1
|
Breves JP, McKay IS, Koltenyuk V, Nelson NN, Lema SC, McCormick SD. Na +/HCO 3- cotransporter 1 (nbce1) isoform gene expression during smoltification and seawater acclimation of Atlantic salmon. J Comp Physiol B 2022; 192:577-592. [PMID: 35715660 DOI: 10.1007/s00360-022-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
The life history of Atlantic salmon (Salmo salar) includes an initial freshwater phase (parr) that precedes a springtime migration to marine environments as smolts. The development of osmoregulatory systems that will ultimately support the survival of juveniles upon entry into marine habitats is a key aspect of smoltification. While the acquisition of seawater tolerance in all euryhaline species demands the concerted activity of specific ion pumps, transporters, and channels, the contributions of Na+/HCO3- cotransporter 1 (Nbce1) to salinity acclimation remain unresolved. Here, we investigated the branchial and intestinal expression of three Na+/HCO3- cotransporter 1 isoforms, denoted nbce1.1, -1.2a, and -1.2b. Given the proposed role of Nbce1 in supporting the absorption of environmental Na+ by ionocytes, we first hypothesized that expression of a branchial nbce1 transcript (nbce1.2a) would be attenuated in salmon undergoing smoltification and following seawater exposure. In two separate years, we observed spring increases in branchial Na+/K+-ATPase activity, Na+/K+/2Cl- cotransporter 1, and cystic fibrosis transmembrane regulator 1 expression characteristic of smoltification, whereas there were no attendant changes in nbce1.2a expression. Nonetheless, branchial nbce1.2a levels were reduced in parr and smolts within 2 days of seawater exposure. In the intestine, gene transcript abundance for nbce1.1 increased from spring to summer in the anterior intestine, but not in the posterior intestine or pyloric caeca, and nbce1.1 and -1.2b expression in the intestine showed season-dependent transcriptional regulation by seawater exposure. Collectively, our data indicate that tissue-specific modulation of all three nbce1 isoforms underlies adaptive responses to seawater.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ian S McKay
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Victor Koltenyuk
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Nastasia N Nelson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Stephen D McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|
2
|
Hieu DQ, Hang BTB, Lokesh J, Garigliany MM, Huong DTT, Yen DT, Liem PT, Tam BM, Hai DM, Son VN, Phuong NT, Farnir F, Kestemont P. Salinity significantly affects intestinal microbiota and gene expression in striped catfish juveniles. Appl Microbiol Biotechnol 2022; 106:3245-3264. [PMID: 35366085 DOI: 10.1007/s00253-022-11895-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
In the present study, juvenile striped catfish (Pangasianodon hypophthalmus), a freshwater fish species, have been chronically exposed to a salinity gradient from freshwater to 20 psu (practical salinity unit) and were sampled at the beginning (D20) and the end (D34) of exposure. The results revealed that the intestinal microbial profile of striped catfish reared in freshwater conditions were dominated by the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Alpha diversity measures (observed OTUs (operational taxonomic units), Shannon and Faith's PD (phylogenetic diversity)) showed a decreasing pattern as the salinities increased, except for the phylogenetic diversity at D34, which was showing an opposite trend. Furthermore, the beta diversity between groups was significantly different. Vibrio and Akkermansia genera were affected differentially with increasing salinity, the former being increased while the latter was decreased. The genus Sulfurospirillium was found predominantly in fish submitted to salinity treatments. Regarding the host response, the fish intestine likely contributed to osmoregulation by modifying the expression of osmoregulatory genes such as nka1a, nka1b, slc12a1, slc12a2, cftr, and aqp1, especially in fish exposed to 15 and 20 psu. The expression of heat shock proteins (hsp) hsp60, hsp70, and hsp90 was significantly increased in fish reared in 15 and 20 psu. On the other hand, the expression of pattern recognition receptors (PRRs) were inhibited in fish exposed to 20 psu at D20. In conclusion, the fish intestinal microbiota was significantly disrupted in salinities higher than 10 psu and these effects were proportional to the exposure time. In addition, the modifications of intestinal gene expression related to ion exchange and stressful responses may help the fish to adapt hyperosmotic environment. KEY POINTS: • It is the first study to provide detailed information on the gut microbiota of fish using the amplicon sequencing method. • Salinity environment significantly modified the intestinal microbiota of striped catfish. • Intestinal responses may help the fish adapt to hyperosmotic environment.
Collapse
Affiliation(s)
- Dang Quang Hieu
- Research Unit in Environmental and Evolutionary Biology, Institute of Life Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Jep Lokesh
- Université de Pau Et Des Pays de L'Adour, Saint-Pee-sur-Nivelle, E2S UPPA, INRAE, NuMéA, France
| | - Mutien-Marie Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Pham Thanh Liem
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Bui Minh Tam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Dao Minh Hai
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam.,Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Vo Nam Son
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frédéric Farnir
- Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| |
Collapse
|
3
|
Barany A, Oliva M, Gregório SF, Martínez-Rodríguez G, Mancera JM, Fuentes J. Dysregulation of Intestinal Physiology by Aflatoxicosis in the Gilthead Seabream ( Sparus aurata). Front Physiol 2022; 12:741192. [PMID: 34987413 PMCID: PMC8722709 DOI: 10.3389/fphys.2021.741192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin often present in food. This study aimed to understand the physiological effects of AFB1 on the seabream (Sparus aurata) gastrointestinal system. In a first in vitro approach, we investigated ion transport using the short-circuit current (Isc) technique in Ussing chambers in the anterior intestine (AI). Application of apical/luminal AFB1 concentrations of 8 and 16 μM to healthy tissues was without effect on tissue transepithelial electrical resistance (TER), and apparent tissue permeability (Papp) was measured using fluorescein FITC (4 kD). However, it resulted in dose-related effects on Isc. In a second approach, seabream juveniles fed with different AFB1 concentrations (1 and 2 mg AFB1 kg−1 fish feed) for 85 days showed significantly reduced gill Na+/K+-ATPase (NKA) and H+-ATPase (HA) activities in the posterior intestine (PI). Moreover, dietary AFB1 modified Isc in the AI and PI, significantly affecting TER in the AI. To understand this effect on TER, we analyzed the expression of nine claudins and three occludins as markers of intestinal architecture and permeability using qPCR. Around 80% of the genes presented significantly different relative mRNA expression between AI and PI and had concomitant sensitivity to dietary AFB1. Based on the results of our in vitro, in vivo, and molecular approaches, we conclude that the effects of dietary AFB1 in the gastrointestinal system are at the base of the previously reported growth impairment caused by AFB1 in fish.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Milagrosa Oliva
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Silvia Filipa Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
4
|
Bieczynski F, Painefilú JC, Venturino A, Luquet CM. Expression and Function of ABC Proteins in Fish Intestine. Front Physiol 2021; 12:791834. [PMID: 34955897 PMCID: PMC8696203 DOI: 10.3389/fphys.2021.791834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Julio C. Painefilú
- Instituto Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Carlos M. Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET – UNCo), Junín de los Andes, Argentina
| |
Collapse
|
5
|
Barany A, Shaughnessy CA, Pelis RM, Fuentes J, Mancera JM, McCormick SD. Tissue and salinity specific Na +/Cl - cotransporter (NCC) orthologues involved in the adaptive osmoregulation of sea lamprey (Petromyzon marinus). Sci Rep 2021; 11:22698. [PMID: 34811419 PMCID: PMC8608846 DOI: 10.1038/s41598-021-02125-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Two orthologues of the gene encoding the Na+-Cl− cotransporter (NCC), termed ncca and nccb, were found in the sea lamprey genome. No gene encoding the Na+-K+-2Cl− cotransporter 2 (nkcc2) was identified. In a phylogenetic comparison among other vertebrate NCC and NKCC sequences, the sea lamprey NCCs occupied basal positions within the NCC clades. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Intestinal nccb mRNA levels increased during late metamorphosis coincident with salinity tolerance. Acclimation to seawater increased nccb mRNA levels in the intestine and kidney. Electrophysiological analysis of intestinal tissue ex vivo showed this tissue was anion absorptive. After seawater acclimation, the proximal intestine became less anion absorptive, whereas the distal intestine remained unchanged. Luminal application of indapamide (an NCC inhibitor) resulted in 73% and 30% inhibition of short-circuit current (Isc) in the proximal and distal intestine, respectively. Luminal application of bumetanide (an NKCC inhibitor) did not affect intestinal Isc. Indapamide also inhibited intestinal water absorption. Our results indicate that NCCb is likely the key ion cotransport protein for ion uptake by the lamprey intestine that facilitates water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA levels during metamorphosis of sea lamprey are likely critical to development of whole animal salinity tolerance.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain. .,Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.
| | - C A Shaughnessy
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - R M Pelis
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Johnson City, NY, 13790, USA
| | - J Fuentes
- Centre of Marine Sciences (CCMar), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Puerto Real, 11519, Cádiz, Spain
| | - S D McCormick
- Conte Anadromous Fish Research Laboratory, Eastern Ecological Science Center, U.S. Geological Survey, Turners Falls, MA, 01376, USA.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
6
|
Barany A, Gilannejad N, Alameda-López M, Rodríguez-Velásquez L, Astola A, Martínez-Rodríguez G, Roo J, Muñoz JL, Mancera JM. Osmoregulatory Plasticity of Juvenile Greater Amberjack ( Seriola dumerili) to Environmental Salinity. Animals (Basel) 2021; 11:2607. [PMID: 34573573 PMCID: PMC8465821 DOI: 10.3390/ani11092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Osmotic costs in teleosts are highly variable, reaching up to 50% of energy expenditure in some. In several species, environmental salinities close to the isosmotic point (~15 psu) minimize energy demand for osmoregulation while enhancing growth. The present study aimed to characterize the physiological status related to osmoregulation in early juveniles of the greater amberjack, Seriola dumerili, acclimated to three salinities (15, 22, and 36 psu). Our results indicate that plasma metabolic substrates were enhanced at the lower salinities, whereas hepatic carbohydrate and energetic lipid substrates decreased. Moreover, osmoregulatory parameters, such as osmolality, muscle water content, gill and intestine Na+-K+-ATPase activities, suggested a great osmoregulatory capacity in this species. Remarkably, electrophysiological parameters, such as short-circuit current (Isc) and transepithelial electric resistance (TER), were enhanced significantly at the posterior intestine. Concomitantly, Isc and TER anterior-to-posterior intestine differences were intensified with increasing environmental salinity. Furthermore, the expression of several adeno-hypophyseal genes was assessed. Expression of prl showed an inverse linear relationship with increasing environmental salinity, while gh mRNA enhanced significantly in the 22 psu-acclimated groups. Overall, these results could explain the better growth observed in S. dumerili juveniles kept at salinities close to isosmotic rather than in seawater.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Neda Gilannejad
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, E11519 Cádiz, Spain; (N.G.); (G.M.-R.)
- NORCE Norwegian Research Centre AS, Uni Research Environment, Nygårdsgaten 112, E5008 Bergen, Norway
| | - María Alameda-López
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Liliana Rodríguez-Velásquez
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| | - Antonio Astola
- Department of Biomedicine, Biotechnology, and Public Health, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cadiz, Puerto Real, E11510 Cádiz, Spain;
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, E11519 Cádiz, Spain; (N.G.); (G.M.-R.)
| | - Javier Roo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, E35214 Gran Canaria, Spain;
| | - Jose Luis Muñoz
- Department of Production, IFAPA Centro “El Toruño”, Junta de Andalucía, El Puerto de Santa María, E11500 Cádiz, Spain;
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Puerto Real, E11510 Cádiz, Spain; (M.A.-L.); (L.R.-V.); (J.M.M.)
| |
Collapse
|
7
|
Martin L, Esbaugh AJ. Osmoregulatory plasticity during hypersaline acclimation in red drum, Sciaenops ocellatus. J Comp Physiol B 2021; 191:731-740. [PMID: 33844043 DOI: 10.1007/s00360-021-01356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
Prolonged drought and freshwater diversion are making periods of hypersalinity more common in coastal ecosystems. This is especially true in the Laguna Madre system along the Texas coast where salinities can exceed 60 g/kg. As such, the ability to tolerate hypersalinity is critical to the success of endemic species, such as the commercially important red drum (Sciaenops ocellatus). This study evaluated acclimation of red drum to hypersalinity (60 g/kg) using a direct transfer protocol. Hypersalinity exposure resulted in significant impacts on plasma osmolality and muscle water in the first 24 h, but returned to control values coincident with a significant increase in intestinal water volume. Hypersalinity acclimation resulted in significant branchial and intestinal plasticity. The gill showed significant elevated nka α1a, nkcc1 and vha (B subunit) mRNA abundance, as well as NKA enzyme activity. The posterior intestine showed a stronger plasticity signal than the anterior intestine, which included a 12-fold increase in nkcc2 mRNA abundance and significant increases in NKA and VHA enzyme activity. These changes were corroborated by a significant threefold increase in bumetanide-sensitive absorptive short circuit current. These data suggest that the dynamic regulation of NKCC2-mediated intestinal water absorption is an important compliment to HCO3--mediated water absorption during hypersalinity exposure and acclimation.
Collapse
Affiliation(s)
- Leighann Martin
- Department of Marine Science, Marine Science Institutem, University of Texas at Austin, Port Aransas, TX, 78373, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, Marine Science Institutem, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
8
|
Ruiz-Jarabo I, Gregório SF, Alves A, Mancera JM, Fuentes J. Ocean acidification compromises energy management in Sparus aurata (Pisces: Teleostei). Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110911. [PMID: 33647459 DOI: 10.1016/j.cbpa.2021.110911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022]
Abstract
The effects of ocean acidification mediated by an increase in water pCO2 levels on marine organisms are currently under debate. Elevated CO2 concentrations in the seawater induce several physiological responses in teleost fish, including acid-base imbalances and osmoregulatory changes. However, the consequences of CO2 levels enhancement on energy metabolism are mostly unknown. Here we show that 5 weeks of exposure to hypercapnia (950 and 1800 μatm CO2) altered intermediary metabolism of gilthead seabream (Sparus aurata) compared to fish acclimated to current ocean values (440 μatm CO2). We found that seabream compromises its physiological acid-base balance with increasing water CO2 levels and the subsequent acidification. Intestinal regions (anterior, mid, and rectum) engaged in maintaining this balance are thus altered, as seen for Na+/K+-ATPase and the vacuolar-type H+-ATPase activities. Moreover, liver and muscle counteracted these effects by increasing catabolic routes e.g., glycogenolysis, glycolysis, amino acid turnover, and lipid catabolism, and plasma energy metabolites were altered. Our results demonstrate how a relatively short period of 5 weeks of water hypercapnia is likely to disrupt the acid-base balance, osmoregulatory capacity and intermediary metabolism in S. aurata. However, long-term studies are necessary to fully understand the consequences of ocean acidification on growth and other energy-demanding activities, such as reproduction.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Cádiz, Spain; Department of Animal Physiology, Faculty of Biological Sciences, University Complutense, Madrid, Spain.
| | - S F Gregório
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal
| | - A Alves
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Cádiz, Spain
| | - J Fuentes
- Centre of Marine Sciences (CCMar), University do Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
9
|
Alves A, Gregório SF, Ruiz-Jarabo I, Fuentes J. Intestinal response to ocean acidification in the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110789. [DOI: 10.1016/j.cbpa.2020.110789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
|
10
|
Lin G, Zheng M, Li S, Xie J, Fang W, Gao D, Huang J, Lu J. Response of gut microbiota and immune function to hypoosmotic stress in the yellowfin seabream (Acanthopagrus latus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140976. [PMID: 32736105 DOI: 10.1016/j.scitotenv.2020.140976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Osmotic stress is associated with heightened immune functions and altered microbiota in the fish intestine. In this study, we explored the effects of hypoosmotic stress on the intestine of euryhaline yellowfin seabream (Acanthopagrus latus) after acute exposure to brackish water, low-saline water, and freshwater environments. The results showed that hypoosmotic stress reshaped the composition of the microbial community and altered the gene expression in the intestine. Probiotics Lactobacillus and Pseudomonas showed higher relative abundance in a brackish water environment, whereas pathogenic bacteria, including Vibrio and Aeromonas, were more abundant in the freshwater environment. At the transcriptional level, osmoregulation-related genes were identified as up/down regulated differentially expressed genes (DEGs) as well as a series of immune-related DEGs associated with pathogen recognition, antimicrobial ability, pro-inflammatory cytokines, cell apoptosis, and antioxidant defense. Physiological analysis showed that Na+ K+-ATPase activity was significantly inhibited by hypoosmotic stress in freshwater. Meanwhile, the intestinal antioxidant defense system of yellowfin seabream was challenged. Correlation network analysis demonstrated the close interactions among intestinal microbes, differentially expressed genes, and physiological parameters. This study provides the critical insights into the function of the intestine fish encountering hypoosmotic stress.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
11
|
Shaughnessy CA, Breves JP. Molecular mechanisms of Cl
−
transport in fishes: New insights and their evolutionary context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:207-216. [DOI: 10.1002/jez.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jason P. Breves
- Department of Biology Skidmore College Saratoga Springs New York USA
| |
Collapse
|
12
|
Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020; 298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
In fishes, prolactin (Prl) signaling underlies the homeostatic regulation of hydromineral balance by controlling essential solute and water transporting functions performed by the gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies spanning over 60 years have firmly established that Prl promotes physiological activities that enable euryhaline and stenohaline teleosts to reside in freshwater environments; nonetheless, the specific molecular and cellular targets of Prl in ion- and water-transporting tissues are still being resolved. In this short review, we discuss how particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps) confer adaptive functions to the esophagus and intestine. Additionally, in some instances, Prl promotes histological and functional transformations within esophageal and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Emily E Popp
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Eva F Rothenberg
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Clarence W Rosenstein
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Kaitlyn M Maffett
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Rebecca R Guertin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
13
|
Slc4 Gene Family in Spotted Sea Bass (Lateolabrax maculatus): Structure, Evolution, and Expression Profiling in Response to Alkalinity Stress and Salinity Changes. Genes (Basel) 2020; 11:genes11111271. [PMID: 33126655 PMCID: PMC7692064 DOI: 10.3390/genes11111271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
The solute carrier 4 (SLC4) family is a class of cell membranes transporters involved in base transport that plays crucial roles in diverse physiological processes. In our study, 15 slc4 genes were identified and annotated in spotted sea bass, including five members of Cl−/HCO3− exchangers, eight genes coding Na+-dependent HCO3− transporters, and two copies of Na+-coupled borate transporters. The gene sequence and structure, chromosomal and syntenic arrangement, phylogenetic and evolution profiles were analyzed. Results showed that the slc4 gene in teleosts obviously expanded compared with higher vertebrates, arising from teleost-specific whole genome duplication event. Most gene sites of slc4 in spotted sea bass were under strong purifying selection during evolution, while positive selection sites were only detected in slc4a1b, slc4a8, and slc4a10b. Additionally, qRT-PCR results showed that different slc4 genes exhibited distinct branchial expression patterns after alkalinity and salinity stresses, of which the strongly responsive members may play essential roles during these physiological processes. Our study provides the systemic overview of the slc4 gene family in spotted sea bass and enables a better understanding for the evolution of this family and further deciphering the biological roles in maintaining ion and acid–base homeostasis in teleosts.
Collapse
|
14
|
Whittamore JM. The teleost fish intestine is a major oxalate-secreting epithelium. J Exp Biol 2020; 223:jeb216895. [PMID: 32122927 DOI: 10.1242/jeb.216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
Abstract
Oxalate is a common constituent of kidney stones, but the mechanism of its transport across epithelia is not well understood. With prior research on the role of the intestine focused on mammals, the present study considered oxalate handling by teleost fish. Given the osmotic challenge of seawater (SW), marine teleosts have limited scope for urinary oxalate excretion relative to freshwater (FW) taxa. The marine teleost intestine was hypothesized as the principal route for oxalate elimination, thus demanding epithelial secretion. To test this, intestinal 14C-oxalate flux was compared between FW- and SW-acclimated sailfin molly (Poecilia latipinna). In SW, oxalate was secreted at remarkable rates (367.90±22.95 pmol cm-2 h-1), which were similar following FW transfer (387.59±27.82 pmol cm-2 h-1), implying no regulation by salinity. Nevertheless, this ability to secrete oxalate at rates 15-19 times higher than the mammalian small intestine supports this proposal of the teleost gut as a major, previously unrecognized excretory pathway.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, P.O. Box 100275, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Sun Z, Lou F, Zhang Y, Song N. Gill Transcriptome Sequencing and De Novo Annotation of Acanthogobius ommaturus in Response to Salinity Stress. Genes (Basel) 2020; 11:genes11060631. [PMID: 32521805 PMCID: PMC7349121 DOI: 10.3390/genes11060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Acanthogobius ommaturus is a euryhaline fish widely distributed in coastal, bay and estuarine areas, showing a strong tolerance to salinity. In order to understand the mechanism of adaptation to salinity stress, RNA-seq was used to compare the transcriptome responses of Acanthogobius ommaturus to the changes of salinity. Four salinity gradients, 0 psu, 15 psu (control), 30 psu and 45 psu were set to conduct the experiment. In total, 131,225 unigenes were obtained from the gill tissue of A. ommaturus using the Illumina HiSeq 2000 platform (San Diego, USA). Compared with the gene expression profile of the control group, 572 differentially expressed genes (DEGs) were screened, with 150 at 0 psu, 170 at 30 psu, and 252 at 45 psu. Additionally, among these DEGs, Gene Ontology (GO) analysis indicated that binding, metabolic processes and cellular processes were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis detected 3, 5 and 8 pathways related to signal transduction, metabolism, digestive and endocrine systems at 0 psu, 30 psu and 45 psu, respectively. Based on GO enrichment analysis and manual literature searches, the results of the present study indicated that A. ommaturus mainly responded to energy metabolism, ion transport and signal transduction to resist the damage caused by salinity stress. Eight DEGs were randomly selected for further validation by quantitative real-time PCR (qRT-PCR) and the results were consistent with the RNA-seq data.
Collapse
Affiliation(s)
| | | | | | - Na Song
- Correspondence: or ; Tel.: +86-532-820-31658
| |
Collapse
|
16
|
Barany A, Shaughnessy CA, Fuentes J, Mancera JM, McCormick SD. Osmoregulatory role of the intestine in the sea lamprey ( Petromyzon marinus). Am J Physiol Regul Integr Comp Physiol 2019; 318:R410-R417. [PMID: 31747320 DOI: 10.1152/ajpregu.00033.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lampreys are the most basal vertebrates with an osmoregulatory strategy. Previous research has established that the salinity tolerance of sea lamprey increases dramatically during metamorphosis, but underlying changes in the gut have not been examined. In the present work, we examined changes in intestinal function during metamorphosis and seawater exposure of sea lamprey (Petromyzon marinus). Fully metamorphosed juvenile sea lamprey had 100% survival after direct exposure to 35 parts per thousand seawater (SW) and only slight elevations in plasma chloride (Cl-) levels. Drinking rates of sea lamprey juveniles in seawater were 26-fold higher than juveniles in freshwater (FW). Na+-K+-ATPase (NKA) activity in the anterior and posterior intestine increased 12- and 3-fold, respectively, during metamorphosis, whereas esophageal NKA activity was lower than in the intestine and did not change with development. Acclimation to SW significantly enhanced NKA activity in the posterior intestine but did not significantly change NKA activity in the anterior intestine, which remained higher than that in the posterior intestine. Intestinal Cl- and water uptake, which were observed in ex vivo preparations of anterior and posterior intestine under both symmetric and asymmetric conditions, were higher in juveniles than in larvae and were similar in magnitude of those of teleost fish. Inhibition of NKA by ouabain in ex vivo preparations inhibited intestinal water absorption by 64%. Our results indicate drinking and intestinal ion and water absorption are important to osmoregulation in SW and that preparatory increases in intestinal NKA activity are important to the development of salinity tolerance that occurs during sea lamprey metamorphosis.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain.,Centre of Marine Sciences, University of Algarve, Gambelas, Faro, Portugal
| | - C A Shaughnessy
- United States Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts
| | - J Fuentes
- Centre of Marine Sciences, University of Algarve, Gambelas, Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar, University of Cádiz, Cádiz, Spain
| | - S D McCormick
- United States Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, Massachusetts.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
17
|
Gregório SF, Ruiz-Jarabo I, Carvalho EM, Fuentes J. Increased intestinal carbonate precipitate abundance in the sea bream (Sparus aurata L.) in response to ocean acidification. PLoS One 2019; 14:e0218473. [PMID: 31226164 PMCID: PMC6588277 DOI: 10.1371/journal.pone.0218473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Marine fish contribute to the carbon cycle by producing mineralized intestinal precipitates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of epithelial bicarbonate secretion and intestinal precipitate presence in the gilthead sea bream in response to predicted near future increases of environmental CO2. Our results demonstrate that hypercapnia (950 and 1800 μatm CO2) elicits higher intestine epithelial HCO3- secretion ex vivo and a subsequent parallel increase of intestinal precipitate presence in vivo when compared to present values (440 μatm CO2). Intestinal gene expression analysis in response to environmental hypercapnia revealed the up-regulation of transporters involved in the intestinal bicarbonate secretion cascade such as the basolateral sodium bicarbonate co-transporter slc4a4, and the apical anion transporters slc26a3 and slc26a6 of sea bream. In addition, other genes involved in intestinal ion uptake linked to water absorption such as the apical nkcc2 and aquaporin 1b expression, indicating that hypercapnia influences different levels of intestinal physiology. Taken together the current results are consistent with an intestinal physiological response leading to higher bicarbonate secretion in the intestine of the sea bream paralleled by increased luminal carbonate precipitate abundance and the main related transporters in response to ocean acidification.
Collapse
Affiliation(s)
- Sílvia F. Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ignacio Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Edison M. Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
18
|
Jerez-Cepa I, Fernández-Castro M, Del Santo O'Neill TJ, Martos-Sitcha JA, Martínez-Rodríguez G, Mancera JM, Ruiz-Jarabo I. Transport and Recovery of Gilthead Seabream ( Sparus aurata L.) Sedated With Clove Oil and MS-222: Effects on Stress Axis Regulation and Intermediary Metabolism. Front Physiol 2019; 10:612. [PMID: 31214040 PMCID: PMC6555194 DOI: 10.3389/fphys.2019.00612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
Transport processes between aquaculture facilities activate the stress response in fish. To deal with these situations, the hypothalamic-pituitary-interrenal (HPI) axis releases cortisol, leading to an increase in circulating energy resources to restore homeostasis. However, if the allostatic load generated exceeds fish tolerance limits, stress-related responses will compromise health and welfare of the animals. In this context, anesthetics have arisen as potential agents aiming to reduce negative effects of stress response. Here we assessed the effects of a sedative dose of clove oil (CO) and MS-222 on hallmarks involved in HPI axis regulation and energy management after simulated transport, and further recovery, in gilthead seabream (Sparus aurata L.) juveniles. Fish were placed in a mobile setup of water tanks where transport conditions were simulated for 6 h. Sedation doses of either CO (2.5 mg L−1) or MS-222 (5 mg L−1) were added in the water tanks. A control group without anesthetics was also included in the setup. Half of the animals (n = 12 per group) were sampled immediately after transport, while remaining animals were allowed to recover for 18 h in clean water tanks and then sampled. Our results showed that the HPI axis response was modified at peripheral level, with differences depending on the anesthetic employed. Head kidney gene-expressions related to cortisol production (star and cyp11b1) matched concomitantly with increased plasma cortisol levels immediately after transport in CO-sedated fish, but these levels remained constant in MS-222-sedated fish. Differential changes in the energy management of carbohydrates, lipids and amino acids, depending on the anesthetic employed, were also observed. The use of CO stimulated amino acids catabolism, while MS-222-sedated fish tended to consume liver glycogen and mobilize triglycerides. Further studies, including alternative doses of both anestethics, as well as the assessment of time-course HPI activation and longer recovery periods, are necessary to better understand if the use of clove oil and MS-222 is beneficial for S. aurata under these circumstances.
Collapse
Affiliation(s)
- Ismael Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Spain
| | - Miriam Fernández-Castro
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Spain
| | - Thomas Julian Del Santo O'Neill
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Institute of Marine Sciences of Andalusia (ICMAN), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Spain
| | - Ignacio Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Puerto Real, Spain
| |
Collapse
|
19
|
Alves A, Gregório SF, Egger RC, Fuentes J. Molecular and functional regionalization of bicarbonate secretion cascade in the intestine of the European sea bass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 233:53-64. [PMID: 30946979 DOI: 10.1016/j.cbpa.2019.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
In marine fish the intestinal HCO3- secretion is the key mechanism to enable luminal aggregate formation and water absorption. Using the sea bass (Dicentrarchus labrax), the present study aimed at establishing the functional and molecular organization of different sections of the intestine concerning bicarbonate secretion and Cl- movements. The proximal intestinal regions presented similar HCO3- secretion rates, while differences were detected in the molecular expression of the transporters involved and on regional HCO3- concentrations. The anterior region presented significantly higher Na+/K+-ATPase activity, Cl- transepithelial transport and basolateral slc4a4, apical slc26a6 and slc26a3 expression levels. In the mid intestine, the total HCO3- content was significantly increased in the fluid as in the carbonate aggregates. In the rectum no HCO3- secretion was observed and was characterized by the diminished HCO3- total content, residual molecular expression of slc4a4, slc26a6 and slc26a3, higher H+-ATPase activity and expression, suggesting the existence of a different bicarbonate handling mechanism. The possible regulation of HCO3- secretion by extracellular HCO3- and increased intracellular cAMP levels were also investigated. cAMP did not affect HCO3- secretion, although Cl- secretion was enhanced by cftr. HCO3- secretion rise due to the HCO3- basolateral increment showed that at resting levels slc4a4 was not a limiting step for secretion. The transcellular/intracellular dependence of apical HCO3- secretion differed between the proximal regions. In conclusion, intestinal HCO3- secretion has a functional region-dependent organization that was not reflected by the anterior-posterior regionalization on HCO3- secretion and expression profiles of chloride/water absorption related genes.
Collapse
Affiliation(s)
- Alexandra Alves
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Renata C Egger
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
20
|
Takei Y, Wong MKS, Ando M. Molecular mechanisms for intestinal HCO3− secretion and its regulation by guanylin in seawater-acclimated eels. J Exp Biol 2019; 222:jeb.203539. [DOI: 10.1242/jeb.203539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/03/2019] [Indexed: 01/25/2023]
Abstract
The intestine of marine teleosts secretes HCO3− into the lumen and precipitates Ca2+ and Mg2+ in the imbibed seawater as carbonates to decrease luminal fluid osmolality and facilitate water absorption. However, hormonal regulation of HCO3−secretion is largely unknown. Here, mucosally-added guanylin (GN) increased HCO3− secretion, measured by pH-stat, across isolated seawater-acclimated eel intestine bathed in saline at pH 7.4 (5% CO2). The effect of GN on HCO3− secretion was slower than that on the short-circuit current, and the time-course of the GN effect was similar to that of bumetanide. Mucosal bumetanide and serosal 4,4’-dinitrostilbene-2,2’-disulfonic acid (DNDS) inhibited the GN effect, suggesting an involvement of apical Na+-K+-2Cl− cotransporter (NKCC2) and basolateral Cl−/HCO3− exchanger (AE)/Na+-HCO3− cotransporter (NBC) in the GN effect. As mucosal DNDS failed to inhibit the GN effect, apical DNDS-sensitive AE may not be involved. To identify molecular species of transporters involved in the GN effect, we performed RNA-seq analyses followed by quantitative real-time PCR after transfer of eels to seawater. Among the genes upregulated after seawater transfer, AE genes, draa, b, and pat1a, c, on the apical membrane, and NBC genes, nbce1a, n1, n2a, and a AE gene, sat-1, on the basolateral membrane were candidates involved in HCO3− secretion. Judging from the slow effect of GN, we suggest that GN inhibits NKCC2b on the apical membrane and decreases cytosolic Cl− and Na+, which then activates apical DNDS-insensitive DRAs and basolateral DNDS-sensitive NBCs to enhance transcellular HCO3− flux across the intestinal epithelia of seawater-acclimated eels.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Marty K. S. Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Masaaki Ando
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
21
|
Cao Q, Liang F, Wang D, Zhang X, Lorin-Nebel C, Gu J, Yin S. Dynamic expression of vasotocin and isotocin receptor genes in the marbled eel (Anguilla marmorata) following osmotic challenges. Gene 2018; 677:49-56. [DOI: 10.1016/j.gene.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
22
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Osmoregulation in the Plotosidae Catfish: Role of the Salt Secreting Dendritic Organ. Front Physiol 2018; 9:761. [PMID: 30018560 PMCID: PMC6037869 DOI: 10.3389/fphys.2018.00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/30/2018] [Indexed: 01/14/2023] Open
Abstract
Unlike other marine teleosts, the Plotosidae catfishes reportedly have an extra-branchial salt secreting dendritic organ (DO). Salinity acclimation [brackishwater (BW) 3aaa, seawater (SWcontrol) 34aaa, and hypersaline water (HSW) 60aaa] for 14 days was used to investigate the osmoregulatory abilities of Plotosus lineatus through measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase (NKA) specific activity and ion transporter expression in gills, DO, kidney and intestine. Ion transporter expression was determined using immunoblotting, immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR). HSW elevated mortality, plasma osmolality and ions, and hematocrit, and decreased MWC indicating an osmoregulatory challenge. NKA specific activity and protein levels were significantly higher in DO compared to gill, kidney and intestine at all salinities. NKA specific activity increased in kidney and posterior intestine with HSW but only kidney showed correspondingly higher NKA α-subunit protein levels. Since DO mass was greater in HSW, the total amount of DO NKA activity expressed per gram fish was greater indicating higher overall capacity. Gill NKA and V-ATPase protein levels were greater with HSW acclimation but this was not reflected in NKA activity, mRNA or ionocyte abundance. BW acclimation resulted in lower NKA activity in gill, kidney and DO. Cl- levels were better regulated and the resulting strong ion ratio in BW suggests a metabolic acidosis. Elevated DO heat shock protein 70 levels in HSW fish indicate a cellular stress. Strong NKA and NKCC1 (Na+:K+:2Cl- cotransporter1) co-localization was observed in DO parenchymal cells, which was rare in gill ionocytes. NKCC1 immunoblot expression was only detected in DO, which was highest at HSW. Cystic fibrosis transmembrane regulator Cl- channel (CFTR) localize apically to DO NKA immunoreactive cells. Taken together, the demonstration of high NKA activity in DO coexpressed with NKCC1 and CFTR indicates the presence of the conserved secondary active Cl- secretion mechanism found in other ion transporting epithelia suggesting a convergent evolution with other vertebrate salt secreting organs. However, the significant osmoregulatory challenge of HSW indicates that the DO may be of limited use under more extreme salinity conditions in contrast to the gill based ionoregulatory strategy of marine teleosts.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - João Coimbra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jonathan M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.,Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
23
|
Gregório SF, Fuentes J. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor. Int J Mol Sci 2018; 19:E1072. [PMID: 29617283 PMCID: PMC5979614 DOI: 10.3390/ijms19041072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 12/29/2022] Open
Abstract
In marine fish, high epithelial intestinal HCO₃− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃− secretion in the intestine of the sea bream (Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃− secretion in vitro using the anterior intestine. HCO₃− secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃− secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.
Collapse
Affiliation(s)
- Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
24
|
Pujante IM, Moyano FJ, Martos-Sitcha JA, Mancera JM, Martínez-Rodríguez G. Effect of different salinities on gene expression and activity of digestive enzymes in the thick-lipped grey mullet (Chelon labrosus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:349-373. [PMID: 29147970 DOI: 10.1007/s10695-017-0440-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The effects of different environmental salinities (0, 12, 40, and 55 ppt) on pepsinogen 2 (pga2), trypsinogen 2 (try2), chymotrypsinogen (ctr), and pancreatic alpha-amylase (amy2a) gene expression, and on the total activities of their corresponding enzymes, were assessed in Chelon labrosus juveniles, after their corresponding full-complementary DNA sequences were cloned. Furthermore, the quantitative effect of different salinities on the hydrolysis of feed protein by fish digestive enzymes was evaluated using an in vitro system. Relative pga2 expression levels were significantly higher in animals maintained at 12 ppt, while a significantly higher gene expression level for ctr and try2 was observed at 40 ppt. amy2a gene expression showed its maximum level at 40 ppt and the lowest at 55 ppt. A significant reduction in the activity of amylase with the increase in salinity was observed, whereas the maximum activity for alkaline proteases was observed in individuals maintained at 40 ppt. A negative effect of high salinity on the action of proteases was confirmed by the in vitro assay, indicating a decreased efficiency in the digestive function in C. labrosus when maintained at high environmental salinities. Nevertheless, individuals can live under different environmental salinities, even though gene expression is different and the enzymatic activities are not maintained at the highest studied salinity. Therefore, compensatory mechanisms should be in place. Results are discussed on the light of the importance as a new species for aquaculture.
Collapse
Affiliation(s)
- I M Pujante
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11519, Puerto Real, Cádiz, Spain.
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Avenida República Saharaui, 11510, Puerto Real, Cádiz, Spain.
| | - F J Moyano
- Departamento de Biología Aplicada, Escuela Politécnica, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Almería, 04120, La Cañada de San Urbano, Almería, Spain
| | - J A Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), 11519, Puerto Real, Cádiz, Spain
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11519, Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), 11519, Puerto Real, Cádiz, Spain
| |
Collapse
|
25
|
Zhang X, Wen H, Wang H, Ren Y, Zhao J, Li Y. RNA-Seq analysis of salinity stress-responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). PLoS One 2017; 12:e0173238. [PMID: 28253338 PMCID: PMC5333887 DOI: 10.1371/journal.pone.0173238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
Salinity is one of the most prominent abiotic factors, which greatly influence reproduction, development, growth, physiological and metabolic activities of fishes. Spotted sea bass (Lateolabrax maculatus), as a euryhaline marine teleost, has extraordinary ability to deal with a wide range of salinity changes. However, this species is devoid of genomic resources, and no study has been conducted at the transcriptomic level to determine genes responsible for salinity regulation, which impedes the understanding of the fundamental mechanism conferring tolerance to salinity fluctuations. Liver, as the major metabolic organ, is the key source supplying energy for iono- and osmoregulation in fish, however, little attention has been paid to its salinity-related functions but which should not be ignored. In this study, we perform RNA-Seq analysis to identify genes involved in salinity adaptation and osmoregulation in liver of spotted sea bass, generating from the fishes exposed to low and high salinity water (5 vs 30ppt). After de novo assembly, annotation and differential gene expression analysis, a total of 455 genes were differentially expressed, including 184 up-regulated and 271 down-regulated transcripts in low salinity-acclimated fish group compared with that in high salinity-acclimated group. A number of genes with a potential role in salinity adaptation for spotted sea bass were classified into five functional categories based on the gene ontology (GO) and enrichment analysis, which include genes involved in metabolites and ion transporters, energy metabolism, signal transduction, immune response and structure reorganization. The candidate genes identified in L. maculates liver provide valuable information to explore new pathways related to fish salinity and osmotic regulation. Besides, the transcriptomic sequencing data supplies significant resources for identification of novel genes and further studying biological questions in spotted sea bass.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Hailiang Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yuanyuan Ren
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Ji Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
26
|
Ruiz-Jarabo I, Gregório SF, Gaetano P, Trischitta F, Fuentes J. High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2017; 207:57-64. [PMID: 28238831 DOI: 10.1016/j.cbpa.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
Osmoregulation in fish is a complex process that requires the orchestrated cooperation of many tissues. In fish facing hyperosmotic environments, the intestinal absorption of some monovalent ions and the secretion of bicarbonate are key processes to favor water absorption. In the present study, we showed that bicarbonate levels in the intestinal fluid are several fold higher in seawater than in freshwater acclimated tilapia (Oreochromis mossambicus). In addition, we analyzed gene expression of the main molecular mechanisms involved in HCO3- movements i.e. slc26a6, slc26a3, slc4a4 and v-type H-ATPase sub C in the intestine of tilapia acclimated to both seawater and freshwater. Our results show an anterior/posterior functional regionalization of the intestine in tilapia in terms of expression patterns, which is affected by environmental salinity mostly in the anterior and mid intestine. Analysis of bicarbonate secretion using pH-Stat in tissues mounted in Ussing chambers reveals high rates of bicarbonate secretion in tilapia acclimated to seawater from anterior intestine to rectum ranging between ~900 and ~1700nmolHCO3-cm-2h-1. However, a relationship between the expression of slc26a6, slc26a3, slc4a4 and the rate of bicarbonate secretion seems to be compromised in the rectum. In this region, the low expression of the bicarbonate transporters could not explain the high bicarbonate secretion rates here described. However, we postulate that the elevated v-type H-ATPase mRNA expression in the rectum could be involved in this process.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - S F Gregório
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P Gaetano
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - F Trischitta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
27
|
Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland LT, Calduch-Giner JA, Fuentes J, Karalazos V, Ortiz Á, Øverland M, Sitjà-Bobadilla A, Pérez-Sánchez J. Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLoS One 2016; 11:e0166564. [PMID: 27898676 PMCID: PMC5127657 DOI: 10.1371/journal.pone.0166564] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023] Open
Abstract
There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.
Collapse
Affiliation(s)
- Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Gabriel Ballester-Lozano
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fabian Grammes
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Juan Antonio Martos-Sitcha
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Liv-Torunn Mydland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Juan Fuentes
- Comparative Endocrinology and Integrative Biology. CCMar, University of Algarve, Faro, Portugal
| | | | | | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ass, Norway
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- * E-mail:
| |
Collapse
|
28
|
Ruiz-Jarabo I, Barany A, Jerez-Cepa I, Mancera JM, Fuentes J. Intestinal response to salinity challenge in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 2016; 204:57-64. [PMID: 27865855 DOI: 10.1016/j.cbpa.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Fish are continuously forced to actively absorb or expel water and ions through epithelia. Most studies have focused on the gill due to its role in Na+ and Cl- trafficking. However, comparatively few studies have focused on the changing function of the intestine in response to external salinity. Therefore, the present study investigated the main intestinal changes of long-term acclimation of the Senegalese sole (Solea senegalensis) to 5, 15, 38 and 55ppt. Through the measurement of short-circuit current (Isc) in Ussing chambers and biochemical approaches, we described a clear anterior/posterior functional regionalization of the intestine in response to salinity. The use of specific inhibitors in Ussing chamber experiments, revealed that the bumetanide-sensitive Na+/K+/Cl- co-transporters are the main effectors of Cl- uptake in both anterior intestine and rectum. Additionally, the use of the anion exchanger specific inhibitor, DIDS, showed a salinity/region dependency of anion exchanger function. Moreover, we also described ouabain-sensitive Na+/K+-ATPase (NKA) and Bafilomycin A1-sensitive H+-ATPase activities (HA), which displayed changes related to salinity and intestinal region. However, the most striking result of the present study is the description of an omeprazole-sensitive H+/K+-ATPase (HKA) in the rectum of Senegalese sole. Its activity was consistently measurable and increased at lower salinities, reaching rates even higher than those of the NKA. Together our results provide new insights into the changing role of the intestine in response to external salinity in teleost fish. The rectal activity of HKA offers an alternative/cooperative mechanism with the HA in the final processing of intestinal water absorption by apical titration of secreted bicarbonate.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - A Barany
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - I Jerez-Cepa
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
29
|
Wong MKS, Pipil S, Kato A, Takei Y. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:130-141. [PMID: 27322796 DOI: 10.1016/j.cbpa.2016.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.
Collapse
Affiliation(s)
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
30
|
Ruiz-Jarabo I, González-Wevar CA, Oyarzún R, Fuentes J, Poulin E, Bertrán C, Vargas-Chacoff L. Isolation Driven Divergence in Osmoregulation in Galaxias maculatus (Jenyns, 1848) (Actinopterygii: Osmeriformes). PLoS One 2016; 11:e0154766. [PMID: 27168069 PMCID: PMC4864355 DOI: 10.1371/journal.pone.0154766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Marine species have colonized extreme environments during evolution such as freshwater habitats. The amphidromous teleost fish, Galaxias maculatus is found mainly migrating between estuaries and rivers, but some landlocked populations have been described in lakes formed during the last deglaciation process in the Andes. In the present study we use mtDNA sequences to reconstruct the historical scenario of colonization of such a lake and evaluated the osmoregulatory shift associated to changes in habitat and life cycle between amphidromous and landlocked populations. Results Standard diversity indices including the average number of nucleotide differences (Π) and the haplotype diversity index (H) indicated that both populations were, as expected, genetically distinctive, being the landlocked population less diverse than the diadromous one. Similarly, pairwise GST and NST comparison detected statistically significant differences between both populations, while genealogy of haplotypes evidenced a recent founder effect from the diadromous stock, followed by an expansion process in the lake. To test for physiological differences, individuals of both populations were challenged with a range of salinities from 0 to 30 ppt for 8 days following a period of progressive acclimation. The results showed that the landlocked population had a surprisingly wider tolerance to salinity, as landlocked fish survival was 100% from 0 to 20 ppt, whereas diadromous fish survival was 100% only from 10 to 15 ppt. The activity of ATPase enzymes, including Na+/K+-ATPase (NKA), and H+-ATPase (HA) was measured in gills and intestine. Activity differences were detected between the populations at the lowest salinities, including differences in ATPases other than NKA and HA. Population differences in mortality are not reflected in enzyme activity differences, suggesting divergence in other processes. Conclusions These results clearly demonstrate the striking adaptive changes of G. maculatus osmoregulatory system, especially at hyposmotic environments, associated to a drastic shift in habitat and life cycle at a scale of a few thousand years.
Collapse
Affiliation(s)
- Ignacio Ruiz-Jarabo
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal
| | - Claudio A. González-Wevar
- GAIA Antártica, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas, XII Región de Magallanes y la Antártica Chilena, Chile
- Laboratorio de Ecología Molecular, Instituto Milenio de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Ricardo Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Instituto Milenio de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Carlos Bertrán
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, casilla 567, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, casilla 567, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile
- * E-mail:
| |
Collapse
|
31
|
Ruhr IM, Takei Y, Grosell M. The role of the rectum in osmoregulation and the potential effect of renoguanylin on SLC26a6 transport activity in the Gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2016; 311:R179-91. [PMID: 27030664 DOI: 10.1152/ajpregu.00033.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023]
Abstract
Teleosts living in seawater continually absorb water across the intestine to compensate for branchial water loss to the environment. The present study reveals that the Gulf toadfish (Opsanus beta) rectum plays a comparable role to the posterior intestine in ion and water absorption. However, the posterior intestine appears to rely more on SLC26a6 (a HCO3 (-)/Cl(-) antiporter) and the rectum appears to rely on NKCC2 (SLC12a1) for the purposes of solute-coupled water absorption. The present study also demonstrates that the rectum responds to renoguanylin (RGN), a member of the guanylin family of peptides that alters the normal osmoregulatory processes of the distal intestine, by inhibited water absorption. RGN decreases rectal water absorption more greatly than in the posterior intestine and leads to net Na(+) and Cl(-) secretion, and a reversal of the absorptive short-circuit current (ISC). It is hypothesized that maintaining a larger fluid volume within the distal segments of intestinal tract facilitates the removal of CaCO3 precipitates and other solids from the intestine. Indeed, the expression of the components of the Cl(-)-secretory response, apical CFTR, and basolateral NKCC1 (SLC12a2), are upregulated in the rectum of the Gulf toadfish after 96 h in 60 ppt, an exposure that increases CaCO3 precipitate formation relative to 35 ppt. Moreover, the downstream intracellular effects of RGN appear to directly inhibit ion absorption by NKCC2 and anion exchange by SLC26a6. Overall, the present findings elucidate key electrophysiological differences between the posterior intestine and rectum of Gulf toadfish and the potent regulatory role renoguanylin plays in osmoregulation.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida; and
| | - Yoshio Takei
- Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Martin Grosell
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida; and
| |
Collapse
|
32
|
Martos-Sitcha JA, Mancera JM, Calduch-Giner JA, Yúfera M, Martínez-Rodríguez G, Pérez-Sánchez J. Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper- and Hypo-Osmotic Challenges. PLoS One 2016; 11:e0148113. [PMID: 26828928 PMCID: PMC4734831 DOI: 10.1371/journal.pone.0148113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
A custom microarray was used for the transcriptomic profiling of liver, gills and hypothalamus in response to hypo- (38‰ → 5‰) or hyper- (38‰ → 55‰) osmotic challenges (7 days after salinity transfer) in gilthead sea bream (Sparus aurata) juveniles. The total number of differentially expressed genes was 777. Among them, 341 and 310 were differentially expressed in liver after hypo- and hyper-osmotic challenges, respectively. The magnitude of changes was lower in gills and hypothalamus with around 131 and 160 responsive genes in at least one osmotic stress condition, respectively. Regardless of tissue, a number of genes were equally regulated in either hypo- and hyper-osmotic challenges: 127 out of 524 in liver, 11 out of 131 in gills and 19 out of 160 in hypothalamus. In liver and gills, functional analysis of differentially expressed genes recognized two major clusters of overlapping canonical pathways that were mostly related to “Energy Metabolism” and “Oxidative Stress”. The later cluster was represented in all the analyzed tissues, including the hypothalamus, where differentially expressed genes related to “Cell and tissue architecture” were also over-represented. Overall the response for “Energy Metabolism” was the up-regulation, whereas for oxidative stress-related genes the type of response was highly dependent of tissue. These results support common and different osmoregulatory responses in the three analyzed tissues, helping to load new allostatic conditions or even to return to basal levels after hypo- or hyper-osmotic challenges according to the different physiological role of each tissue.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
- * E-mail:
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| |
Collapse
|
33
|
Energy metabolism of hyperthyroid gilthead sea bream Sparus aurata L. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:25-34. [DOI: 10.1016/j.cbpa.2015.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/23/2022]
|
34
|
Ruhr IM, Mager EM, Takei Y, Grosell M. The differential role of renoguanylin in osmoregulation and apical Cl−/HCO3− exchange activity in the posterior intestine of the Gulf toadfish (Opsanus beta). Am J Physiol Regul Integr Comp Physiol 2015; 309:R399-409. [DOI: 10.1152/ajpregu.00118.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
Abstract
The guanylin family of peptides are effective regulators of intestinal physiology in marine teleosts. In the distal intestinal segments, they inhibit or reverse fluid absorption by inhibiting the absorptive short-circuit current ( Isc). The present findings demonstrate that mRNA from guanylin and uroguanylin, as well as at least one isoform of the guanylin peptide receptor, apical guanylyl cyclase-C (GC-C), was highly expressed in the intestine and rectum of the Gulf toadfish ( Opsanus beta). In the posterior intestine, GC-C, as well as the cystic fibrosis transmembrane conductance regulator and basolateral Na+/K+/2Cl− cotransporter, which comprise a Cl−-secretory pathway, were transcriptionally upregulated in 60 parts per thousand (ppt). The present study also shows that, in intestinal tissues from Gulf toadfish held in 35 ppt, renoguanylin (RGN) expectedly causes net Cl− secretion, inhibits both the absorptive Isc and fluid absorption, and decreases HCO3− secretion. Likewise, in intestinal tissues from Gulf toadfish acclimated to 60 ppt, RGN also inhibits the absorptive Isc and fluid absorption but to an even greater extent, corresponding with the mRNA expression data. In contrast, RGN does not alter Cl− flux and, instead, elevates HCO3− secretion in the 60-ppt group, suggesting increased apical Cl−/HCO3− exchange activity by SLC26a6. Overall, these findings reinforce the hypotheses that the guanylin peptide system is important for salinity acclimatization and that the secretory response could facilitate the removal of solids, such as CaCO3 precipitates, from the intestine.
Collapse
Affiliation(s)
- Ilan M. Ruhr
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida
| | - Edward M. Mager
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida
| | - Yoshio Takei
- Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Martin Grosell
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, Florida
| |
Collapse
|
35
|
Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA. Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol 2015; 24:2537-50. [DOI: 10.1111/mec.13177] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Victor T. Schmidt
- Department of Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution; Marine Biological Laboratory; 7 MBL Street Woods Hole MA 02543 USA
| | - Katherine F. Smith
- Department of Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
| | | | - Linda A. Amaral-Zettler
- Department of Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution; Marine Biological Laboratory; 7 MBL Street Woods Hole MA 02543 USA
- Department of Earth Environmental and Planetary Sciences; Brown University; Providence RI 02912 USA
| |
Collapse
|
36
|
Martos-Sitcha JA, MartínezRodríguez G, Mancera JM, Fuentes J. AVT and IT regulate ion transport across the opercular epithelium of killifish ( Fundulus heteroclitus ) and gilthead sea bream ( Sparus aurata ). Comp Biochem Physiol A Mol Integr Physiol 2015; 182:93-101. [DOI: 10.1016/j.cbpa.2014.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/28/2023]
|
37
|
Ronkin D, Seroussi E, Nitzan T, Doron-Faigenboim A, Cnaani A. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 13:35-43. [DOI: 10.1016/j.cbd.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/27/2022]
|
38
|
Carvalho ESM, Gregório SF, Canário AVM, Power DM, Fuentes J. PTHrP regulates water absorption and aquaporin expression in the intestine of the marine sea bream (Sparus aurata, L.). Gen Comp Endocrinol 2015; 213:24-31. [PMID: 25562629 DOI: 10.1016/j.ygcen.2014.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 11/22/2022]
Abstract
Water ingestion by drinking is fundamental for ion homeostasis in marine fish. However, the fluid ingested requires processing to allow net water absorption in the intestine. The formation of luminal carbonate aggregates impacts on calcium homeostasis and requires epithelial HCO3(-) secretion to enable water absorption. In light of its endocrine importance in calcium handling and the indication of involvement in HCO3(-) secretion the present study was designed to expose the role of the parathyroid hormone-related protein (PTHrP) in HCO3(-) secretion, water absorption and the regulation of aqp1 gene expression in the anterior intestine of the sea bream. HCO3(-) secretion rapidly decreased when PTHrP(1-34) was added to anterior intestine of the sea bream mounted in Ussing chambers. The effect achieved a maximum inhibition of 60% of basal secretion rates, showing a threshold effective dose of 0.1 ng ml(-1) compatible with reported plasma values of PTHrP. When applied in combination with the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) or the phospholipase C inhibitor (U73122, 10 μmol l(-1)) the effect of PTHrP(1-34) on HCO3(-) secretion was reduced by about 50% in both cases. In parallel, bulk water absorption measured in intestinal sacs was sensitive to inhibition by PTHrP. The inhibitory action conforms to a typical dose-response curve in the range of 0.1-1000 ng ml(-1), achieves a maximal effect of 60-65% inhibition from basal rates and shows threshold significant effects at hormone levels of 0.1 ng ml(-1). The action of PTHrP in water absorption was completely abolished in the presence of the adenylate cyclase inhibitor (SQ 22.536, 100 μmol l(-1)) and was insensitive to the phospholipase C inhibitor (U73122, 10 μmol l(-1)). In vivo injections of PTHrP(1-34) or the PTH/PTHrP receptor antagonist PTHrP(7-34) evoked respectively, a significant decrease or increase of aqp1ab, but not aqp1a. Overall the present results suggest that PTHrP acts as a key regulator of carbonate aggregate formation in the intestine of marine fish via its actions on water absorption, calcium regulation and HCO3(-) secretion.
Collapse
Affiliation(s)
- Edison S M Carvalho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
39
|
Martos-Sitcha JA, Campinho MA, Mancera JM, Martínez-Rodríguez G, Fuentes J. Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J Exp Biol 2015; 218:684-93. [DOI: 10.1242/jeb.114546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Aquaporins (AQPs) are specific transmembrane water channels with an important function in water homeostasis. In terrestrial vertebrates, AQP2 function is regulated by vasopressin (AVP) to accomplish key functions in osmoregulation. The endocrine control of aquaporin function in teleosts remains little studied. Therefore, in this study we investigated the regulatory role of vasotocin (AVTR) and isotocin (ITR) receptors in Aqp1 paralog gene function in the teleost gilthead sea bream (Sparus aurata). The complete coding regions of Aqp1a, Aqp1b, AVTR V1a2-type, AVTR V2-type and ITR from sea bream were isolated. A Xenopus oocyte-swelling assay was used to functionally characterize AQP1 function and regulation by AVT and IT through their cognate receptors. Microinjection of oocytes with Aqp1b mRNA revealed regulation of water transport via PKA (IBMX+forskolin sensitive), whereas Aqp1a mRNA injection had the same effect via PKC signaling (PDBU sensitive). In the absence of expressed receptors, AVT and IT (10−8 mol l−1) were unable to modify AQP1 function. AVT regulated AQP1a and AQP1b function only when the AVTR V2-type was co-expressed. IT regulated AQP1a function, but not AQP1b, only when ITR was present. Considering that Aqp1a and Aqp1b gene expression in the sea bream intestine is highly salinity dependent in vivo, our results in ovo demonstrate a regulatory role for AVT and IT in AQP1 function in the sea bream in the processing of intestinal fluid to achieve osmoregulation.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior Investigaciones Científicas (ICMAN-CSIC), Puerto Real, Cádiz E-11510, Spain
| | - Marco Antonio Campinho
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Juan Miguel Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior Investigaciones Científicas (ICMAN-CSIC), Puerto Real, Cádiz E-11510, Spain
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
40
|
Lai KP, Li JW, Wang SY, Chiu JMY, Tse A, Lau K, Lok S, Au DWT, Tse WKF, Wong CKC, Chan TF, Kong RYC, Wu RSS. Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes. BMC Genomics 2015; 16:135. [PMID: 25765076 PMCID: PMC4352242 DOI: 10.1186/s12864-015-1325-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/06/2015] [Indexed: 11/12/2022] Open
Abstract
Background The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level. Results More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma. Conclusions Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1325-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Jing-Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Simon Yuan Wang
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Jill Man-Ying Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Anna Tse
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Karen Lau
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Si Lok
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| | - Doris Wai-Ting Au
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - William Ka-Fai Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Chris Kong-Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Ting-Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Richard Yuen-Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Rudolf Shiu-Sun Wu
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| |
Collapse
|
41
|
Wong MKS, Ozaki H, Suzuki Y, Iwasaki W, Takei Y. Discovery of osmotic sensitive transcription factors in fish intestine via a transcriptomic approach. BMC Genomics 2014; 15:1134. [PMID: 25520040 PMCID: PMC4377849 DOI: 10.1186/1471-2164-15-1134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Teleost intestine is crucial for seawater acclimation by sensing osmolality of imbibed seawater and regulating drinking and water/ion absorption. Regulatory genes for transforming intestinal function have not been identified. A transcriptomic approach was used to search for such genes in the intestine of euryhaline medaka. Results Quantitative RNA-seq by Illumina Hi-Seq Sequencing method was performed to analyze intestinal gene expression 0 h, 1 h, 3 h, 1 d, and 7 d after seawater transfer. Gene ontology (GO) enrichment results showed that cell adhesion, signal transduction, and protein phosphorylation gene categories were augmented soon after transfer, indicating a rapid reorganization of cellular components and functions. Among >50 transiently up-regulated transcription factors selected via co-expression correlation and GO selection, five transcription factors, including CEBPB and CEBPD, were confirmed by quantitative PCR to be specific to hyperosmotic stress, while others were also up-regulated after freshwater control transfer, including some well-known osmotic-stress transcription factors such as SGK1 and TSC22D3/Ostf1. Protein interaction networks suggest a high degree of overlapping among the signaling of transcription factors that respond to osmotic and general stresses, which sheds light on the interpretation of their roles during hyperosmotic stress and emergency. Conclusions Since cortisol is an important hormone for seawater acclimation as well as for general stress in teleosts, emergency and osmotic challenges could have been evolved in parallel and resulted in the overlapped signaling networks. Our results revealed important interactions among transcription factors and offer a multifactorial perspective of genes involved in seawater acclimation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1134) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Cardoso JCR, Félix RC, Trindade M, Power DM. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. Gen Comp Endocrinol 2014; 209:82-92. [PMID: 24906176 DOI: 10.1016/j.ygcen.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 01/21/2023]
Abstract
The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was lost and which ligand substitutes for it so that full characterization of the receptor can occur.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
43
|
Boyle D, Clifford AM, Orr E, Chamot D, Goss GG. Mechanisms of Cl(-) uptake in rainbow trout: cloning and expression of slc26a6, a prospective Cl(-)/HCO3(-) exchanger. Comp Biochem Physiol A Mol Integr Physiol 2014; 180:43-50. [PMID: 25446148 DOI: 10.1016/j.cbpa.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
Abstract
In fresh waters, fishes continuously acquire ions to offset diffusive losses to a more dilute ambient environment and to maintain acid-base status. The objectives of the present study were to clone slc26a6, a prospective Cl(-)/HCO3(-) exchanger from rainbow trout, investigate its expression patterns in various tissues, at different developmental stages and after differential salinity exposure, and probe the mechanisms of Cl(-) uptake in rainbow trout embryos during development using a pharmacological inhibitor approach combined with (36)Cl(-) unidirectional fluxes. Results showed that the cloned gene encoded a 783 amino acid protein with conserved domains characteristic of the SLC26a family of anion exchange proteins. Phylogenetic analysis of this sequence against all subfamilies of the SLC26a family demonstrated that this translated protein shared a common ancestor with other actinopterygii and mammalian SLC26a6 isoforms and thus confirmed the identity of the cloned gene. Expression of slc26a6 was detected in all tissues and developmental stages assayed but was highest in the gill of juvenile trout. In trout embryos, Cl(-) uptake increased significantly post-hatch and was demonstrated to be mediated via an anion exchanger specific (DIDS sensitive) pathway that was also sensitive to hypercapnia. This parallels well with the predicted function of slc26a6, and the detection of the transcript in embryos and tissues of trout. In conclusion, this study is the first report of slc26a6 in rainbow trout and functional and expression analyses indicate its likely involvement in Cl(-)/HCO3(-) exchange in two life stages of rainbow trout.
Collapse
Affiliation(s)
- David Boyle
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Alexander M Clifford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Elizabeth Orr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danuta Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
44
|
Ruhr IM, Bodinier C, Mager EM, Esbaugh AJ, Williams C, Takei Y, Grosell M. Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish (Opsanus beta) posterior intestine. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1167-79. [DOI: 10.1152/ajpregu.00188.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The physiological effects of guanylin (GN) and uroguanylin (UGN) on fluid and electrolyte transport in the teleost fish intestine have yet to be thoroughly investigated. In the present study, the effects of GN, UGN, and renoguanylin (RGN; a GN and UGN homolog) on short-circuit current ( Isc) and the transport of Cl−, Na+, bicarbonate (HCO3−), and fluid in the Gulf toadfish ( Opsanus beta) intestine were determined using Ussing chambers, pH-stat titration, and intestinal sac experiments. GN, UGN, and RGN reversed the Isc of the posterior intestine (absorptive-to-secretory), but not of the anterior intestine. RGN decreased baseline HCO3− secretion, but increased Cl− and fluid secretion in the posterior intestine. The secretory response of the posterior intestine coincides with the presence of basolateral NKCC1 and apical cystic fibrosis transmembrane conductance regulator (CFTR), the latter of which is lacking in the anterior intestine and is not permeable to HCO3− in the posterior intestine. However, the response to RGN by the posterior intestine is counterintuitive given the known role of the marine teleost intestine as a salt- and water-absorbing organ. These data demonstrate that marine teleosts possess a tissue-specific secretory response, apparently associated with seawater adaptation, the exact role of which remains to be determined.
Collapse
Affiliation(s)
- Ilan M. Ruhr
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; and
| | - Charlotte Bodinier
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; and
| | - Edward M. Mager
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; and
| | - Andrew J. Esbaugh
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; and
| | - Cameron Williams
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; and
| | - Yoshio Takei
- Ocean Research Institute, University of Tokyo, Tokyo, Japan
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida; and
| |
Collapse
|
45
|
Sundh H, Nilsen TO, Lindström J, Hasselberg-Frank L, Stefansson SO, McCormick SD, Sundell K. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2014; 85:1227-52. [PMID: 25263190 DOI: 10.1111/jfb.12531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/11/2014] [Indexed: 05/13/2023]
Abstract
This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmon Salmo salar. Emphasis was placed on Na(+) , K(+) -ATPase (NKA) and Na(+) , K(+) , Cl(-) co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na(+) , Cl(-) co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel 3.
Collapse
Affiliation(s)
- H Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
46
|
Seale AP, Stagg JJ, Yamaguchi Y, Breves JP, Soma S, Watanabe S, Kaneko T, Cnaani A, Harpaz S, Lerner DT, Grau EG. Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine. Gen Comp Endocrinol 2014; 206:146-54. [PMID: 25088575 DOI: 10.1016/j.ygcen.2014.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 05/23/2014] [Accepted: 07/07/2014] [Indexed: 11/15/2022]
Abstract
Euryhaline teleosts are faced with significant challenges during changes in salinity. Osmoregulatory responses to salinity changes are mediated through the neuroendocrine system which directs osmoregulatory tissues to modulate ion transport. Prolactin (PRL) plays a major role in freshwater (FW) osmoregulation by promoting ion uptake in osmoregulatory tissues, including intestine. We measured mRNA expression of ion pumps, Na(+)/K(+)-ATPase α3-subunit (NKAα3) and vacuolar type H(+)-ATPase A-subunit (V-ATPase A-subunit); ion transporters/channels, Na(+)/K(+)/2Cl(-) co-transporter (NKCC2) and cystic fibrosis transmembrane conductance regulator (CFTR); and the two PRL receptors, PRLR1 and PRLR2 in eleven intestinal segments of Mozambique tilapia (Oreochromis mossambicus) acclimated to FW or seawater (SW). Gene expression levels of NKAα3, V-ATPase A-subunit, and NKCC2 were generally lower in middle segments of the intestine, whereas CFTR mRNA was most highly expressed in anterior intestine of FW-fish. In both FW- and SW-acclimated fish, PRLR1 was most highly expressed in the terminal segment of the intestine, whereas PRLR2 was generally most highly expressed in anterior intestinal segments. While NKCC2, NKAα3 and PRLR2 mRNA expression was higher in the intestinal segments of SW-acclimated fish, CFTR mRNA expression was higher in FW-fish; PRLR1 and V-ATPase A-subunit mRNA expression was similar between FW- and SW-acclimated fish. Next, we characterized the effects of hypophysectomy (Hx) and PRL replacement on the expression of intestinal transcripts. Hypophysectomy reduced both NKCC2 and CFTR expression in particular intestinal segments; however, only NKCC2 expression was restored by PRL replacement. Together, these findings describe how both acclimation salinity and PRL impact transcript levels of effectors of ion transport in tilapia intestine.
Collapse
Affiliation(s)
- Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | - Jacob J Stagg
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yoko Yamaguchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Jason P Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Satoshi Soma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Avner Cnaani
- Department of Poultry and Aquaculture, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Sheenan Harpaz
- Department of Poultry and Aquaculture, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
47
|
Boerrigter JGJ, van de Vis HW, van den Bos R, Abbink W, Spanings T, Zethof J, Martinez LL, van Andel WFM, Lopez-Luna J, Flik G. Effects of Pro-Tex on zebrafish (Danio rerio) larvae, adult common carp (Cyprinus carpio) and adult yellowtail kingfish (Seriola lalandi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1201-1212. [PMID: 24493298 DOI: 10.1007/s10695-014-9916-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Aquaculture practices bring several stressful events to fish. Stressors not only activate the hypothalamus-pituitary-interrenal-axis, but also evoke cellular stress responses. Up-regulation of heat shock proteins (HSPs) is among the best studied mechanisms of the cellular stress response. An extract of the prickly pear cactus (Opuntia ficus indica), Pro-Tex, a soluble variant of TEX-OE(®), may induce expression of HSPs and reduce negative effects of cellular stress. Pro-Tex therefore is used to ameliorate conditions during stressful aquaculture-related practices. We tested Pro-Tex in zebrafish (Danio rerio), common carp (Cyprinus carpio L.) and yellowtail kingfish (Seriola lalandi) exposed to aquaculture-relevant stressors (thermal stress, net confinement, transport) and assessed its effects on stress physiology. Heat shock produced a mild increase in hsp70 mRNA expression in 5-day-old zebrafish larvae. Pro-Tex increased basal hsp70 mRNA expression, but decreased heat-shock-induced expression of hsp70 mRNA. In carp, Pro-Tex increased plasma cortisol and glucose levels, while it did not affect the mild stress response (increased plasma cortisol and glucose) to net confinement. In gills, and proximal and distal intestine, stress increased hsp70 mRNA expression; in the distal intestine, an additive enhancement of hsp70 mRNA expression by Pro-Tex was seen under stress. In yellowtail kingfish, Pro-Tex reduced the negative physiological effects of transport more efficiently than when fish were sedated with AQUI-S(®). Overall, our data indicate that Pro-Tex has protective effects under high levels of stress only. As Pro-Tex has potential for use in aquaculture, its functioning and impact on health and welfare of fish should be further studied.
Collapse
Affiliation(s)
- Jeroen G J Boerrigter
- Organismal Animal Physiology, IWWR, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gregório SF, Carvalho ESM, Campinho MA, Power DM, Canário AVM, Fuentes J. Endocrine regulation of carbonate precipitate formation in marine fish intestine by stanniocalcin and PTHrP. ACTA ACUST UNITED AC 2014; 217:1555-62. [PMID: 24501133 DOI: 10.1242/jeb.098517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In marine fish, high epithelial bicarbonate secretion by the intestine generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. In vitro studies highlight the involvement of the calciotropic hormones PTHrP (parathyroid hormone-related protein) and stanniocalcin (STC) in the regulation of epithelial bicarbonate transport. The present study tested the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo. Sea bream (Sparus aurata) juveniles received single intraperitoneal injections of piscine PTHrP(1-34), the PTH/PTHrP receptor antagonist PTHrP(7-34) or purified sea bream STC, or were passively immunized with polyclonal rabbit antisera raised against sea bream STC (STC-Ab). Endocrine effects on the expression of the basolateral sodium bicarbonate co-transporter (Slc4a4.A), the apical anion exchangers Slc26a6.A and Slc26a3.B, and the V-type proton pump β-subunit (Atp6v1b) in the anterior intestine were evaluated. In keeping with their calciotropic nature, the hypocalcaemic factors PTHrP(7-34) and STC up-regulated gene expression of all transporters. In contrast, the hypercalcaemic factor PTHrP(1-34) and STC antibodies down-regulated transporters involved in the bicarbonate secretion cascade. Changes in intestine luminal precipitate contents provoked by calcaemic endocrine factors validated these results: 24 h post-injection either PTHrP(1-34) or immunization with STC-Ab reduced the carbonate precipitate content in the sea bream intestine. In contrast, the PTH/PTHrP receptor antagonist PTHrP(7-34) increased not only the precipitated fraction but also the concentration of HCO3(-) equivalents in the intestinal fluid. These results confirm the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo in the intestine of marine fish. Furthermore, they illustrate for the first time in fish the counteracting effect of PTHrP and STC, and reveal an unexpected contribution of calcaemic factors to acid-base balance.
Collapse
Affiliation(s)
- Sílvia F Gregório
- Centre of Marine Sciences (CCMar), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Martos-Sitcha JA, Fuentes J, Mancera JM, Martínez-Rodríguez G. Variations in the expression of vasotocin and isotocin receptor genes in the gilthead sea bream Sparus aurata during different osmotic challenges. Gen Comp Endocrinol 2014; 197:5-17. [PMID: 24332959 DOI: 10.1016/j.ygcen.2013.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
Abstract
The dynamic changes in mRNA expression levels for vasotocin (AVT) and isotocin (IT) receptor gene levels were assessed in a time-course response study in immature male specimens of the gilthead sea bream (Sparus aurata) submitted to hyper- (55‰ salinity) and hypo-osmotic (5‰ salinity) challenges. Two different cDNAs for the AVT receptor and one for the IT receptor (V1a2-type and V2-type AVTR, and ITR, respectively) were cloned by screening an S. aurata brain cDNA library. Genes for these receptors were expressed differentially and is nearly ubiquitously in 26 of the examined tissues. In the gills, both environmental salinity challenges up-regulated AVTR V1a2-type gene expression concomitantly with mRNA expression protein activity of Na(+), K(+)-ATPase gene expression and protein, whereas the AVTR V2-type and cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels were associated with mRNAs environmental salinity, indicating a possible connection between AVTRs and these transporters. In kidney, AVTR V1a2-type gene expression peaked rapidly and lasted only a short time (12-24h) in response to both osmotic challenges. In contrast, AVTR V2-type mRNA levels were enhanced in specimens exposed to hyperosmotic conditions, whereas they decreased under hypoosmotic environments, suggesting an antidiuretic role related to the vasoconstriction function. In the hypothalamus, only the expression of the AVTR V2-type gene was enhanced at 7 and 14 days under both experimental conditions. In the liver, both AVTRs had increased mRNA levels, with the upregulation of their AVTR V2-type gene increasing faster than the V1a2-type. The ITR gene was not sensitive to variations of external salinity in any of the analyzed tissues. Our results demonstrate the involvement of the vasotocinergic, but not the isotocinergic, pathway as well as the hypothalamic function, in the adjustments of both osmoregulatory and metabolic processes after osmotic challenges.
Collapse
Affiliation(s)
- J A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain; Centre of Marine Sciences (CCMar), CIMAR - Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, 11510 Puerto Real, Cádiz, Spain.
| | - J Fuentes
- Centre of Marine Sciences (CCMar), CIMAR - Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - J M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
50
|
Expression of key ion transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia Oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water. PLoS One 2014; 9:e87591. [PMID: 24498146 PMCID: PMC3909219 DOI: 10.1371/journal.pone.0087591] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/28/2013] [Indexed: 01/19/2023] Open
Abstract
The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na(+) and Cl(-) in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in part related to its ability to up-regulate key ion transporters in the posterior intestine. The findings pave the way for future iono-regulatory studies on the Mozambique tilapia esophageal-gastrointestinal tract.
Collapse
|