1
|
Falfushynska H, Sokolova IM. Intermittent hypoxia differentially affects metabolic and oxidative stress responses in two species of cyprinid fish. Biol Open 2023; 12:bio060069. [PMID: 37670684 PMCID: PMC10537972 DOI: 10.1242/bio.060069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Oxygen fluctuations are common in freshwater habitats and aquaculture and can impact ecologically and economically important species of fish like cyprinids. To gain insight into the physiological responses to oxygen fluctuations in two common cyprinid species, we evaluated the impact of short-term intermittent hypoxia on oxidative stress and metabolic parameters (including levels of prooxidants and oxidative lesions, antioxidants, mitochondrial enzyme activities, mitochondrial swelling, markers of apoptosis, autophagy and cytotoxicity) in silver carp Hypophthalmichthys molitrix and gibel carp Carassius gibelio. During hypoxia, gibel carp showed higher baseline levels of antioxidants and less pronounced changes in oxidative and metabolic biomarkers in the tissues than silver carp. Reoxygenation led to a strong shift in metabolic and redox-related parameters and tissue damage, indicating high cost of post-hypoxic recovery in both species. Species-specific differences were more strongly associated with oxidative stress status, whereas metabolic indices and nitrosative stress parameters were more relevant to the response to hypoxia-reoxygenation. Overall, regulation of energy metabolism appears more critical than the regulation of antioxidants in the response to oxygen deprivation in the studied species. Further research is needed to establish whether prioritizing metabolic over redox regulation during hypoxia-reoxygenation stress is common in freshwater cyprinids.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock 18059, Germany
- Department of Electrical, Mechanical and Industrial Engineering, Anhalt University for Applied Sciences, Köthen 06366, Germany
| | - Inna M. Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock 18059, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock 18059, Germany
| |
Collapse
|
2
|
Thoral E, Farhat E, Roussel D, Cheng H, Guillard L, Pamenter ME, Weber JM, Teulier L. Different patterns of chronic hypoxia lead to hierarchical adaptative mechanisms in goldfish metabolism. J Exp Biol 2021; 225:273673. [PMID: 34881781 DOI: 10.1242/jeb.243194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022]
Abstract
Some hypoxia-tolerant species, such as goldfish, experience intermittent and severe hypoxia in their natural habitat causing them to develop multiple physiological adaptations. However, in fish, the metabolic impact of regular hypoxic exposure on swimming performance in normoxia is less well understood. Therefore, we experimentally tested whether chronic exposure to constant (30 days at 10% air saturation) or intermittent hypoxia (3hrs in normoxia and 21hrs in hypoxia, 5 days a week) would result in similar metabolic and swimming performance benefits after reoxygenation. Moreover, half of the normoxic and intermittent hypoxic fish were put on a 20-day normoxic training regime. After these treatments, metabolic rate (standard and maximum metabolic rates: SMR and MMR) and swimming performance (critical swimming speed [Ucrit] and cost of transport [COT]) were assessed. In addition, enzyme activities (citrate synthase CS, cytochrome c oxidase COX and lactate dehydrogenase LDH) and mitochondrial respiration were examined in red muscle fibres. We found that acclimation to constant hypoxia resulted in (1) metabolic suppression (-45% SMR, and -27% MMR), (2) increased anaerobic capacity (+117% LDH), (3) improved swimming performance (+80% Ucrit, -71% COT) and (4) no changes at the mitochondrial level. Conversely, the enhancement of swimming performance was reduced following acclimation to intermittent hypoxia (+45% Ucrit, -41% COT), with a 55% decrease in aerobic scope, despite a significant increase in oxidative metabolism (+201% COX, +49% CS). This study demonstrates that constant hypoxia leads to the greatest benefit in swimming performance and that mitochondrial metabolic adjustments only provide minor help in coping with hypoxia.
Collapse
Affiliation(s)
- Elisa Thoral
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Elie Farhat
- Biology Department, University of Ottawa, Ottawa, ON, Canada
| | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Hang Cheng
- Biology Department, University of Ottawa, Ottawa, ON, Canada
| | - Ludovic Guillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | | | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
3
|
Djiba PK, Zhang J, Xu Y, Zhang P, Zhou J, Zhang Y, Luo Y. Correlation between Metabolic Rate and Salinity Tolerance and Metabolic Response to Salinity in Grass Carp ( Ctenopharyngodon idella). Animals (Basel) 2021; 11:ani11123445. [PMID: 34944222 PMCID: PMC8697877 DOI: 10.3390/ani11123445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The association between the metabolic rate and salinity tolerance in stenohaline freshwater fish could affect how fish adapt to changes in environmental salinity. In Experiment I, the metabolic rates and upper salinity tolerance limit of the grass carp were determined individually, and we aimed to test whether an association existed between the salinity tolerance capacity and both the resting metabolic rate and maximum metabolic rate. In Experiment II, the effects of increasing salinity on metabolic rates, gill histology, and Na+-K+-ATPase activities were determined in grass carp. The results suggest that a lower metabolic rate may not necessarily allow for a better salinity tolerance capacity of grass carp. Salinity-induced changes in the gill surface contribute more to ion exchange capacity than to oxygen uptake capacity. Abstract The metabolic rate could be one of the factors affecting the salinity tolerance capacity of fish. Experiment I tested whether metabolic rates correlate with the upper salinity tolerance limit among individual grass carp by daily increasing salinity (1 g kg−1 day−1). The feeding dropped sharply as the salinity reached 10 g kg−1 and ceased when salinities exceeded 11 g kg−1. The ventilation frequency decreased weakly as salinity increased from 0 to 12 g kg−1 and then increased rapidly as salinity reached 14 g kg−1. The fish survived at salinities lower than 14 g kg−1, and all fish died when salinity reached 17 g kg−1. The upper salinity tolerance limit was not correlated with metabolic rates. Therefore, a lower metabolic rate may not necessarily allow for better salinity tolerance capacity. Experiment II tested how different salinities (0, 0.375, 0.75, 1.5, 3, and 6 g kg−1 for 2 weeks) affect the metabolic parameters of grass carp. The changes in the resting metabolic rate with increasing salinity could be explained by the relative changes in interlamellar cell mass and protruding lamellae. The maximum metabolic rate remained constant, suggesting that the salinity-induced changes in the gill surface had a minor effect on oxygen uptake capacity.
Collapse
Affiliation(s)
- Pathe Karim Djiba
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; (P.K.D.); (J.Z.); (Y.X.); (P.Z.)
| | - Jianghui Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; (P.K.D.); (J.Z.); (Y.X.); (P.Z.)
| | - Yuan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; (P.K.D.); (J.Z.); (Y.X.); (P.Z.)
| | - Pan Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; (P.K.D.); (J.Z.); (Y.X.); (P.Z.)
| | - Jing Zhou
- Clinical School, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (J.Z.); (Y.Z.)
| | - Yan Zhang
- Clinical School, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (J.Z.); (Y.Z.)
| | - Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; (P.K.D.); (J.Z.); (Y.X.); (P.Z.)
- Correspondence:
| |
Collapse
|
4
|
Xiong W, Zhu Y, Zhang P, Xu Y, Zhou J, Zhang J, Luo Y. Effects of temperature on metabolic scaling in silver carp. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:141-149. [PMID: 34492171 DOI: 10.1002/jez.2542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022]
Abstract
The association between temperature and metabolic scaling varies among species, which could be due to variation in the surface area and its scaling. This study aims to examine the effect of temperature on metabolic scaling and to verify the links between metabolic scaling and surface area scaling at both the whole body and the cell levels. The routine metabolic rate (RMR), gill surface area (GSA), ventilation frequency (VF), red blood cell surface area (SRBC ), and metabolic rate (MRRBC ) were determined in silver carp, and their mass-scaling exponents were analyzed at 10 and 25°C. These results showed that body mass and temperature independently affected the RMR, GSA, and VF, suggesting constant scaling exponents of RMR (0.772), GSA (0.912), and VF (-0.282) with changing temperature. The RMR at 25°C was 2.29 times higher than that at 10°C, suggesting increased metabolic demand at a higher temperature. The results showed that the RMR increased, while the scaling exponents of RMR, GSA, and VF remained unchanged with increasing temperature. These results support the view that the scaling of oxygen supply capacity importantly affects metabolic scaling. The SRBC did not change with either temperature or body mass. However, the MRRBC increased by 5.48 times from 10 to 25°C but did not change with body mass. As the scaling exponents of RMR did not change between temperatures, the results indicate that no obvious link exists between the scaling of both the cell size and cell metabolic rate and the metabolic scaling of silver carp.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yanqiu Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Pan Zhang
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yuan Xu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jianghui Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Pang X, Pu DY, Xia DY, Liu XH, Ding SH, Li Y, Fu SJ. Individual variation in metabolic rate, locomotion capacity and hypoxia tolerance and their relationships in juveniles of three freshwater fish species. J Comp Physiol B 2021; 191:755-764. [PMID: 34091751 DOI: 10.1007/s00360-021-01382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Individual variations in metabolic rate, locomotion capacity and hypoxia tolerance and their relationships were investigated in three cyprinid species [crucian carp (Carassius auratus), common carp (Cyprinus carpio) and qingbo (Spinibarbus sinensis), in 60 individuals of each species]. Either the active metabolic rate (AMR) and critical swimming speed (Ucrit) (30 individuals) or critical oxygen tension (Pcrit) and loss of equilibrium (LOE) (30 individuals) were measured in each species after measuring the resting metabolic rate (RMR). Both the AMR and Ucrit were found to be significantly and positively correlated with the RMR in all three cyprinid species, indicating that high-RMR individuals have high aerobic capacity and thus good swimming performance. Pcrit was positively correlated with the RMR in all three species, whereas the LOE was highly positively correlated, weakly positively correlated and not correlated with the RMR in qingbo, common carp and crucian carp, respectively, possibly due to specialized morphological and biochemical adaptations involved in hypoxia tolerance in crucian and common carp. Crucian carp showed relatively poor swimming performance, i.e., a low Ucrit (relatively high variation), strong hypoxia tolerance, and low LOE (relatively low variation); qingbo showed relatively good swimming performance (relatively low variation) and weak hypoxia tolerance (relatively high variation); and common carp showed moderate swimming performance and relatively strong hypoxia tolerance (moderate variation). These interspecific differences may be due to the different lifestyles of these cyprinid fishes based on their associated fast-slow-flow regime and are outcomes of long-term selection.
Collapse
Affiliation(s)
- Xu Pang
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Dan-Yang Xia
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Hua Ding
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Li S, Guo H, Chen Z, Jiang Y, Shen J, Pang X, Li Y. Effects of acclimation temperature regime on the thermal tolerance, growth performance and gene expression of a cold-water fish, Schizothorax prenanti. J Therm Biol 2021; 98:102918. [PMID: 34016344 DOI: 10.1016/j.jtherbio.2021.102918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Acclimation temperature is crucial for the optimization of a condition in aquaculture; we experimentally investigated the effects of temperature acclimation on the thermal tolerance, growth performance and gene expression levels of heat shock proteins (hsp70), growth hormone (gh) and insulin-like growth factors (igf-1) in Schizothorax prenanti, a cold-water fish in the Yangtze River basin. Critical thermal maximum (CTmax), critical thermal minimum (CTmin), lethal thermal maximum (LTmax), lethal thermal minimum (LTmin), feeding intake (FI), feeding efficiency (FE), and specific growth rate (SGR) were assessed at three stable temperatures (17, 22 and 27 °C) and one variable temperature (22 ± 5 °C) for 28 d. Better growth performance was observed under variable treatment compared to stable treatments. However, fish under the 27 °C treatment exhibited much weaker growth performance than those in the 17 °C treatment. Fish under variation temperature treatment fed like those under 22 °C treatment; the fish exhibited similar SGR but a higher gh and hsp70 level under variation temperature treatment. This may be due in part to a trade-off energy expenditure to deal with the temperature fluctuation. Together, these findings suggest that juvenile Schizothorax prenanti are resilient to daily fluctuations within the temperature tested here.
Collapse
Affiliation(s)
- Sheng Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - He Guo
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Zheyu Chen
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yu Jiang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Junyu Shen
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xu Pang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Cano-Barbacil C, Radinger J, Argudo M, Rubio-Gracia F, Vila-Gispert A, García-Berthou E. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Sci Rep 2020; 10:18947. [PMID: 33144649 PMCID: PMC7609642 DOI: 10.1038/s41598-020-75974-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Swimming performance is a key feature that mediates fitness and survival in aquatic animals. Dispersal, habitat selection, predator-prey interactions and reproduction are processes that depend on swimming capabilities. Testing the critical swimming speed (Ucrit) of fish is the most straightforward method to assess their prolonged swimming performance. We analysed the contribution of several predictor variables (total body length, experimental water temperature, time step interval between velocity increments, species identity, taxonomic affiliation, native status, body shape and form factor) in explaining the variation of Ucrit, using linear models and random forests. We compiled in total 204 studies testing Ucrit of 35 inland fishes of the Iberian Peninsula, including 17 alien species that are non-native to that region. We found that body length is largely the most important predictor of Ucrit out of the eight tested variables, followed by family, time step interval and species identity. By contrast, form factor, temperature, body shape and native status were less important. Results showed a generally positive relationship between Ucrit and total body length, but regression slopes varied markedly among families and species. By contrast, linear models did not show significant differences between native and alien species. In conclusion, the present study provides a first comprehensive database of Ucrit in Iberian freshwater fish, which can be thus of considerable interest for habitat management and restoration plans. The resulting data represents a sound foundation to assess fish responses to hydrological alteration (e.g. water flow tolerance and dispersal capacities), or to categorize their habitat preferences.
Collapse
Affiliation(s)
- Carlos Cano-Barbacil
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Johannes Radinger
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - María Argudo
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Francesc Rubio-Gracia
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Anna Vila-Gispert
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
8
|
Cardiac Transcriptomics Reveals That MAPK Pathway Plays an Important Role in Hypoxia Tolerance in Bighead Carp ( Hypophthalmichthys nobilis). Animals (Basel) 2020; 10:ani10091483. [PMID: 32846886 PMCID: PMC7552209 DOI: 10.3390/ani10091483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
As aquatic animals, fishes often encounter various situations of low oxygen, and they have evolved the ability to respond to hypoxia stress. Studies of physiological and molecular responses to hypoxia stress are essential to clarify genetic mechanisms underlying hypoxia tolerance in fish. In this study, we performed acute hypoxia treatment in juvenile bighead carp (Hypophthalmicthys nobilis) by decreasing water O2 from 6.5 mg/L to 0.5 mg/L in three hours. This hypoxia stress resulted in a significant increase in blood lactate and serum glucose. Comparisons of heart transcriptome among hypoxia tolerant (HT), hypoxia sensitive (HS), and normoxia control (NC) groups showed that 820, 273, and 301 differentially expressed genes (DEGs) were identified in HS vs. HT, NC vs. HS, and NC vs. HT (false discovery rate (FDR) < 0.01, Fold Change> 2), respectively. KEGG pathway enrichment showed that DEGs between HS and HT groups were mainly involved in mitogen-activated protein kinase (MAPK) signaling, insulin signaling, apoptosis, tight junction and adrenergic signaling in cardiomyocytes pathways, and DEGs in MAPK signaling pathway played a key role in cardiac tolerance to hypoxia. Combined with the results of our previous cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of hypoxia stress in this species, such genes as stbp2, ttn, mapk, kcnh, and tnfrsf were identified in both studies, representing the significance of these DEGs in hypoxia tolerance in bighead carp. These results provide insights into the understanding of genetic modulations for fish heart coping with hypoxia stress and generate basic resources for future breeding studies of hypoxia resistance in bighead carp.
Collapse
|
9
|
Kenthao A, Jearranaiprepame P. Ecomorphological diversification of some barbs and carps (Cyprininae, Cyprinidae) in the Lower Mekong Basin of Thailand. ZOOLOGY 2020; 143:125830. [PMID: 32916444 DOI: 10.1016/j.zool.2020.125830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022]
Abstract
Morphological variation is fundamentally related to various aspects of fish ecology, including foraging, locomotion, and habitat utilisation. Twenty-six species of closely related cyprinid fish (n = 502) were analysed for patterns of morphological variations by using geometric morphometric methods. Ecological data of feeding and habitat preferences were determined by the observations in fields and laboratory together with the gathering of bibliographic information. The findings of major variation displayed in all parts of the fish body and correlated with ecological parameters. Variations of head shape especially form and position of mouthpart involved with feeding behaviours, whereas the variations of body depth and length which affected swimming patterns reflected responsiveness of water currents and habitat uses. Adaptation of head shape and body elongation was remarkably related to the feeding regime, swimming manoeuvrability and habitat utilisation of the species. Some convergent variation was observed between the tribes Smiliogastrini and Poropuntiini. Therefore, we propose that the morphological diversity of cyprinine fish is mainly affected by ecological gradients, while phylogenetic effects on morphology are minor.
Collapse
Affiliation(s)
- Anan Kenthao
- Department of Biology, Faculty of Science, Naresuan University, Mueang, Phitsanulok, 65000, Thailand.
| | | |
Collapse
|
10
|
Zhao Z, Liang R, Wang Y, Yuan Q, Zhang Z, Li K. Study on the swimming ability of endemic fish in the lower reaches of the Yangtze River: A case study. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Lu Y, Wu H, Deng LJ, Li TC, Yang K, Fu SJ, Song ZB. Improved aerobic and anaerobic swimming performance after exercise training and detraining in Schizothorax wangchiachii: Implications for fisheries releases. Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110698. [PMID: 32276042 DOI: 10.1016/j.cbpa.2020.110698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Swimming performance (aerobic and anaerobic) is often used to predict the ability of fish to adapt and survive. Fish raised in captivity are typically poor swimmers and have lower survival rates than wild conspecifics when released into the natural environment. We investigated the potential for exercise training to enhance the swimming performance of Schizothorax wangchiachii held in captivity. Juvenile fish (mean body mass 1.40 ± 0.13 g, mean body length 4.36 ± 0.24 cm) were trained under five different regimes [3 cm·s-1 control group (C), 10 cm·s-1 for 6 (L6) and 12 h (L12) per day and 20 cm·s-1 for 6 (H6) and 12 h (H12) per day] for 30 days and then detrained for 20 days (i.e. no training). Aerobic (i.e. critical swimming speed, Ucrit), anaerobic swimming performance (i.e. endurance time at 1.2 or 1.5 Ucrit), and morphological parameters were measured at the beginning (T0), after 30 days of exercise training (T30) and after 20 days of detraining (DT20). Aerobic exercise training significantly improved the Ucrit, endurance time at 1.2 and 1.5 Ucrit of juvenile S. wangchiachii (P < .05). After 20 days of detraining, both the aerobic and anaerobic swimming performance of the H6 and H12 groups declined and no longer differed from the control group indicating a failure to maintain improved swimming performance, whereas improved swimming performance was maintained in L6 and L12 groups. No significant difference in swimming performance was found between 6 and 12 hours training at 10 cm·s-1. Thus, exercise at close to 10 cm·s-1 for 6 h per day for 30 days or a longer time periods prior to release appears to be a suitable regime for swimming performance enhancement, potentially increasing survivability of released S. wangchiachii in wild.
Collapse
Affiliation(s)
- Yan Lu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Hui Wu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Long-Jun Deng
- Yalong River Hydropower Development Company, Ltd., Chengdu 610051, PR China
| | - Tian-Cai Li
- Yalong River Hydropower Development Company, Ltd., Chengdu 610051, PR China
| | - Kun Yang
- Institute of Ecology, China West Normal University, Nanchong 637002, PR China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, PR China.
| | - Zhao-Bin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
12
|
Kraskura K, Nelson JA. Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass ( Morone saxatilis). J Exp Biol 2020; 223:jeb217125. [PMID: 32098876 DOI: 10.1242/jeb.217125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
Abstract
Juvenile striped bass residing in Chesapeake Bay are likely to encounter hypoxia that could affect their metabolism and performance. The ecological success of this economically valuable species may depend on their ability to tolerate hypoxia and perform fitness-dependent activities in hypoxic waters. We tested whether there is a link between hypoxia tolerance (HT) and oxygen consumption rate (ṀO2 ) of juvenile striped bass measured while swimming in normoxic and hypoxic water, and to identify the interindividual variation and repeatability of these measurements. HT (loss of equilibrium) of fish (N=18) was measured twice collectively, 11 weeks apart, between which ṀO2 was measured individually for each fish while swimming in low flow (10.2 cm s-1) and high flow (∼67% of critical swimming speed, Ucrit) under normoxia and hypoxia. Both HT and ṀO2 varied substantially among individuals. HT increased across 11 weeks while the rank order of individual HT was significantly repeatable. Similarly, ṀO2 increased in fish swimming at high flow in a repeatable fashion, but only within a given level of oxygenation. ṀO2 was significantly lower when fish were swimming against high flow under hypoxia. There were no clear relationships between HT and ṀO2 while fish were swimming under any conditions. Only the magnitude of increase in HT over 11 weeks and an individual's ṀO2 under low flow were correlated. The results suggest that responses to the interacting stressors of hypoxia and exercise vary among individuals, and that HT and change in HT are not simple functions of aerobic metabolic rate.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jay A Nelson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
13
|
Borowiec BG, Hoffman RD, Hess CD, Galvez F, Scott GR. Interspecific variation in hypoxia tolerance and hypoxia acclimation responses in killifish from the family Fundulidae. J Exp Biol 2020; 223:jeb209692. [PMID: 31988166 PMCID: PMC7044458 DOI: 10.1242/jeb.209692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/20/2020] [Indexed: 01/25/2023]
Abstract
Hypoxia is a pervasive stressor in aquatic environments, and both phenotypic plasticity and evolutionary adaptation could shape the ability to cope with hypoxia. We investigated evolved variation in hypoxia tolerance and the hypoxia acclimation response across fundulid killifishes that naturally experience different patterns of hypoxia exposure. We compared resting O2 consumption rate (ṀO2 ), and various indices of hypoxia tolerance [critical O2 tension (Pcrit), regulation index (RI), O2 tension (PO2 ) at loss of equilibrium (PLOE) and time to LOE (tLOE) at 0.6 kPa O2] in Fundulus confluentus, Fundulus diaphanus, Fundulus heteroclitus, Fundulus rathbuni, Lucania goodei and Lucania parva We examined the effects of chronic (28 days) exposure to constant hypoxia (2 kPa) or nocturnal intermittent hypoxia (12 h normoxia:12 h hypoxia) in a subset of species. Some species exhibited a two-breakpoint model in ṀO2 caused by early, modest declines in ṀO2 in moderate hypoxia. We found that hypoxia tolerance varied appreciably across species: F. confluentus was the most tolerant (lowest PLOE and Pcrit, longest tLOE), whereas F. rathbuni and F. diaphanus were the least tolerant. However, there was not a consistent pattern of interspecific variation for different indices of hypoxia tolerance, with or without taking phylogenetic relatedness into account, probably because these different indices are underlain by partially distinct mechanisms. Hypoxia acclimation generally improved hypoxia tolerance, but the magnitude of plasticity and responsiveness to different hypoxia patterns varied interspecifically. Our results therefore suggest that hypoxia tolerance is a complex trait that is best appreciated by considering multiple indices of tolerance.
Collapse
Affiliation(s)
| | - Ryan D Hoffman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea D Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
14
|
Pang X, Shao F, Ding S, Fu S, Zhang Y. Interspecific differences and ecological correlations of energy metabolism traits in freshwater fishes. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Pang
- Key Laboratory of Freshwater Fish Reproduction and Development Education of Ministry Key Laboratory of Aquatic Science of Chongqing Southwest University Chongqing China
- College of Animal Science and Technology Institute of Three Gorges Ecological Fisheries of Chongqing Southwest University Chongqing China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development Education of Ministry Key Laboratory of Aquatic Science of Chongqing Southwest University Chongqing China
| | - Shi‐Huan Ding
- Key Laboratory of Freshwater Fish Reproduction and Development Education of Ministry Key Laboratory of Aquatic Science of Chongqing Southwest University Chongqing China
- College of Animal Science and Technology Institute of Three Gorges Ecological Fisheries of Chongqing Southwest University Chongqing China
| | - Shi‐Jian Fu
- Laboratory of Evolutionary Physiology and Behaviour Chongqing Key Laboratory of Animal Biology Chongqing Normal University Chongqing China
| | - Yao‐Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development Education of Ministry Key Laboratory of Aquatic Science of Chongqing Southwest University Chongqing China
| |
Collapse
|
15
|
Temperature and oxygen related ecophysiological traits of snow trout (Schizothorax richardsonii) are sensitive to seasonal changes in a Himalayan stream environment. J Therm Biol 2019; 83:22-29. [DOI: 10.1016/j.jtherbio.2019.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 01/31/2023]
|
16
|
Lu Y, Xing H, Zhang D. Evidence for relaxed selection of mitogenome in rapid-flow cyprinids. Genes Genomics 2019; 41:863-869. [PMID: 31016677 PMCID: PMC6560226 DOI: 10.1007/s13258-019-00817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/02/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypoxia adaptation is developed in many fish species, which helped them to habitat most of water bodies. However, fishes living under high oxygen concentration may lose this feature. Rapid flows provide high level and stable dissolved oxygen, which facilitate organism's oxygen supply and energy production. Previous studies showed that fish species from rapid-flow habitats exhibited lower hypoxia tolerance compared with fish from intermediate- and slow-flow habitats. Mitochondrial genomes code 13 key components in oxidative phosphorylation pathway; these genes may be under relaxed selection in rapid-flow species. OBJECTIVES The primary objectives of this study is to investigate the evolutionary patterns of the 13 mitochondrial OXPHOS genes among nine cyprinids from different water bodies and to test the hypotheses that mitochondrial OXPHOS genes may experience relaxed selection in rapid-flow habitats. METHODS We classified nine cyprinid fish species into three groups based on their habitats: rapid-flow, intermediate-flow and slow-flow. To detect relaxed selections, we investigated the 13 protein-coding genes with codon evolution programs RELAX; to estimate evolutionary rates among the cyprinids, free-ratio model in Codeml program was applied; Branch-site models were applied to detect positive selection sites. The polymorphisms of homologous sites were evaluated with PROVEAN program and projected to 3D structure prediction of the proteins using SWISS-MODEL. RESULTS We found that nine out of the 13 genes are under relaxed selection in rapid-flow species. Furthermore, dN, dS and dN/dS are relatively increased when compared with those of intermediate-flow species. More amino acid polymorphic sites are presented in rapid-flow species than in intermediate- and slow-flow species. Furthermore, rapid-flow species had more deleterious substitutions than other groups. 3D structure prediction of these proteins and projection of the polymorphic sites indicated that these sites were randomly distributed, suggesting relaxed functional constraints of these proteins in rapid-flow species. CONCLUSION Our results suggest that mitochondrial genes are under relaxed selection in rapid-flow cyprinids.
Collapse
Affiliation(s)
- Yao Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Hu Xing
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Dongsheng Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
17
|
Xu ZN, Zheng GD, Wu CB, Jiang XY, Zou SM. Identification of proteins differentially expressed in the gills of grass carp (Ctenopharyngodon idella) after hypoxic stress by two-dimensional gel electrophoresis analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:743-752. [PMID: 30758701 DOI: 10.1007/s10695-018-0599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) was combined with liquid chromatography-mass spectrometry (LC-MS/MS) to identify the differential proteomics of grass carp gills after hypoxic stress to better understand the roles of proteins in the hypoxic response and to explore the possible molecular mechanisms. Protein spots were obtained from a hypoxia-stressed group (372 ± 11 individuals) and a control group (406 ± 14 individuals) using the lmage Master 2D Platinum 7.0 analysis software. Fifteen protein spots were expressed differentially in the hypoxia-stressed group and varied significantly after exposure to the hypoxic conditions. In addition, these differential proteins were identified by mass spectrometry and then searched in a database. We found the expression and upregulation of the toll-like receptor 4, ephx1 protein, isocitrate dehydrogenase, L-lactate dehydrogenase, GTP-binding nuclear protein Ran, and glyceraldehyde-3-phosphate dehydrogenase; however, the expression of the keratin type II cytoskeletal 8, type I cytokeratin, ARP3 actin-related protein 3 homolog, thyroid hormone receptor alpha-A, ATP synthase subunit beta, citrate synthase, tropomyosin 2, and tropomyosin 3 were downregulated. Six proteins were found in the hypoxia-inducible factor-1 (HIF-1) signaling pathway. We concluded that the grass carp gill is involved in response processes, including energy generation, metabolic processes, cellular structure, antioxidation, immunity, and signal transduction, to hypoxic stress. To our knowledge, this is the first study to conduct a proteomics analysis of expressed proteins in the gills of grass carp, and this study will help increase the understanding of the molecular mechanisms involved in hypoxic stress responses in fish at the protein level.
Collapse
Affiliation(s)
- Zhan-Ning Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Cheng-Bin Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
18
|
Leeuwis RHJ, Nash GW, Sandrelli RM, Zanuzzo FS, Gamperl AK. The environmental tolerances and metabolic physiology of sablefish (Anoplopoma fimbria). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:140-148. [PMID: 30743060 DOI: 10.1016/j.cbpa.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
Given the potential impacts of global warming, such as increases in temperature and the frequency/severity of hypoxia in marine ecosystems, it is important to study the impacts of these environmental challenges on sea-cage reared aquaculture species. This study focuses on the sablefish (Anoplopoma fimbria), an emerging aquaculture species that has a unique ecology in the wild. For instance, adults inhabit oxygen minimum zones and cool waters at depths up to 1500 m. Using Atlantic salmon (Salmo salar) (~1132 g adults) as a comparative species, we used intermittent-flow respirometry to characterize the tolerance and metabolic response of sablefish (~10 g juveniles and ~675 g adults) to acute increases in temperature (2 °C h-1) and decreases in oxygen level (~10% air saturation h-1). Adult sablefish were much more hypoxia tolerant than adult salmon [O2 level at loss of equilibrium ~5.4% vs. ~24.2% air saturation, respectively]. In addition, sablefish could withstand upper temperatures only slightly lower than salmon [critical thermal maximum (CTmax) ~24.9 °C vs. ~26.2 °C, respectively]. Sablefish juveniles were both less hypoxia and thermally tolerant than adults [critical O2 tension ~18.9% vs. ~15.8% air saturation; CTmax ~22.7 vs. ~24.9 °C, respectively]. Interestingly, many of these differences in environmental tolerance could not be explained by differences in metabolic parameters (aerobic scope or routine metabolic rate). Our findings show that sablefish are tolerant of high temperatures, and very tolerant of hypoxia, traits that are advantageous for an aquaculture species in the era of climate change.
Collapse
Affiliation(s)
- Robine H J Leeuwis
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| | - Gordon W Nash
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
19
|
Effects of acclimation temperature on the thermal tolerance, hypoxia tolerance and swimming performance of two endangered fish species in China. J Comp Physiol B 2019; 189:237-247. [DOI: 10.1007/s00360-018-01201-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/21/2018] [Accepted: 12/27/2018] [Indexed: 01/26/2023]
|
20
|
Gilmore KL, Doubleday ZA, Gillanders BM. Prolonged exposure to low oxygen improves hypoxia tolerance in a freshwater fish. CONSERVATION PHYSIOLOGY 2019; 7:coz058. [PMID: 31798881 PMCID: PMC6882409 DOI: 10.1093/conphys/coz058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/19/2018] [Accepted: 08/17/2019] [Indexed: 05/03/2023]
Abstract
Persistent hypoxic or low-oxygen conditions in aquatic systems are becoming more frequent worldwide, causing large-scale mortalities to aquatic fauna. It is poorly understood, however, whether species can acclimate to long-term hypoxic conditions. In two experiments, we exposed juvenile freshwater fish (Murray cod, Maccullochella peelii) to low-oxygen conditions and investigated acclimation effects. Experiment 1 determined how responses could be modified by exposure to different temperatures (20, 24 and 28°C) and oxygen conditions (control 6-8 mgO2 L-1 and low-oxygen 3-4 mgO2 L-1) over 30 days. Experiment 2 determined the acclimation ability of fish exposed to two temperatures (20 and 28°C) and low-oxygen conditions (3-4 mgO2 L-1) for three different acclimation periods (7, 14 and 30 days). Responses were measured by determining critical oxygen tension (P crit), loss of equilibrium and aerobic capacity using resting respirometry. In experiment 1, resting oxygen requirements were negatively affected by long-term low-oxygen exposure except at the highest temperature (28°C). However, long-term acclimation in low-oxygen improved tolerance as measured by loss of equilibrium but not P crit. In experiment 2, fish could tolerate lower oxygen levels before reaching loss of equilibrium after 7 days acclimation, but this declined overtime. Murray cod were most tolerant to low-oxygen at the lowest temperature (20°C) and shortest exposure time (7 days). Extended low-oxygen exposure resulted in reduced aerobic capacity of fish particularly at the lowest temperature. While prior exposure to low-oxygen may allow fish to cope with hypoxic conditions better in the long-term, acclimation time was inversely related to tolerance, suggesting that resistance to hypoxia might decrease as a function of exposure time. Our study fills a much-needed gap in our understanding of how freshwater species acclimate to hypoxia, and in particular, how exposure to prolonged periods of low-oxygen and elevated temperatures affect organisms physiologically.
Collapse
Affiliation(s)
- Kayla L Gilmore
- Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia
- Corresponding author: Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia. ,
| | - Zoe A Doubleday
- Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia
- Corresponding author: Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia. ,
| |
Collapse
|
21
|
Wood CM. The fallacy of the P crit - are there more useful alternatives? ACTA ACUST UNITED AC 2018; 221:221/22/jeb163717. [PMID: 30420494 DOI: 10.1242/jeb.163717] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
P crit - generally defined as the P O2 below which the animal can no longer maintain a stable rate of O2 consumption (Ṁ O2 ), such that Ṁ O2 becomes dependent upon P O2 - provides a single number into which a vast amount of experimental effort has been invested. Here, with specific reference to water-breathers, I argue that this focus on the P crit is not useful for six reasons: (1) calculation of P crit usually involves selective data editing; (2) the value of P crit depends greatly on the way it is determined; (3) there is no good theoretical justification for the concept; (4) P crit is not the transition point from aerobic to anaerobic metabolism, and it disguises what is really going on; (5) P crit is not a reliable index of hypoxia tolerance; and (6) P crit carries minimal information content. Preferable alternatives are loss of equilibrium (LOE) tests for hypoxia tolerance, and experimental description of full Ṁ O2 versus P O2 profiles accompanied by measurements of ventilation, lactate appearance and metabolic rate by calorimetry. If the goal is to assess the ability of the animal to regulate Ṁ O2 from this profile in a mathematical fashion, promising, more informative alternatives to P crit are the regulation index and Michaelis-Menten or sigmoidal allosteric analyses.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 .,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.,Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL 33149, USA
| |
Collapse
|
22
|
Rees BB, Matute LA. Repeatable Interindividual Variation in Hypoxia Tolerance in the Gulf Killifish, Fundulus grandis. Physiol Biochem Zool 2018; 91:1046-1056. [DOI: 10.1086/699596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Campos D, Val A, Almeida-Val V. The influence of lifestyle and swimming behavior on metabolic rate and thermal tolerance of twelve Amazon forest stream fish species. J Therm Biol 2018; 72:148-154. [DOI: 10.1016/j.jtherbio.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 01/01/2023]
|
24
|
Nie LJ, Fu SJ. Metabolic, behavioral, and locomotive effects of feeding in five cyprinids with different habitat preferences. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1531-1542. [PMID: 28567498 DOI: 10.1007/s10695-017-0390-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Fish generally perform routine swimming behaviors during food digestion; thus, changes in swimming performance and adjustments to spontaneous behavior resulting from digestion can have important ecological significance for wild fishes. The effects of feeding on metabolism, spontaneous activity, fast-start escape movement, and critical swimming speed (U crit) were investigated in five cyprinids with different habitat preferences, specifically the Chinese crucian carp (Carassius auratus), common carp (Cyprinus carpio), black carp (Mylopharyngodon piceus), Chinese bream (Parabramis pekinensis), and qingbo (Spinibarbus sinensis). Generally, species in still water exhibited increased feeding metabolism, whereas species in flowing water showed higher spontaneous activity and locomotion performance. Digestion had no significant effects on either spontaneous activity or fast-start escape movement in the five cyprinids. These results could be due to the small meal sizes (approximately 2% body mass) and active foraging modes of cyprinids. The changes in aerobic swimming performance due to feeding were more complex. No effect of digestion on U crit was observed in crucian carp (still water, high feeding metabolism, and low U crit), common carp (widely distributed, high feeding metabolism, and high U crit), and qingbo (flowing water, low feeding metabolism, and high U crit), but digestion resulted in a significant decrease in the U crit of Chinese bream (moderate feeding metabolism but high U crit) and black carp (moderate feeding metabolism and low U crit), suggesting no connection between postprandial U crit changes and feeding metabolism (or between U crit and preferred habitat). The maximum metabolic rate (MMR) of common carp and crucian carp increased after feeding, whereas the corresponding values for the other three cyprinids remained the same. The oxygen uptake capacity appears to meet the oxygen demand of both aerobic swimming and digestion in common carp and crucian carp, whereas qingbo sacrifices digestion for locomotion, and black carp and Chinese bream sacrifice locomotion for digestion under postprandial swimming conditions. The locomotion-priority mode of qingbo is adaptive to its active foraging mode in the demanding swimming habitat of rapidly flowing water, whereas the high respiratory capacities of postprandial crucian carp and common carp and hence the maintenance of their aerobic swimming performances might be a by-product of natural selection for hypoxia tolerance rather than for swimming speed.
Collapse
Affiliation(s)
- Li-Juan Nie
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
25
|
Zeng LQ, Fu C, Fu SJ. Does aerobic capacity predict the spatial position of individuals within schools in juvenile qingbo (Spinibarbus sinensis)? Comp Biochem Physiol A Mol Integr Physiol 2017; 214:1-12. [PMID: 28893665 DOI: 10.1016/j.cbpa.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
Schooling behavior is an adaptive trait of important biological and ecological significance in fish species. However, the question of how aerobic capacity and environmental factors (i.e., food and water velocity) affect the spatial positioning within fish schools has received little attention. Our study measured the aerobic capacity-as indicated by standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope (AS)-and swimming performance of juvenile qingbo (Spinibarbus sinensis) and filmed their schooling behavior in a swim tunnel under both a control treatment and food stimulus treatment at three water velocities (20, 30 and 40cms-1). Neither aerobic capacity nor swimming performance was related to spatial position within schools. Food stimulation did not trigger any change in the characteristics of spatial position at three water velocities. However, an intra-school positional preference was found between water velocities under the control treatment and food stimulus treatment. Individuals who preferred the rear of the school had smaller coefficients of variation in position under the two treatments, but this behavior was not correlated with any parameters for metabolic rates. Inter-school social interaction level, as indicated by total chase times, was not affected by either water velocity or food appearance. Although aerobic capacity and food stimulus did not influence the spatial position of individuals within schools, individual qingbo had spatial positional preferences within schools between different water speeds.
Collapse
Affiliation(s)
- Ling-Qing Zeng
- Laboratory of Evolutionary Physiology and Behavior, Colleges of Life Sciences, Chongqing National University, Key Laboratory of Animal Biology of Chongqing, Chongqing 401331, China.
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Colleges of Life Sciences, Chongqing National University, Key Laboratory of Animal Biology of Chongqing, Chongqing 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Colleges of Life Sciences, Chongqing National University, Key Laboratory of Animal Biology of Chongqing, Chongqing 401331, China
| |
Collapse
|
26
|
Tang ZH, Wu H, Huang Q, Kuang L, Fu SJ. The shoaling behavior of two cyprinid species in conspecific and heterospecific groups. PeerJ 2017; 5:e3397. [PMID: 28584722 PMCID: PMC5452940 DOI: 10.7717/peerj.3397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/09/2017] [Indexed: 11/20/2022] Open
Abstract
Mixed-species shoals of fish are frequently found in the field; however, little is known about individual-level interactions within these groups. We examined the collective motion of two cyprinid species (Chinese bream, Parabramis pekinensis, and qingbo, Spinibarbus sinensis) that occupy partially overlapping habitats but differ in social behavior (high vs low aggressiveness) and preferred flow regime (slow vs fast water velocity). We extracted measures of collective motion from video recordings of eight replicate groups of four individuals of either Chinese bream or qingbo (conspecific group) or two Chinese bream plus two qingbo (heterospecific group). Chinese bream in conspecific groups showed lower percent time moving and mean swimming speed but a similar speed while moving as compared to the qingbo conspecific groups. However, the difference in mean swimming speed and percent time moving vanished in the heterospecific group as Chinese bream elevated their swimming activity to coordinate with qingbo. This finding suggests that the two species may share similar interaction rules regarding shoaling behavior. The conspecific groups of qingbo exhibited a greater distance between group members than Chinese bream, suggesting a difference in cohesion. However, the inter-individual distances of all fish were similar in the heterospecific group. Qingbo in the heterospecific group swam more frequently at the front compared to Chinese bream, possibly due to their higher activity level. We also measured the startle response to an artificial stimulus and found that there was no significant difference among groups. In conclusion, the present study demonstrated that in the heterospecific groups, Chinese bream elevated their percent time moving while qingbo decreased their inter-individual distance to achieve consistent collective movement; thus, the two species showed similar behavior in the mixed-species group.
Collapse
Affiliation(s)
- Zhong-Hua Tang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Hui Wu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Qing Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Lu Kuang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
27
|
Transcriptome comparison reveals insights into muscle response to hypoxia in blunt snout bream (Megalobrama amblycephala). Gene 2017; 624:6-13. [PMID: 28431977 DOI: 10.1016/j.gene.2017.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/26/2017] [Accepted: 04/14/2017] [Indexed: 01/22/2023]
Abstract
The economic and biological significance of blunt snout bream (Megalobrama amblycephala) makes this species important to explore the underlying molecular mechanism of hypoxia response. In the present study, we compared the transcriptional responses to serious hypoxia in skeletal muscle among hypoxia tolerant (MT), sensitive (MS) and control (without hypoxia treatment, MC) M. amblycephala obtained according to the time difference of losing balance after hypoxia treatment. A total of 88,200,889 clean reads were generated and assembled into 44,493 unigenes. Transcriptomic comparison revealed 463 genes differentially expressed among different groups. A similar hypoxia-induced transcription patterns suggested a common hypoxia response involved in cell cycle, p53 signaling pathway, apoptosis, heart contraction and blood circulation. Interesting, four genes, heat shock protein beta-8 (hspb8), cysteine/serine-rich nuclear protein 1 (csrnp1), salt-inducible kinase 1 (sik1), and visinin-like 1a (vsnl1a) were up-regulated in MT Vs MC but down-regulated in MS Vs MC. Additionally, FoxO signaling pathway was significantly enriched only in MT Vs MC. These results not only provided the first insights into the mechanism that muscle tissue coped with the hypoxia stress in cyprinid species, but offered a theory base for breeding of M. amblycephala with hypoxia-resistant traits.
Collapse
|
28
|
Oufiero CE, Whitlow KR. The evolution of phenotypic plasticity in fish swimming. Curr Zool 2016; 62:475-488. [PMID: 29491937 PMCID: PMC5804253 DOI: 10.1093/cz/zow084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/07/2016] [Indexed: 11/25/2022] Open
Abstract
Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming.
Collapse
Affiliation(s)
| | - Katrina R. Whitlow
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
29
|
Wang JW, Cao ZD, Fu SJ. A comparison of constant acceleration swimming speeds when acceleration rates are different with critical swimming speeds in Chinese bream under two oxygen tensions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1453-1461. [PMID: 27147426 DOI: 10.1007/s10695-016-0232-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
To investigate the effect of acceleration rates on the constant acceleration test speed (U cat) and to compare U cat with the critical swimming speed (U crit) in Chinese bream (Parabramis pekinensis), the U cat test at acceleration rates of 0.05, 0.1, 0.2, 0.4 and 0.8 cm s(-2) and the U crit test in juvenile fish at 20 °C in either normoxia (>90 % saturation oxygen tension) or hypoxia (30 % saturation) were compared. The lactate concentration ([lactate]) of white muscle, liver and plasma and the glycogen concentration ([glycogen]) of white muscle and liver were also measured to identify whether tissue substrate depletion or tissue lactate accumulation correlated with exhaustion. The U cat decreased with the acceleration rate, and there was no significant difference between U crit and U cat at lower acceleration rates. Hypoxia resulted in lower U cat and U crit, and the difference increased with decreased acceleration rates of the U cat test, possibly due to the increased contribution of aerobic components in U crit or U cat at low acceleration rates. Hypoxia elicited a significant decrease in muscle [glycogen] and an increase in muscle and liver [lactate] in resting fish. All post-exercise fish had similar muscle [lactate], suggesting that tissue lactate accumulation may correlate with exercise exhaustion. Unlike hypoxia, exercise induced an increase in muscle [lactate] and a significant increase in plasma [lactate], which were worthy of further investigation. The similar swimming speed and biochemical indicators after exercise in the U crit and U cat groups at low acceleration rates suggested that U cat can be an alternative for the more frequently adopted protocols in U crit in Chinese bream and possibly in other cyprinid fish species.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
30
|
Malekpouri P, Peyghan R, Mahboobi-Soofiani N, Mohammadian B. Metabolic capacities of common carp (Cyprinus carpio) following combined exposures to copper and environmental hypoxia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:1-11. [PMID: 26774182 DOI: 10.1016/j.ecoenv.2016.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
In aquatic ecosystems, a decline in water O2 level is the main factor that can release heavy metal ions from top sediment layer. Therefore, hypoxia in turn, and in association with heavy metals might provide undesirable environment and impairs physiological functions of aquatic animals. To address this, metabolic capacities, including standard metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS) and factorial aerobic scope (FAS) of common carp were determined following exposures to different levels of water-borne Cu(2+) as well as hypoxia. Treatments for Cu(2+) were included: 100% (acute), 50% (sub-lethal) and 10% (chronic) of LC50-96h for immediately, 24h and 7 days exposures respectively. Hypoxia treatments were assigned as acute for immediately, sub-lethal for 24h and chronic for 7 days. Combined effects of treatments were also considered as acute Cu(2+)+hypoxia, sub-lethal Cu(2+)+hypoxia and chronic Cu(2+)+hypoxia. While SMR of carp was reduced by chronic hypoxia, significant (P<0.05) increase was observed during acute hypoxia, as compared with control. The MMR and AS were significantly reduced (P<0.05) following all hypoxia treatments. The acute and chronic Cu(2+) treatments showed significant (P<0.05) increases in SMR and MMR values. All acute and sub-lethal combined treatments showed significant (P<0.05) reductions in SMR, MMR and AS values, whilst chronic combined treatments showed generally increasing trends for MMR and AS. PCrit was relatively reduced following all treatments except for acute and sub-lethal Cu(2+)-treated fish that showed higher value (P<0.05) and no change respectively. Although all Cu(2+) treatments increased the number of mucus cell, hypoxia treatments did not show any remarkable differences when compared with control group. In general, the results of present study reveal that hypoxia acts as limiting stressor whilst Cu(2+) do act as loading stressors in the case of common carp metabolism. The interactive exposures mostly showing a synergist effect in all metabolic capacities with an exception for chronic treatments.
Collapse
Affiliation(s)
- Pedram Malekpouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Rahim Peyghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nasrollah Mahboobi-Soofiani
- Fisheries Division, Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Babak Mohammadian
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
31
|
Borowiec BG, Crans KD, Khajali F, Pranckevicius NA, Young A, Scott GR. Interspecific and environment-induced variation in hypoxia tolerance in sunfish. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:59-71. [PMID: 27085372 DOI: 10.1016/j.cbpa.2016.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/01/2016] [Accepted: 04/09/2016] [Indexed: 11/18/2022]
Abstract
Hypoxia tolerance is a plastic trait, and can vary between species. We compared hypoxia tolerance (hypoxic loss of equilibrium, LOE, and critical O2 tension, Pcrit) and traits that dictate O2 transport and metabolism in pumpkinseed (Lepomis gibbosus), bluegill (L. macrochirus), and the naturally occurring hybrid in different acclimation environments (wild versus lab-acclimated fish) and at different temperatures. Wild fish generally had lower Pcrit and lower PO2 at LOE in progressive hypoxia than lab-acclimated fish, but time to LOE in sustained hypoxia (PO2 of 2kPa) did not vary between environments. Wild fish also had greater gill surface area and higher haematocrit, suggesting that increased O2 transport capacity underlies the environmental variation in Pcrit. Metabolic (lactate dehydrogenase, LDH; pyruvate kinase, PK; citrate synthase; cytochrome c oxidase) and antioxidant (catalase and superoxide dismutase) enzyme activities varied appreciably between environments. Wild fish had higher protein contents across tissues and higher activities of LDH in heart, PK in brain, and catalase in brain, liver, and skeletal muscle. Otherwise, wild fish had lower activities for most enzymes. Warming temperature from 15 to 25°C increased O2 consumption rate, Pcrit, PO2 at LOE, and haemoglobin-O2 affinity, and decreased time to LOE, but pumpkinseed had ≥2-fold longer time to LOE than bluegill and hybrids across this temperature range. This was associated with higher LDH activities in the heart and muscle, and lower or similar antioxidant enzyme activities in several tissues. However, the greater hypoxia tolerance of pumpkinseed collapsed at 28°C, demonstrating that the interactive effects of hypoxia and warming temperature can differ between species. Overall, distinct mechanisms appear to underpin interspecific and environment-induced variation in hypoxia tolerance in sunfish.
Collapse
Affiliation(s)
- Brittney G Borowiec
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Kyle D Crans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Fariborz Khajali
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada; Department of Animal Science, Shahrekord University, Shahrekord, Chahar Mahal Va Bakhtiari, Iran
| | - Nicole A Pranckevicius
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Alexander Young
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
32
|
Killen SS, Glazier DS, Rezende EL, Clark TD, Atkinson D, Willener AST, Halsey LG. Ecological Influences and Morphological Correlates of Resting and Maximal Metabolic Rates across Teleost Fish Species. Am Nat 2016; 187:592-606. [PMID: 27104992 DOI: 10.1086/685893] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rates of aerobic metabolism vary considerably across evolutionary lineages, but little is known about the proximate and ultimate factors that generate and maintain this variability. Using data for 131 teleost fish species, we performed a large-scale phylogenetic comparative analysis of how interspecific variation in resting metabolic rates (RMRs) and maximum metabolic rates (MMRs) is related to several ecological and morphological variables. Mass- and temperature-adjusted RMR and MMR are highly correlated along a continuum spanning a 30- to 40-fold range. Phylogenetic generalized least squares models suggest that RMR and MMR are higher in pelagic species and that species with higher trophic levels exhibit elevated MMR. This variation is mirrored at various levels of structural organization: gill surface area, muscle protein content, and caudal fin aspect ratio (a proxy for activity) are positively related with aerobic capacity. Muscle protein content and caudal fin aspect ratio are also positively correlated with RMR. Hypoxia-tolerant lineages fall at the lower end of the metabolic continuum. Different ecological lifestyles are associated with contrasting levels of aerobic capacity, possibly reflecting the interplay between selection for increased locomotor performance on one hand and tolerance to low resource availability, particularly oxygen, on the other. These results support the aerobic capacity model of the evolution of endothermy, suggesting elevated body temperatures evolved as correlated responses to selection for high activity levels.
Collapse
|
33
|
Crans KD, Pranckevicius NA, Scott GR. Physiological tradeoffs may underlie the evolution of hypoxia tolerance and exercise performance in sunfish (Centrarchidae). ACTA ACUST UNITED AC 2015; 218:3264-75. [PMID: 26347564 DOI: 10.1242/jeb.124602] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023]
Abstract
Tradeoffs between hypoxia tolerance and aerobic exercise performance appear to exist in some fish taxa, even though both of these traits are often associated with a high O2 transport capacity. We examined the physiological basis for this potential tradeoff in four species of sunfish from the family Centrarchidae. Hypoxia tolerance was greatest in rock bass, intermediate in pumpkinseed and bluegill and lowest in largemouth bass, based on measurements of critical O2 tension (Pcrit) and O2 tension at loss of equilibrium (PO2 at LOE). Consistent with there being a tradeoff between hypoxia tolerance and aerobic exercise capacity, the least hypoxia-tolerant species had the highest critical swimming speed (Ucrit) during normoxia and suffered the greatest decrease in Ucrit in hypoxia. There was also a positive correlation between Ucrit in normoxia and PO2 at LOE, which remained significant after accounting for phylogeny using phylogenetically independent contrasts. Several sub-organismal traits appeared to contribute to both hypoxia tolerance and aerobic exercise capacity (reflected by traits that were highest in both rock bass and largemouth bass), such as the gas-exchange surface area of the gills, the pH sensitivity of haemoglobin-O2 affinity, and the activities of lactate dehydrogenase and the gluconeogenic enzyme phosphoenolpyruvate carboxykinase in the liver. Some other sub-organismal traits were uniquely associated with either hypoxia tolerance (low sensitivity of haemoglobin-O2 affinity to organic phosphates, high pyruvate kinase and lactate dehydrogenase activities in the heart) or aerobic exercise capacity (capillarity and fibre size of the axial swimming muscle). Therefore, the cumulative influence of a variety of respiratory and metabolic traits can result in physiological tradeoffs associated with the evolution of hypoxia tolerance and aerobic exercise performance in fish.
Collapse
Affiliation(s)
- Kyle D Crans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Nicole A Pranckevicius
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
34
|
Variations in temperature acclimation effects on glycogen storage, hypoxia tolerance and swimming performance with seasonal acclimatization in juvenile Chinese crucian carp. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:16-23. [PMID: 25776929 DOI: 10.1016/j.cbpa.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
The aim of this study was to test whether temperature acclimation (10 vs 20 °C) effects on tissue glycogen content, hypoxia tolerance, and swimming performance of Chinese crucian carp (Carassius auratus) varied with seasonal acclimatization (winter vs spring) and potential combined interactions. Both the routine metabolic rate (MO(2rout)) and critical oxygen tension (P(crit)) of the MO(2rout) increased significantly with temperature, whereas the seasonal acclimatization showed no significant effect. Only the high temperature group that acclimatized in spring showed a significantly higher aquatic surface respiration (ASR(crit)) value compared with the other three groups. Fish in spring tended to show ASR behavior at higher oxygen tension compared with those in winter, which might have been caused by a more active lifestyle. Time to show LOE prolonged by 25-34% under low temperature. Spring fish showed 20% shorter LOE duration at 10 °C, whereas the difference tended to vanish at 20 °C. Glycogen contents in both liver and muscle were higher in winter than spring. The liver and muscle glycogen content decreased by 5-42% after exposure to anoxic conditions, whereas the magnitude was much smaller in spring. When fish swam in normoxic conditions, fish in higher temperatures showed higher critical swimming speed (Ucrit) than low temperature (5.49 vs 3.74 BL s(-1) in winter and 4.27 vs 3.21 BL s(-1) in spring), whereas fish in winter also showed higher U(crit) than fish in spring for each temperature. However, when fish swam in hypoxic waters, fish in higher temperatures showed a more profound decrease (52-61%) in U(crit) compared to those in lower temperature (25-27%). Fish in lower temperatures that had acclimatized in winter showed the highest U(crit), which might have been caused by higher glycogen storage. The present study suggested that both glycogen storage and alterations in lifestyle had profound effects on hypoxia tolerance and swimming performance, which resulted in a profound difference between seasons and acclimation temperatures.
Collapse
|
35
|
Wang Y, Li FG, Qin B, Chen J, Jiang XY, Zou SM. Duplicated connective tissue growth factor genes in hypoxia-sensitive blunt snout bream Megalobrama amblycephala and their in vivo expression. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:42-9. [DOI: 10.1016/j.cbpb.2014.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 02/06/2023]
|
36
|
He W, Cao ZD, Fu SJ. Effect of temperature on hypoxia tolerance and its underlying biochemical mechanism in two juvenile cyprinids exhibiting distinct hypoxia sensitivities. Comp Biochem Physiol A Mol Integr Physiol 2014; 187:232-41. [PMID: 24853206 DOI: 10.1016/j.cbpa.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
It is increasingly important to investigate the effect of temperature on hypoxia tolerance in fish species, as worldwide hypoxia worsens with increases in global warming. We selected the hypoxia-tolerant crucian carp (Carassius carassius) and the hypoxia-sensitive Chinese bream (Parabramis pekinensis) as model fish and investigated their hypoxia tolerance based on the critical oxygen tension of the routine metabolic rate (M˙O2rout) (Pcrit), aquatic surface respiration (ASRcrit) and loss of equilibrium (LOEcrit) after two weeks of acclimation at either 10, 20 or 30 °C. We also measured the tissue substrate (glycogen and glucose of muscle and liver) and lactate levels of both normoxia- and hypoxia-treated fish (post-LOE). Crucian carp exhibited significantly lower Pcrit and LOEcrit but not ASRcrit. Crucian carp possessed higher hypoxia tolerance, partially due to a higher tissue glycogen reserve, which provides cellular fuel under severe hypoxia, as well as higher lactate tolerance and clearance ability than Chinese bream. The hypoxia tolerance was maintained in crucian carp but was decreased in Chinese bream as the temperature increased. The difference between the two species is based on the greater recruitment of tissue glycogen, resulting in an increased level of cellular fuel during hypoxia in crucian carp than in Chinese bream. In addition, crucian carp possessed the greater liver lactate clearance capacity, and the smaller increase in the M˙O2rout at higher temperatures compared to Chinese bream. Furthermore, substrate shortage and decreased lactate tolerance at high temperatures in Chinese bream might also contribute to the difference in hypoxia tolerance between the two species.
Collapse
Affiliation(s)
- Wei He
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 401331, China
| | - Zhen-Dong Cao
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 401331, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|