight ability. However, whether birds can increase additional wing loading following mass loss and how birds adjust flight kinematics and postures remain largely unexplored. We investigated physiological changes in body condition in breeding female Eurasian tree sparrows (Passer montanus) through a dietary restriction experiment and determined the changes in flight kinematics and postures. Body mass decreased significantly, but the external maximum load and mass-corrected total load increased significantly after 3 days of dietary restriction. After 6 days of dietary restriction (DR6), hematocrit, pectoralis and hepatic fat content, take-off speed, theoretical maximum range speed and maximum power speed declined significantly. Notably, the load capacity and power margin remained unchanged relative to the control group. The wing stroke amplitude and relative downstroke duration were not affected by the interaction between diet restriction and extra load. Wing stroke amplitude significantly increased after DR6 treatment, while the relative downstroke duration significantly decreased. The stroke plane angle significantly increased after DR6 treatment only in the load-free condition. In addition, the sparrows adjusted their body angle and stroke plane angle in response to the extra load, but stroke amplitude and wingbeat frequency remained unchanged. Therefore, birds can maintain and even enhance their flight performance by adjusting flight kinematics and postures after a short-term mass loss.
Collapse
Affiliation(s)
- Guanqun Kou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shiyong Ge
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuan Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, Hebei Province, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
5
|
Liu X, Shi J, Ren L, Luo Y. Factors Affecting the Flight Capacity of Two Woodwasp Species, Sirex noctilio F. (Hymenoptera: Siricidae) and Sirex nitobei M. (Hymenoptera: Siricidae). INSECTS 2023; 14:236. [PMID: 36975921 PMCID: PMC10057106 DOI: 10.3390/insects14030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Sirex noctilio F. is an invasive woodwasp that causes pine mortality in plantations in China. Sirex nitobei M. is a native woodwasp in large areas of China. In this study, the flight capacity of the two woodwasps was studied and compared using a tethered-flight mill system to find individual factors affecting the flight capacity. After flight bioassays, woodwasps were dissected to determine nematode infestation. Post-eclosion-day (PED) age significantly influenced the flight capacity of S. noctilio females and males; as woodwasps become older, their flight capacity decreased. For S. nitobei, PED age did not significantly affect their flight capacity. In general, the flight capacity of S. noctilio was greater than that of S. nitobei. Females flew further and for longer than males for both Sirex species. The Deladenus spp. parasitism status of the two Sirex species did not significantly affect their flight performance parameters. PED age and body mass were key individual factors significantly affecting the flight capacity of the two Sirex species. In this study, detailed and accurate tethered-flight parameters of S. noctilio and S. nitobei were obtained. Although this is different from natural flight, it also provides us substantial laboratory data on their flight capacity, and facilitates risk analysis of the two woodwasp species.
Collapse
Affiliation(s)
- Xiaobo Liu
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Juan Shi
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- IFOPE, Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University—French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- IFOPE, Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University—French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- IFOPE, Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University—French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing 100083, China
| |
Collapse
|
6
|
Lu Y, Wang Z, Lin F, Ma Y, Kang J, Fu Y, Huang M, Zhao Z, Zhang J, Chen Q, Ren B. Screening and identification of genes associated with flight muscle histolysis of the house cricket Acheta domesticus. Front Physiol 2023; 13:1079328. [PMID: 36714303 PMCID: PMC9873970 DOI: 10.3389/fphys.2022.1079328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Flight muscle histolysis, as an important survival strategy, is a widespread phenomenon in insects and facilitates adaptation to the external environment in various insect taxa. However, the regulatory mechanism underlying this phenomenon in Orthoptera remains unknown. Methods: In this study, the flight muscle histolysis in the house cricket Acheta domesticus was investigated by transcriptomics and RNA interference. Results: The results showed that flight muscle histolysis in A. domesticus was standard and peaked within 9 days after eclosion of adult crickets, and there was no significant difference in the peak time or morphology of flight muscle histolysis between males and females. In addition, the differentially expressed genes between before and after flight muscle histolysis were studied, of which AdomFABP, AdomTroponin T and AdomActin were identified as candidate genes, and after injecting the dsRNA of these three candidates, only the downregulated expression of AdomFABP led to flight muscle histolysis in A. domesticus. Furthermore, the expression level of AdomFABP was compared between before and after flight muscle histolysis based on RT-qPCR. Disscussion: We speculated that AdomFABP might play a role in the degradation of flight muscle by inhibiting muscle development. Our findings laid a molecular foundation for understanding the flight muscle histolysis.
Collapse
Affiliation(s)
- Ying Lu
- Key Laboratory of Economical and Applied Entomology of the Education Department of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zizhuo Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Fei Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yuqing Ma
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jiangyan Kang
- Key Laboratory of Economical and Applied Entomology of the Education Department of Liaoning Province, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuying Fu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Minjia Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zhuo Zhao
- College of Life Sciences, Jilin Normal University, Siping, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China,*Correspondence: Qi Chen, ; Bingzhong Ren,
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China,*Correspondence: Qi Chen, ; Bingzhong Ren,
| |
Collapse
|
7
|
Ding D, Zhang J, Du B, Wang X, Hou L, Guo S, Chen B, Kang L. Non-canonical function of an Hif-1α splice variant contributes to the sustained flight of locusts. eLife 2022; 11:74554. [PMID: 36039636 PMCID: PMC9427102 DOI: 10.7554/elife.74554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/11/2022] [Indexed: 12/30/2022] Open
Abstract
The hypoxia inducible factor (Hif) pathway is functionally conserved across metazoans in modulating cellular adaptations to hypoxia. However, the functions of this pathway under aerobic physiological conditions are rarely investigated. Here, we show that Hif-1α2, a locust Hif-1α isoform, does not induce canonical hypoxic responses but functions as a specific regulator of locust flight, which is a completely aerobic physiological process. Two Hif-1α splice variants were identified in locusts, a ubiquitously expressed Hif-1α1 and a muscle-predominantly expressed Hif-1α2. Hif-1α1 that induces typical hypoxic responses upon hypoxia exposure remains inactive during flight. By contrast, the expression of Hif-1α2, which lacks C-terminal transactivation domain, is less sensitive to oxygen tension but induced extensively by flying. Hif-1α2 regulates physiological processes involved in glucose metabolism and antioxidation during flight and sustains flight endurance by maintaining redox homeostasis through upregulating the production of a reactive oxygen species (ROS) quencher, DJ-1. Overall, this study reveals a novel Hif-mediated mechanism underlying prolonged aerobic physiological activity.
Collapse
Affiliation(s)
- Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Baozhen Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xuanzhao Wang
- School of Life Science, Hebei University, Baoding, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Chen
- School of Life Science, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,School of Life Science, Hebei University, Baoding, China
| |
Collapse
|
8
|
Urca T, Gefen E, Ribak G. Critical P2 and insect flight: The role of tracheal volume in the Oogenesis-Flight Syndrome. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110873. [DOI: 10.1016/j.cbpa.2020.110873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
|
9
|
Ramos-Pérez VI, Castellanos I, Robinson-Fuentes VA, Macías-Ordóñez R, Mendoza-Cuenca L. Sex-related interannual plasticity in wing morphological design in Heliconius charithonia enhances flight metabolic performance. PLoS One 2020; 15:e0239620. [PMID: 33125377 PMCID: PMC7598497 DOI: 10.1371/journal.pone.0239620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Flight morphological variations and its consequences on animal performance are common in winged insects. In the butterfly Heliconius charithonia, sex-related differences in the wing morphological design have been described resulting in differences in foraging behavior, daily flight distances and flight aerodynamics. It has been suggested that these differences should be reflected in the metabolic capacities and energetic budgets associated with flight in both sexes. In this study, we analyzed the relationship between wing morphological variation and metabolic performance, flight aerodynamics and energetic reserves in females and males of Heliconius charithonia over two years. The results confirm the presence of wing shape sexual dimorphism, but also show an unexpected sex-related annual variation in wing shape, mirrored in the metabolic condition (resting metabolic rate) of individuals. However, contrary to expectation, intersexual variations in wing shape are not related to differences between the sexes in terms of flight aerodynamics, flight metabolic rates, or energetic reserves (carbohydrates, lipids and proteins). Our results indicate a considerable plasticity in H. charithonia wing shape, which we suggest is determined by a trade-off between environmental pressures and reproductive restriction of each sex, maintaining an optimum flight design. Finally, similarities in metabolic rates between young and older males and females in both years may be a consequence of the ability of Heliconius species to feed on pollen.
Collapse
Affiliation(s)
- Velia I Ramos-Pérez
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, México
| | - Ignacio Castellanos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, México
| | - Virginia A Robinson-Fuentes
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | | | - Luis Mendoza-Cuenca
- Laboratorio de Ecología de la Conducta, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Morelia, México
| |
Collapse
|
10
|
Cao T, Jin JP. Evolution of Flight Muscle Contractility and Energetic Efficiency. Front Physiol 2020; 11:1038. [PMID: 33162892 PMCID: PMC7581897 DOI: 10.3389/fphys.2020.01038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The powered flight of animals requires efficient and sustainable contractions of the wing muscles of various flying species. Despite their high degree of phylogenetic divergence, flight muscles in insects and vertebrates are striated muscles with similarly specialized sarcomeric structure and basic mechanisms of contraction and relaxation. Comparative studies examining flight muscles together with other striated muscles can provide valuable insights into the fundamental mechanisms of muscle contraction and energetic efficiency. Here, we conducted a literature review and data mining to investigate the independent emergence and evolution of flight muscles in insects, birds, and bats, and the likely molecular basis of their contractile features and energetic efficiency. Bird and bat flight muscles have different metabolic rates that reflect differences in energetic efficiencies while having similar contractile machinery that is under the selection of similar natural environments. The significantly lower efficiency of insect flight muscles along with minimized energy expenditure in Ca2+ handling is discussed as a potential mechanism to increase the efficiency of mammalian striated muscles. A better understanding of the molecular evolution of myofilament proteins in the context of physiological functions of invertebrate and vertebrate flight muscles can help explore novel approaches to enhance the performance and efficiency of skeletal and cardiac muscles for the improvement of human health.
Collapse
Affiliation(s)
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Flight Muscle and Wing Mechanical Properties are Involved in Flightlessness of the Domestic Silkmoth, Bombyx mori. INSECTS 2020; 11:insects11040220. [PMID: 32252362 PMCID: PMC7240457 DOI: 10.3390/insects11040220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
Flight loss has occurred in many winged insect taxa. The flightless silkmoth Bombyx mori, is domesticated from the wild silkmoth, Bombyx mandarina, which can fly. In this paper, we studied morphological characteristics attributed to flightlessness in silkmoths. Three domestic flightless B. mori strains and one B. mandarina population were used to compare morphological components of the flight apparatus, including wing characteristics (shape, forewing area, loading, and stiffness), flight muscle (weight, ratio, and microscopic detail) and body mass. Compared with B. mandarina, B. mori strains have a larger body, greater wing loading, more flexible wings and a lower flight muscle ratio. The arrangement in microscopy of dorsal longitudinal flight muscles (DLFMs) of B. mori was irregular. Comparative analysis of the sexes suggests that degeneration of flight muscles and reduction of wing mechanical properties (stiffness) are associated with silkmoth flightlessness. The findings provide important clues for further research of the molecular mechanisms of B. mori flight loss.
Collapse
|
12
|
Abstract
We describe an individual-based model of spruce budworm moth migration founded on the premise that flight liftoff, altitude, and duration are constrained by the relationships between wing size, body weight, wingbeat frequency, and air temperature. We parameterized this model with observations from moths captured in traps or observed migrating under field conditions. We further documented the effects of prior defoliation on the size and weight (including fecundity) of migrating moths. Our simulations under idealized nocturnal conditions with a stable atmospheric boundary layer suggest that the ability of gravid female moths to migrate is conditional on the progression of egg-laying. The model also predicts that the altitude at which moths migrate varies with the temperature profile in the boundary layer and with time during the evening and night. Model results have implications for the degree to which long-distance dispersal by spruce budworm might influence population dynamics in locations distant from outbreak sources, including how atmospheric phenomena such as wind convergence might influence these processes. To simulate actual migration flights en masse, the proposed model will need to be linked to regional maps of insect populations, a phenology model, and weather model outputs of both large- and small-scale atmospheric conditions.
Collapse
|
13
|
Minter M, Pearson A, Lim KS, Wilson K, Chapman JW, Jones CM. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. ECOLOGICAL ENTOMOLOGY 2018; 43:397-411. [PMID: 30046219 PMCID: PMC6055614 DOI: 10.1111/een.12521] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/02/2023]
Abstract
1. Every year billions of insects engage in long-distance, seasonal mass migrations which have major consequences for agriculture, ecosystem services and insect-vectored diseases. Tracking this movement in the field is difficult, with mass migrations often occurring at high altitudes and over large spatial scales. 2. As such, tethered flight provides a valuable tool for studying the flight behaviour of insects, giving insights into flight propensity (e.g. distance, duration and velocity) and orientation under controlled laboratory settings. By experimentally manipulating a variety of environmental and physiological traits, numerous studies have used this technology to study the flight behaviour of migratory insects ranging in size from aphids to butterflies. Advances in functional genomics promise to extend this to the identification of genetic factors associated with flight. Tethered flight techniques have been used to study migratory flight characteristics in insects for more than 50 years, but have never been reviewed. 3. This study summarises the key findings of this technology, which has been employed in studies of species from six Orders. By providing detailed descriptions of the tethered flight systems, the present study also aims to further the understanding of how tethered flight studies support field observations, the situations under which the technology is useful and how it might be used in future studies. 4. The aim is to contextualise the available tethered flight studies within the broader knowledge of insect migration and to describe the significant contribution these systems have made to the literature.
Collapse
Affiliation(s)
- Melissa Minter
- Department of BiologyUniversity of York, Heslington WayYorkU.K.
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
| | - Aislinn Pearson
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Ka S. Lim
- Computational and Analytical Sciences, Rothamsted ResearchHertfordshireU.K.
| | - Kenneth Wilson
- Lancaster Environment CentreLancaster UniversityLancasterU.K.
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of ExeterCornwallU.K.
| | - Christopher M. Jones
- Biointeractions and Crop Protection, Rothamsted ResearchHertfordshireU.K.
- Vector Biology, Liverpool School of Tropical MedicineLiverpoolU.K.
| |
Collapse
|
14
|
Snelling EP, Duncker R, Jones KK, Fagan-Jeffries EP, Seymour RS. Flight metabolic rate of Locusta migratoria in relation to oxygen partial pressure in atmospheres of varying diffusivity and density. ACTA ACUST UNITED AC 2018; 220:4432-4439. [PMID: 29187621 DOI: 10.1242/jeb.168187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
Flying insects have the highest mass-specific metabolic rate of all animals. Oxygen is supplied to the flight muscles by a combination of diffusion and convection along the internal air-filled tubes of the tracheal system. This study measured maximum flight metabolic rate (FMR) during tethered flight in the migratory locust Locusta migratoria under varying oxygen partial pressure (PO2 ) in background gas mixtures of nitrogen (N2), sulfur hexafluoride (SF6) and helium (He), to vary O2 diffusivity and gas mixture density independently. With N2 as the sole background gas (normodiffusive-normodense), mass-independent FMR averaged 132±19 mW g-0.75 at normoxia (PO2 =21 kPa), and was not limited by tracheal system conductance, because FMR did not increase in hyperoxia. However, FMR declined immediately with hypoxia, oxy-conforming nearly completely. Thus, the locust respiratory system is matched to maximum functional requirements, with little reserve capacity. With SF6 as the sole background gas (hypodiffusive-hyperdense), the shape of the relationship between FMR and PO2 was similar to that in N2, except that FMR was generally lower (e.g. 24% lower at normoxia). This appeared to be due to increased density of the gas mixture rather than decreased O2 diffusivity, because hyperoxia did not reverse it. Normoxic FMR was not significantly different in He-SF6 (hyperdiffusive-normodense) compared with the N2 background gas, and likewise there was no significant difference between FMR in SF6-He (normodiffusive-hyperdense) compared with the SF6 background gas. The results indicate that convection, not diffusion, is the main mechanism of O2 delivery to the flight muscle of the locust when demand is high.
Collapse
Affiliation(s)
- Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, Gauteng 2193, South Africa .,Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca Duncker
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karl K Jones
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Erinn P Fagan-Jeffries
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger S Seymour
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Li J, Lu Z, He J, Chen Q, Wang X, Kang L, Li XD. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity. INSECT MOLECULAR BIOLOGY 2016; 25:689-700. [PMID: 27440416 DOI: 10.1111/imb.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Whereas the vertebrate muscle myosin heavy chains (MHCs) are encoded by a family of Mhc genes, most insects examined to date contain a single Mhc gene and produce all of the different MHC isoforms by alternative RNA splicing. Here, we found that the migratory locust, Locusta migratoria, has one Mhc gene, which contains 41 exons, including five alternative exclusive exons and one differently included penultimate exon, and potentially encodes 360 MHC isoforms. From the adult L. migratoria, we identified 14 MHC isoforms (including two identical isoforms): four from flight muscle (the thorax dorsal longitudinal muscle), three from jump muscle (the hind leg extensor tibiae muscle) and seven from the abdominal intersegmental muscle. We purified myosins from flight muscle and jump muscle and characterized their motor activities. At neutral pH, the flight and the jump muscle myosins displayed similar levels of in vitro actin-gliding activity, whereas the former had a slightly higher actin-activated ATPase activity than the latter. Interestingly, the pH dependences of the actin-activated ATPase activity of these two myosins are different. Because the dominant MHC isoforms in these two muscles are identical except for the two alternative exon-encoding regions, we propose that these two alternative regions modulate the pH dependence of L. migratoria muscle myosin.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Z Lu
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - J He
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Q Chen
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X Wang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L Kang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-D Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Snelling EP, Seymour RS, Runciman S, Matthews PGD, White CR. Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle. J Exp Biol 2012; 215:3324-33. [DOI: 10.1242/jeb.072975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Weibel and Taylor's theory of symmorphosis predicts that the structural components of the respiratory system are quantitatively adjusted to satisfy, but not exceed, an animal's maximum requirement for oxygen. We test this in the respiratory system of the adult migratory locust Locusta migratoria by comparing the aerobic capacity of hopping and flight muscle with the morphology of the oxygen cascade. Maximum oxygen uptake by flight muscle during tethered-flight is 967 ± 76 μmol h-1 g-1 (body mass-specific, ± 95% CI), whereas the hopping muscles consume a maximum of 158 ± 8 during jumping. The 6.1-fold difference in aerobic capacity between the two muscles is matched by a 6.4-fold difference in tracheole lumen volume, which is 3.5×108 ± 1.2×108 μm3 g-1 in flight muscle and 5.5×107 ± 1.8×107 in the hopping muscles, a 6.4-fold difference in tracheole inner cuticle surface area, which is 3.2×109 ± 1.1×109 μm2 g-1 in flight muscle and 5.0×108 ± 1.7×108 in the hopping muscles, and a 6.8-fold difference in tracheole radial diffusing capacity, which is 113 ± 47 μmol kPa-1 h-1 g-1 in flight muscle and 16.7 ± 6.5 in the hopping muscles. However, there is little congruence between the 6.1-fold difference in aerobic capacity and the 19.8-fold difference in mitochondrial volume, which is 3.2×1010 ± 3.9×109 μm3 g-1 in flight muscle and only 1.6×109 ± 1.4×108 in the hopping muscles. Therefore, symmorphosis is upheld in the design of the tracheal system, but not in relation to the amount of mitochondria, which might be due to other factors operating on the molecular level.
Collapse
|