1
|
Pae H, Liao J, Yuen N, Giraldo YM. Drosophila require both green and UV wavelengths for sun orientation but lack a time-compensated sun compass. J Exp Biol 2024; 227:jeb246817. [PMID: 39397575 PMCID: PMC11529886 DOI: 10.1242/jeb.246817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Celestial orientation and navigation are performed by many organisms in contexts as diverse as migration, nest finding and straight-line orientation. The vinegar fly, Drosophila melanogaster, performs menotaxis in response to celestial cues during tethered flight and can disperse more than 10 km under field conditions. However, we still do not understand how spectral components of celestial cues and pauses in flight impact heading direction in flies. To assess individual heading, we began by testing flies in a rotating tether arena using a single green LED as a stimulus. We found that flies robustly perform menotaxis and fly straight for at least 20 min. Flies maintain their preferred heading directions after experiencing a period of darkness or stopping flight, even up to 2 h, but reset their heading when the LED changes position, suggesting that flies do not treat this stimulus as the sun. Next, we assessed the flies' responses to a UV spot alone or a paired UV-green stimulus - two dots situated 180 deg apart to simulate the solar and antisolar hemispheres. We found that flies respond to UV much as they do to green light; however, when the stimuli are paired, flies adjust for sudden 90 deg movements, performing sun orientation. Lastly, we found no evidence of a time-compensated sun compass when we moved the paired stimuli at 15 deg h-1 for 6 h. This study demonstrates that wavelength influences how flies respond to visual cues during flight, shaping the interpretation of visual information to execute an appropriate behavioral response.
Collapse
Affiliation(s)
- Haneal Pae
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhu Liao
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Nicole Yuen
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ysabel Milton Giraldo
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Tocco C, Byrne M, Gagnon Y, Dirlik E, Dacke M. Spider dung beetles: coordinated cooperative transport without a predefined destination. Proc Biol Sci 2024; 291:20232621. [PMID: 38228176 PMCID: PMC10791517 DOI: 10.1098/rspb.2023.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Cooperative transport allows for the transportation of items too large for the capacity of a single individual. Beyond humans, it is regularly employed by ants and social spiders where two or more individuals, with more or less coordinated movements, transport food to a known destination. In contrast to this, pairs of male and female dung beetles successfully transport brood balls to a location unknown to either party at the start of their common journey. We found that, when forced to overcome a series of obstacles in their path, transport efficiency of pairs of beetles was higher than of solo males. To climb tall obstacles with their common ball of dung, the female assisted the leading male in lifting the ball by steadying and pushing it upwards in a 'headstand' position during the climb initiation. Finally, we show that pairs were faster than single beetles in climbing obstacles of different heights. Our results suggest that pairs of Sisyphus beetles cooperate in the transportation of brood balls with coordinated movements, where the male steers and the female primarily assists in lifting the ball. Taken together, this is to our knowledge, the first quantitative study of cooperative food transport without a known goal to aim for.
Collapse
Affiliation(s)
- Claudia Tocco
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yakir Gagnon
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
| | - Elin Dirlik
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Mitchell R, Shaverdian S, Dacke M, Webb B. A model of cue integration as vector summation in the insect brain. Proc Biol Sci 2023; 290:20230767. [PMID: 37357865 PMCID: PMC10291719 DOI: 10.1098/rspb.2023.0767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Ball-rolling dung beetles are known to integrate multiple cues in order to facilitate their straight-line orientation behaviour. Recent work has suggested that orientation cues are integrated according to a vector sum, that is, compass cues are represented by vectors and summed to give a combined orientation estimate. Further, cue weight (vector magnitude) appears to be set according to cue reliability. This is consistent with the popular Bayesian view of cue integration: cues are integrated to reduce or minimize an agent's uncertainty about the external world. Integration of orientation cues is believed to occur at the input to the insect central complex. Here, we demonstrate that a model of the head direction circuit of the central complex, including plasticity in input synapses, can act as a substrate for cue integration as vector summation. Further, we show that cue influence is not necessarily driven by cue reliability. Finally, we present a dung beetle behavioural experiment which, in combination with simulation, strongly suggests that these beetles do not weight cues according to reliability. We suggest an alternative strategy whereby cues are weighted according to relative contrast, which can also explain previous results.
Collapse
Affiliation(s)
- Robert Mitchell
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| | - Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
4
|
Xiong X, Manoonpong P. No Need for Landmarks: An Embodied Neural Controller for Robust Insect-Like Navigation Behaviors. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12893-12904. [PMID: 34264833 DOI: 10.1109/tcyb.2021.3091127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bayesian filters have been considered to help refine and develop theoretical views on spatial cell functions for self-localization. However, extending a Bayesian filter to reproduce insect-like navigation behaviors (e.g., home searching) remains an open and challenging problem. To address this problem, we propose an embodied neural controller for self-localization, foraging, backward homing (BH), and home searching of an advanced mobility sensor (AMOS)-driven insect-like robot. The controller, comprising a navigation module for the Bayesian self-localization and goal-directed control of AMOS and a locomotion module for coordinating the 18 joints of AMOS, leads to its robust insect-like navigation behaviors. As a result, the proposed controller enables AMOS to perform robust foraging, BH, and home searching against various levels of sensory noise, compared to conventional controllers. Its implementation relies only on self-localization and heading perception, rather than global positioning and landmark guidance. Interestingly, the proposed controller makes AMOS achieve spiral searching patterns comparable to those performed by real insects. We also demonstrated the performance of the controller for real-time indoor and outdoor navigation in a real insect-like robot without any landmark and cognitive map.
Collapse
|
5
|
Yilmaz A, El Jundi B, Belušič G, Byrne M, Baird E, Dacke M. Mechanisms of spectral orientation in a diurnal dung beetle. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210287. [PMID: 36058237 PMCID: PMC9441229 DOI: 10.1098/rstb.2021.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Ball rolling dung beetles use a wide range of cues to steer themselves along a fixed bearing, including the spectral gradient of scattered skylight that spans the sky. Here, we define the spectral sensitivity of the diurnal dung beetle Kheper lamarcki and use the information to explore the orientation performance under a range of spectral light combinations. We find that, when presented with spectrally diverse stimuli, the beetles primarily orient to the apparent brightness differences as perceived by their green photoreceptors. Under certain wavelength combinations, they also rely on spectral information to guide their movements, but the brightness and spectral directional information is never fully disentangled. Overall, our results suggest the use of a dichromatic, primitive colour vision system for the extraction of directional information from the celestial spectral gradient to support straight-line orientation. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| | - Basil El Jundi
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Department of Zoology, Division of Functional Morphology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
6
|
Shaverdian S, Dirlik E, Mitchell R, Tocco C, Webb B, Dacke M. Weighted cue integration for straight-line orientation. iScience 2022; 25:105207. [PMID: 36274940 PMCID: PMC9583106 DOI: 10.1016/j.isci.2022.105207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Animals commonly integrate multiple sources of information to guide their behavior. Among insects, previous studies have suggested that the relative reliability of cues affects their weighting in behavior, but have not systematically explored how well alternative integration strategies can account for the observed directional choices. Here, we characterize the directional reliability of an ersatz sun at different elevations and wind at different speeds as guiding cues for a species of ball-rolling dung beetle. The relative reliability is then shown to determine which cue dominates when the cues are put in conflict. We further show through modeling that the results are best explained by continuous integration of the cues as a vector-sum (rather than switching between them) but with non-optimal weighting and small individual biases. The neural circuitry in the insect central complex appears to provide an ideal substrate for this type of vector-sum-based integration mechanism.
Collapse
Affiliation(s)
- Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Elin Dirlik
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden,Corresponding author
| | - Robert Mitchell
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Barbara Webb
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
7
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
8
|
Matsubara N, Okada R, Sakura M. Possible Role of Polarized Light Information in Spatial Recognition in the Cricket Gryllus bimaculatus. Zoolog Sci 2021; 38:297-304. [PMID: 34342949 DOI: 10.2108/zs200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Many insects are able to use skylight e-vector patterns to deduce their heading direction. Crickets have been well known to orient themselves to certain e-vector orientations to keep their walking direction. However, it is still unknown if crickets are able to utilize polarized light information for spatial recognition. Using an experimental paradigm similar to the Morris water maze for rodents, here we examine the possibility that the cricket Gryllus bimaculatus can utilize polarized light information to find the target place. Crickets were placed in a round arena with a heated floor, a portion of which was cooled, and a cross-shaped e-vector pattern was presented from the top of the arena so that the cricket could find the cool spot by walking along the e-vector direction. When the arrangement of the e-vector pattern and the cool spot were fixed throughout the experiments, the time and the walking distance to find the cool spot were significantly decreased with increasing trials, but not when the e-vector pattern was rotated between each trial. Moreover, a model selection indicated that the visual stimulus contributed to the decrease in time and distance. To investigate the cricket's exploration patterns in the arena, a test trial in which the whole floor was uniformly heated was performed before and after the training trials. In the test trial, the crickets trained with the positionally fixed e-vector pattern showed wall-following behavior for a significantly longer time than those untrained and those trained with random e-vector patterns.
Collapse
Affiliation(s)
- Nobuaki Matsubara
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Okada
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.,School of Human Science and Environment, University of Hyogo, Himeji 670-0092, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan,
| |
Collapse
|
9
|
Khaldy L, Tocco C, Byrne M, Dacke M. Compass Cue Integration and Its Relation to the Visual Ecology of Three Tribes of Ball-Rolling Dung Beetles. INSECTS 2021; 12:insects12060526. [PMID: 34204081 PMCID: PMC8229028 DOI: 10.3390/insects12060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
To guide their characteristic straight-line orientation away from the dung pile, ball-rolling dung beetles steer according to directional information provided by celestial cues, which, among the most relevant are the sun and polarised skylight. Most studies regarding the use of celestial cues and their influence on the orientation system of the diurnal ball-rolling beetle have been performed on beetles of the tribe Scarabaeini living in open habitats. These beetles steer primarily according to the directional information provided by the sun. In contrast, Sisyphus fasciculatus, a species from a different dung-beetle tribe (the Sisyphini) that lives in habitats with closely spaced trees and tall grass, relies predominantly on directional information from the celestial pattern of polarised light. To investigate the influence of visual ecology on the relative weight of these cues, we studied the orientation strategy of three different tribes of dung beetles (Scarabaeini, Sisyphini and Gymnopleurini) living within the same biome, but in different habitat types. We found that species within a tribe share the same orientation strategy, but that this strategy differs across the tribes; Scarabaeini, living in open habitats, attribute the greatest relative weight to the directional information from the sun; Sisyphini, living in closed habitats, mainly relies on directional information from polarised skylight; and Gymnopleurini, also living in open habitats, appear to weight both cues equally. We conclude that, despite exhibiting different body size, eye size and morphology, dung beetles nevertheless manage to solve the challenge of straight-line orientation by weighting visual cues that are particular to the habitat in which they are found. This system is however dynamic, allowing them to operate equally well even in the absence of the cue given the greatest relative weight by the particular species.
Collapse
Affiliation(s)
- Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- Correspondence:
| | - Claudia Tocco
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; (C.T.); (M.D.)
- School of Animal, Plant and Environmental Sciences, University of the Witswatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa;
| |
Collapse
|
10
|
Kryuchkov M, Savitsky V, Wilts BD, Gray E, Katanaev VL. Light Polarization by Biological Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23481-23488. [PMID: 33974394 DOI: 10.1021/acsami.1c05049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light plays paramount functions for living beings in nature. In addition to color, the polarization of light is used by many animals for navigation and communication. In this study, we describe the light polarizing role of special nanostructures coating cuticular surfaces of diverse arthropods. These structures are built as parallel nanoscale ridges covering the eyes of the sunlight-navigating spider Drassodes lapidosus and of the water pond-swarming black fly Simulium vittatum, as well as the light-emitting abdominal lantern of the firefly Aquatica lateralis. Exact topography and dimensions of the parallel nanoridges provide different light polarizing efficiencies and wavelength sensitivity. Optical modeling confirms that the nanoscale ridges are responsible for the spectral polarization dependency. Co-opting from our recent work on the self-assembly of Drosophila corneal nanostructures, we engineer arthropod-like parallel nanoridges on artificial surfaces, which recapitulate the light polarization effects. Our work highlights the fundamental importance of nanocoatings in arthropods for the light polarization management and provides a new biomimetic approach to produce ordered nanostructures under mild conditions.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Vladimir Savitsky
- Zoological Museum of the Lomonosov Moscow State University, Bol'shaya Nikitskaya str. 2, Moscow 125009, Russian Federation
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Elmer Gray
- Department of Entomology, University of Georgia, Biological Sciences Building 413, Georgia 30602 Athens, United States
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690922, Russian Federation
| |
Collapse
|
11
|
Grob R, el Jundi B, Fleischmann PN. Towards a common terminology for arthropod spatial orientation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Basil el Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
12
|
Navigation and orientation in Coleoptera: a review of strategies and mechanisms. Anim Cogn 2021; 24:1153-1164. [PMID: 33846895 DOI: 10.1007/s10071-021-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Spatial orientation is important for animals to forage, mate, migrate, and escape certain threats, and can require simple to complex cognitive abilities and behaviours. As these behaviours are more difficult to experimentally test in vertebrates, considerable research has focussed on investigating spatial orientation in insects. However, the majority of insect spatial orientation research tends to focus on a few taxa of interest, especially social insects. Beetles present an interesting insect group to study in this respect, due to their diverse taxonomy and biology, and prevalence as agricultural pests. In this article, I review research on beetle spatial orientation. Then, I use this synthesis to discuss mechanisms beetles employ in the context of different behaviours that require orientation or navigation. I conclude by discussing two future avenues for behavioural research on this topic, which could lead to more robust conclusions on how species in this diverse order are able to traverse through a wide variety of environments.
Collapse
|
13
|
Ciofini A, Mercatelli L, Hariyama T, Ugolini A. Sky radiance and spectral gradient are orienting cues for the sandhopper Talitrus saltator (Crustacea, Amphipoda). J Exp Biol 2021; 224:jeb239574. [PMID: 33328290 DOI: 10.1242/jeb.239574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The sandhopper Talitrus saltator relies on both the sun and the moon compasses to return to the belt of damp sand on the beach in which it lives buried during the day. In addition to the sun, the gradient of radiance and the spectral distribution across the sky could provide directional information that T. saltator can potentially use to orient itself during the day even when the sun is not visible (e.g. cloudy sky). The scope of this work was (1) to determine the intensity levels of sky radiance that the sandhoppers use in their zonal recovery and (2) to investigate whether this species relies on the celestial spectral gradient in its zonal recovery. Sandhoppers were tested in the laboratory under artificial radiance or spectral gradients. Our results show that under an artificial sky simulating the natural radiance gradient on a cloudless day, sandhoppers orientated toward the correct seaward direction of their home beach; however, individuals lost their ability to use the intensity gradient as an orientation cue when the radiance was attenuated by at least 40%. Sandhoppers were also able to head in the correct seaward direction of their home beach at any time of the day by using the spectral gradient as their only source of visual orientation reference.
Collapse
Affiliation(s)
- Alice Ciofini
- Dipartimento di Biologia, Università di Firenze, Via Romana 17/19, 50125 Firenze, Italy
| | - Luca Mercatelli
- Istituto Nazionale di Ottica - CNR, Largo Enrico Fermi 6, 50125 Firenze, Italy
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University, School of Medicine, Hamamatsu, 431-3192, Japan
| | - Alberto Ugolini
- Dipartimento di Biologia, Università di Firenze, Via Romana 17/19, 50125 Firenze, Italy
| |
Collapse
|
14
|
Dacke M, Baird E, El Jundi B, Warrant EJ, Byrne M. How Dung Beetles Steer Straight. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:243-256. [PMID: 32822556 DOI: 10.1146/annurev-ento-042020-102149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.
Collapse
Affiliation(s)
- Marie Dacke
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Emily Baird
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden;
| | - Basil El Jundi
- Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Eric J Warrant
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| |
Collapse
|
15
|
Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust. Proc Natl Acad Sci U S A 2020; 117:25810-25817. [PMID: 32989147 DOI: 10.1073/pnas.2005192117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals use celestial cues for spatial orientation. These include the sun and, in insects, the polarization pattern of the sky, which depends on the position of the sun. The central complex in the insect brain plays a key role in spatial orientation. In desert locusts, the angle of polarized light in the zenith above the animal and the direction of a simulated sun are represented in a compass-like fashion in the central complex, but how both compasses fit together for a unified representation of external space remained unclear. To address this question, we analyzed the sensitivity of intracellularly recorded central-complex neurons to the angle of polarized light presented from up to 33 positions in the animal's dorsal visual field and injected Neurobiotin tracer for cell identification. Neurons were polarization sensitive in large parts of the virtual sky that in some cells extended to the horizon in all directions. Neurons, moreover, were tuned to spatial patterns of polarization angles that matched the sky polarization pattern of particular sun positions. The horizontal components of these calculated solar positions were topographically encoded in the protocerebral bridge of the central complex covering 360° of space. This whole-sky polarization compass does not support the earlier reported polarization compass based on stimulation from a small spot above the animal but coincides well with the previously demonstrated direct sun compass based on unpolarized light stimulation. Therefore, direct sunlight and whole-sky polarization complement each other for robust head direction coding in the locust central complex.
Collapse
|
16
|
Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 2020; 23:1189-1204. [PMID: 32894371 DOI: 10.1007/s10071-020-01424-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Adequate homing is essential for the survival of any animal when it leaves its home to find prey or a mate. There are several strategies by which homing can be carried out: (a) retrace the outbound path; (b) use a 'cognitive map'; or (c) use path integration (PI). Here, I review the state of the art of research on spiders (Araneae) and whip spiders (Amblypygi) homing behaviour. The main strategy described in the literature as being used by these arachnids is PI. Behavioural and neural substrates of PI are described in a small group of spider families (Agelenidae, Lycosidae, Gnaphosidae, Ctenidae and Theraphosidae) and a whip spider family (Phrynidae). In spiders, the cues used to detect the position of the animal relative to its home are the position of the sun, polarized light patterns, web elasticity and landmarks. In whip spiders, the cues used are olfactory, tactile and, with a more minor role, visual. The use of a magnetic field in whip spiders has been rejected both with field and laboratory studies. Concerning the distance walked in PI, the possibility of using optic flow and idiothetic information in spiders is considered. The studies about outbound and inbound paths in whip spiders seem to suggest they do not follow the PI rules. As a conclusion, these arachnids' navigation relies on multimodal cues. We have detailed knowledge about the sensory origin (visual, olfactory, mechanosensory receptors) of neural information, but we are far from knowing the central neural structures where sensory information is integrated.
Collapse
|
17
|
Held M, Le K, Pegel U, Dersch F, Beetz MJ, Pfeiffer K, Homberg U. Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100971. [PMID: 32755758 DOI: 10.1016/j.asd.2020.100971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Locusts, like other insects, partly rely on a sun compass mechanism for spatial orientation during seasonal migrations. To serve as a useful guiding cue throughout the day, however, the sun's apparent movement has to be accounted for. In locusts, a neural pathway from the accessory medulla, the circadian pacemaker, via the posterior optic tubercle, to the protocerebral bridge, part of the internal sky compass, has been proposed to mediate the required time compensation. Toward a better understanding of neural connectivities within the posterior optic tubercle, we investigated this neuropil using light and electron microscopy. Based on vesicle content, four types of synaptic profile were distinguished within the posterior optic tubercle. Immunogold labeling showed that pigment-dispersing hormone immunoreactive neurons from the accessory medulla, containing large dense-core vesicles, have presynaptic terminals in the posterior optic tubercle. Ultrastructural examination of two Neurobiotin-injected tangential neurons of the protocerebral bridge revealed that these neurons are postsynaptic in the posterior optic tubercle. Our data, therefore, support a role of the posterior optic tubercles in mediating circadian input to the insect sky compass.
Collapse
Affiliation(s)
- Martina Held
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany.
| | - Kim Le
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Florian Dersch
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - M Jerome Beetz
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Keram Pfeiffer
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
18
|
Franzke M, Kraus C, Dreyer D, Pfeiffer K, Beetz MJ, Stöckl AL, Foster JJ, Warrant EJ, El Jundi B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol 2020; 223:jeb223800. [PMID: 32341174 DOI: 10.1242/jeb.223800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - M Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Anna L Stöckl
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - James J Foster
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Eric J Warrant
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| |
Collapse
|
19
|
Patel RN, Cronin TW. Mantis Shrimp Navigate Home Using Celestial and Idiothetic Path Integration. Curr Biol 2020; 30:1981-1987.e3. [PMID: 32275879 DOI: 10.1016/j.cub.2020.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
Abstract
Path integration is a robust mechanism that many animals employ to return to specific locations, typically their homes, during navigation. This efficient navigational strategy has never been demonstrated in a fully aquatic animal, where sensory cues used for orientation may differ dramatically from those available above the water's surface. Here, we report that the mantis shrimp, Neogonodactylus oerstedii, uses path integration informed by a hierarchical reliance on the sun, overhead polarization patterns, and idiothetic (internal) orientation cues to return home when foraging, making them the first fully aquatic path-integrating animals yet discovered. We show that mantis shrimp rely on navigational strategies closely resembling those used by insect navigators, opening a new avenue for the investigation of the neural basis of navigation behaviors and the evolution of these strategies in arthropods and potentially other animals as well. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Rickesh N Patel
- UMBC Department of Biological Sciences, The University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Thomas W Cronin
- UMBC Department of Biological Sciences, The University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
20
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
21
|
Fisher YE, Lu J, D'Alessandro I, Wilson RI. Sensorimotor experience remaps visual input to a heading-direction network. Nature 2019; 576:121-125. [PMID: 31748749 PMCID: PMC7753972 DOI: 10.1038/s41586-019-1772-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/24/2019] [Indexed: 11/09/2022]
Abstract
In the Drosophila brain, 'compass' neurons track the orientation of the body and head (the fly's heading) during navigation 1,2. In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time3,4. When a visual cue is present, the estimate of the network is more accurate1,3. Visual inputs to compass neurons are thought to originate from inhibitory neurons called R neurons (also known as ring neurons); the receptive fields of R neurons tile visual space5. The axon of each R neuron overlaps with the dendrites of every compass neuron6, raising the question of how visual cues are integrated into the compass. Here, using in vivo whole-cell recordings, we show that a visual cue can evoke synaptic inhibition in compass neurons and that R neurons mediate this inhibition. Each compass neuron is inhibited only by specific visual cue positions, indicating that many potential connections from R neurons onto compass neurons are actually weak or silent. We also show that the pattern of visually evoked inhibition can reorganize over minutes as the fly explores an altered virtual-reality environment. Using ensemble calcium imaging, we demonstrate that this reorganization causes persistent changes in the compass coordinate frame. Taken together, our data suggest a model in which correlated pre- and postsynaptic activity triggers associative long-term synaptic depression of visually evoked inhibition in compass neurons. Our findings provide evidence for the theoretical proposal that associative plasticity of sensory inputs, when combined with attractor dynamics, can reconcile self-movement information with changing external cues to generate a coherent sense of direction7-12.
Collapse
Affiliation(s)
- Yvette E Fisher
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jenny Lu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Abstract
Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
Collapse
Affiliation(s)
| | | | - Allen Cheung
- The University of Queensland, Queensland Brain Institute, Upland Road, St. Lucia, Queensland, Australia
| |
Collapse
|
23
|
Khaldy L, Peleg O, Tocco C, Mahadevan L, Byrne M, Dacke M. The effect of step size on straight-line orientation. J R Soc Interface 2019; 16:20190181. [PMID: 31387484 PMCID: PMC6731515 DOI: 10.1098/rsif.2019.0181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
Moving along a straight path is a surprisingly difficult task. This is because, with each ensuing step, noise is generated in the motor and sensory systems, causing the animal to deviate from its intended route. When relying solely on internal sensory information to correct for this noise, the directional error generated with each stride accumulates, ultimately leading to a curved path. In contrast, external compass cues effectively allow the animal to correct for errors in its bearing. Here, we studied straight-line orientation in two different sized dung beetles. This allowed us to characterize and model the size of the directional error generated with each step, in the absence of external visual compass cues (motor error) as well as in the presence of these cues (compass and motor errors). In addition, we model how dung beetles balance the influence of internal and external orientation cues as they orient along straight paths under the open sky. We conclude that the directional error that unavoidably accumulates as the beetle travels is inversely proportional to the step size of the insect, and that both beetle species weigh the two sources of directional information in a similar fashion.
Collapse
Affiliation(s)
- Lana Khaldy
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
| | - Orit Peleg
- Department of Computer Science, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Claudia Tocco
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L. Mahadevan
- Departments of Organismic and Evolutionary Biology and Physics, School of Engineering and Applied Sciences, Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA, USA
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Freas CA, Plowes NJR, Spetch ML. Not just going with the flow: foraging ants attend to polarised light even while on the pheromone trail. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:755-767. [PMID: 31422422 DOI: 10.1007/s00359-019-01363-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
The polarisation pattern of skylight serves as an orientation cue for many invertebrates. Solitary foraging ants, in particular, rely on polarised light to orient along with a number of other visual cues. Yet it is unknown, if this cue is actively used in socially foraging species that use pheromone trails to navigate. Here, we explore the use of polarised light in the presence of the pheromone cues of the foraging trail. The desert harvester ant, Veromessor pergandei, relies on pheromone cues and path integration in separate stages of their foraging ecology (column and fan, respectively). Here, we show that foragers actively orient to an altered overhead polarisation pattern, both while navigating individually in the fan and while on the pheromone-based column. These heading changes occurred during twilight, as well as in the early morning and late afternoon before sunset. Differences in shift size indicate that foragers attend to both the polarisation pattern and the sun's position when available, yet during twilight, headings are dominated by the polarisation pattern. Finally, when the sun's position was experimentally blocked before sunset, shift sizes increased similar to twilight testing. These findings show that celestial cues provide directional information on the pheromone trail.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada.
| | - Nicola J R Plowes
- Department of Life Sciences, Mesa Community College, 1833 Southern Avenue, Mesa, AZ, 85202, USA
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
25
|
Abstract
South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.
Collapse
|
26
|
Pegel U, Pfeiffer K, Zittrell F, Scholtyssek C, Homberg U. Two Compasses in the Central Complex of the Locust Brain. J Neurosci 2019; 39:3070-3080. [PMID: 30755489 PMCID: PMC6468101 DOI: 10.1523/jneurosci.0940-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Many migratory insects rely on a celestial compass for spatial orientation. Several features of the daytime sky, all generated by the sun, can be exploited for navigation. Two of these are the position of the sun and the pattern of polarized skylight. Neurons of the central complex (CX), a group of neuropils in the central brain of insects, have been shown to encode sky compass cues. In desert locusts, the CX holds a topographic, compass-like representation of the plane of polarized light (E-vector) presented from dorsal direction. In addition, these neurons also encode the azimuth of an unpolarized light spot, likely representing the sun. Here, we investigate whether, in addition to E-vector orientation, the solar azimuth is represented topographically in the CX. We recorded intracellularly from eight types of CX neuron while stimulating animals of either sex with polarized blue light from zenithal direction and an unpolarized green light spot rotating around the animal's head at different elevations. CX neurons did not code for elevation of the unpolarized light spot. However, two types of columnar neuron showed a linear correlation between innervated slice in the CX and azimuth tuning to the unpolarized green light spot, consistent with an internal compass representation of solar azimuth. Columnar outputs of the CX also showed a topographic representation of zenithal E-vector orientation, but the two compasses were not linked to each other. Combined stimulation with unpolarized green and polarized blue light suggested that the two compasses interact in a nonlinear way.SIGNIFICANCE STATEMENT In the brain of the desert locust, neurons sensitive to the plane of celestial polarization are arranged like a compass in the slices of the central complex (CX). These neurons, in addition, code for the horizontal direction of an unpolarized light cue possibly representing the sun. We show here that horizontal directions are, in addition to E-vector orientations from the dorsal direction, represented in a compass-like manner across the slices of the CX. However, the two compasses are not linked to each other, but rather seem to interact in a cell-specific, nonlinear way. Our study confirms the role of the CX in signaling heading directions and shows that different cues are used for this task.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and
| | - Frederick Zittrell
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christine Scholtyssek
- School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, United Kingdom
| | - Uwe Homberg
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany,
| |
Collapse
|
27
|
Khaldy L, Tocco C, Byrne M, Baird E, Dacke M. Straight-line orientation in the woodland-living beetle Sisyphus fasciculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:327-335. [PMID: 30955076 PMCID: PMC7192865 DOI: 10.1007/s00359-019-01331-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/06/2019] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
Abstract
To transport their balls of dung along a constant bearing, diurnal savannah-living dung beetles rely primarily on the sun for compass information. However, in more cluttered environments, such as woodlands, this solitary compass cue is frequently hidden from view by surrounding vegetation. In these types of habitats, insects can, instead, rely on surrounding landmarks, the canopy pattern, or wide-field celestial cues, such as polarised skylight, for directional information. Here, we investigate the compass orientation strategy behind straight-line orientation in the diurnal woodland-living beetle Sisyphus fasciculatus. We found that, when manipulating the direction of polarised skylight, Si. fasciculatus responded to this change with a similar change in bearing. However, when the apparent position of the sun was moved, the woodland-living beetle did not change its direction of travel. In contrast, the savannah-living beetle Scarabaeus lamarcki responded to the manipulation of the solar position with a corresponding change in bearing. These results suggest that the dominant compass cue used for straight-line orientation in dung beetles may be determined by the celestial cue that is most prominent in their preferred habitat.
Collapse
Affiliation(s)
- Lana Khaldy
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Claudia Tocco
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Marcus Byrne
- School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Emily Baird
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.,Department of Zoology, Functional Morphology, Stockholm University, Stockholm, Sweden
| | - Marie Dacke
- Department of Biology, Lund Vision Group, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.,School of Animal, Plant and Environmental Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
28
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
29
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
30
|
Swimming behaviour tunes fish polarization vision to double prey sighting distance. Sci Rep 2019; 9:944. [PMID: 30700806 PMCID: PMC6353921 DOI: 10.1038/s41598-018-37632-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 11/17/2022] Open
Abstract
The analysis of the polarization of light expands vision beyond the realm of colour and intensity and is used for multiple ecological purposes among invertebrates including orientation, object recognition, and communication. How vertebrates use polarization vision as part of natural behaviours is widely unknown. In this study, I tested the hypothesis that polarization vision improves the detection of zooplankton prey by the northern anchovy, Engraulis mordax, the only vertebrate with a demonstrated photoreceptor basis explaining its polarization sensitivity. Juvenile anchovies were recorded free foraging on zooplankton under downwelling light fields of varying percent polarization (98%, 67%, 19%, and 0% - unpolarized light). Analyses of prey attack sequences showed that anchovies swam in the horizontal plane perpendicular, on average, to the polarization direction of downwelling light and attacked prey at pitch angles that maximized polarization contrast perception of prey by the ventro-temporal retina, the area devoted to polarization vision in this animal. Consequently, the mean prey location distance under polarized light was up to 2.1 times that under unpolarized conditions. All indicators of polarization vision mediated foraging were present under 19% polarization, which is within the polarization range commonly found in nature during daylight hours. These results demonstrate: (i) the first use of oriented swimming for enhancing polarization contrast detection of prey, (ii) its relevance to improved foraging under available light cues in nature, and (iii) an increase in target detection distance that is only matched by polarization based artificial systems.
Collapse
|
31
|
Foster JJ, Kirwan JD, El Jundi B, Smolka J, Khaldy L, Baird E, Byrne MJ, Nilsson DE, Johnsen S, Dacke M. Orienting to polarized light at night - matching lunar skylight to performance in a nocturnal beetle. ACTA ACUST UNITED AC 2019; 222:jeb.188532. [PMID: 30530838 DOI: 10.1242/jeb.188532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.
Collapse
Affiliation(s)
- James J Foster
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - John D Kirwan
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Basil El Jundi
- Biocenter (Zoology II), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Sönke Johnsen
- Biology Department, Duke University, 130 Science Drive, Durham, NC 27708, USA
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
32
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Balogun WG, Cobham AE, Amin A, Seeni A. Using invertebrate model organisms for neuroscience research and training: an opportunity for Africa. Metab Brain Dis 2018; 33:1431-1441. [PMID: 29797116 DOI: 10.1007/s11011-018-0250-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
Collapse
Affiliation(s)
- Wasiu Gbolahan Balogun
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia.
| | - Ansa Emmanuel Cobham
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
- Instituto Gulbenkian de Ciência, Rua. da Quinta Grande 6, 2780-156 Oeiras, Lisbon, Portugal
| | - Azman Seeni
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Bukit Gambir, 11700, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
34
|
Giraldo YM, Leitch KJ, Ros IG, Warren TL, Weir PT, Dickinson MH. Sun Navigation Requires Compass Neurons in Drosophila. Curr Biol 2018; 28:2845-2852.e4. [PMID: 30174187 PMCID: PMC7301569 DOI: 10.1016/j.cub.2018.07.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Despite their small brains, insects can navigate over long distances by orienting using visual landmarks [1], skylight polarization [2-9], and sun position [3, 4, 6, 10]. Although Drosophila are not generally renowned for their navigational abilities, mark-and-recapture experiments in Death Valley revealed that they can fly nearly 15 km in a single evening [11]. To accomplish such feats on available energy reserves [12], flies would have to maintain relatively straight headings, relying on celestial cues [13]. Cues such as sun position and polarized light are likely integrated throughout the sensory-motor pathway [14], including the highly conserved central complex [4, 15, 16]. Recently, a group of Drosophila central complex cells (E-PG neurons) have been shown to function as an internal compass [17-19], similar to mammalian head-direction cells [20]. Using an array of genetic tools, we set out to test whether flies can navigate using the sun and to identify the role of E-PG cells in this behavior. Using a flight simulator, we found that Drosophila adopt arbitrary headings with respect to a simulated sun, thus performing menotaxis, and individuals remember their heading preference between successive flights-even over several hours. Imaging experiments performed on flying animals revealed that the E-PG cells track sun stimulus motion. When these neurons are silenced, flies no longer adopt and maintain arbitrary headings relative to the sun stimulus but instead exhibit frontal phototaxis. Thus, without the compass system, flies lose the ability to execute menotaxis and revert to a simpler, reflexive behavior.
Collapse
Affiliation(s)
- Ysabel Milton Giraldo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katherine J Leitch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivo G Ros
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy L Warren
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter T Weir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
35
|
Warren TL, Weir PT, Dickinson MH. Flying Drosophilamelanogaster maintain arbitrary but stable headings relative to the angle of polarized light. ACTA ACUST UNITED AC 2018; 221:jeb.177550. [PMID: 29593084 DOI: 10.1242/jeb.177550] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
Abstract
Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals' wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D. melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D. melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination.
Collapse
Affiliation(s)
- Timothy L Warren
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.,Institute of Neuroscience, University of Oregon, Eugene, Oregon 97401, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Peter T Weir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.,Data Science, Yelp, San Francisco, CA, 94111, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
36
|
Foster JJ, El Jundi B, Smolka J, Khaldy L, Nilsson DE, Byrne MJ, Dacke M. Stellar performance: mechanisms underlying Milky Way orientation in dung beetles. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0079. [PMID: 28193823 DOI: 10.1098/rstb.2016.0079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Abstract
Nocturnal dung beetles (Scarabaeus satyrus) are currently the only animals that have been demonstrated to use the Milky Way for reliable orientation. In this study, we tested the capacity of S. satyrus to orient under a range of artificial celestial cues, and compared the properties of these cues with images of the Milky Way simulated for a beetle's visual system. We find that the mechanism that permits accurate stellar orientation under the Milky Way is based on an intensity comparison between different regions of the Milky Way. We determined the beetles' contrast sensitivity for this task in behavioural experiments in the laboratory, and found that the resulting threshold of 13% is sufficient to detect the contrast between the southern and northern arms of the Milky Way under natural conditions. This mechanism should be effective under extremely dim conditions and on nights when the Milky Way forms a near symmetrical band that crosses the zenith. These findings are discussed in the context of studies of stellar orientation in migratory birds and itinerant seals.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Basil El Jundi
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Jochen Smolka
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Dan-Eric Nilsson
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
37
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Pegel U, Pfeiffer K, Homberg U. Integration of celestial compass cues in the central complex of the locust brain. J Exp Biol 2017; 221:jeb.171207. [DOI: 10.1242/jeb.171207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Many insects rely on celestial compass cues such as the polarization pattern of the sky for spatial orientation. In the desert locust, the central complex (CX) houses multiple sets of neurons, sensitive to the oscillation plane of polarized light and, thus, likely acts as an internal polarization compass. We investigated whether other sky compass cues like direct sunlight or the chromatic gradient of the sky might contribute to this compass. We recorded from polarization-sensitive CX neurons while an unpolarized green or UV light spot was moved around the head of the animal. All types of neuron that were sensitive to the plane of polarization (E-vector) above the animal also responded to the unpolarized light spots in an azimuth-dependent way. The tuning to the unpolarized light spots was independent of wavelength, suggesting that the neurons encode solar azimuth based on direct sunlight and not on the sky chromatic gradient. Two cell types represented the natural 90°-relationship between solar azimuth and zenithal E-vector orientation, providing evidence to suggest that solar azimuth information supports the internal polarization compass. Most neurons showed advances in their tuning to the E-vector and the unpolarized light spots dependent on rotation direction, consistent with anticipatory signaling. The amplitude of responses and its variability were dependent on the level of background firing, possibly indicating different internal states. The integration of polarization and solar azimuth information strongly suggests that besides the polarization pattern of the sky, direct sunlight might be an important cue for sky compass navigation in the locust.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology, Philipps-University, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-University, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
39
|
El Jundi B, Foster JJ, Byrne MJ, Baird E, Dacke M. Spectral information as an orientation cue in dung beetles. Biol Lett 2016; 11:rsbl.2015.0656. [PMID: 26538537 DOI: 10.1098/rsbl.2015.0656] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the day, a non-uniform distribution of long and short wavelength light generates a colour gradient across the sky. This gradient could be used as a compass cue, particularly by animals such as dung beetles that rely primarily on celestial cues for orientation. Here, we tested if dung beetles can use spectral cues for orientation by presenting them with monochromatic (green and UV) light spots in an indoor arena. Beetles kept their original bearing when presented with a single light cue, green or UV, or when presented with both light cues set 180° apart. When either the UV or the green light was turned off after the beetles had set their bearing in the presence of both cues, they were still able to maintain their original bearing to the remaining light. However, if the beetles were presented with two identical green light spots set 180° apart, their ability to maintain their original bearing was impaired. In summary, our data show that ball-rolling beetles could potentially use the celestial chromatic gradient as a reference for orientation.
Collapse
Affiliation(s)
- Basil El Jundi
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - James J Foster
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marie Dacke
- Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
40
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|
41
|
Gagnon YL, Marshall NJ. Intuitive representation of photopolarimetric data using the polarization ellipse. ACTA ACUST UNITED AC 2016; 219:2430-4. [PMID: 27307490 DOI: 10.1242/jeb.139139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022]
Abstract
Photopolarimetry is the spatial characterization of light polarization. Unlike intensity or wavelength, we are largely insensitive to polarization and therefore find it hard to explore the multidimensional data that photopolarimetry produces (two spatial dimensions plus four polarization dimensions). Many different ways for presenting and exploring this modality of light have been suggested. Most of these ignore circular polarization, include multiple image panes that make correlating structure with polarization difficult, and obscure the main trends with overly detailed information and often misleading colour maps. Here, we suggest a novel way for presenting the main results from photopolarimetric analyses. By superimposing a grid of polarization ellipses onto the RGB image, the full polarization state of each cell is intuitively conveyed to the reader. This method presents linear and circular polarization as well as ellipticity in a graphical manner, does not require multiple panes, facilitates the correlation between structure and polarization, and requires the addition of only three novel colours. We demonstrate its usefulness in a biological context where we believe it would be most relevant.
Collapse
Affiliation(s)
- Yakir Luc Gagnon
- Queensland Brain Institute, University of Queensland, Richie Building, Level 2, Brisbane, Queensland 4072, Australia
| | - Nicholas Justin Marshall
- Queensland Brain Institute, University of Queensland, Richie Building, Level 2, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
El Jundi B, Foster JJ, Khaldy L, Byrne MJ, Dacke M, Baird E. A Snapshot-Based Mechanism for Celestial Orientation. Curr Biol 2016; 26:1456-62. [PMID: 27185557 DOI: 10.1016/j.cub.2016.03.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/21/2022]
Abstract
In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation.
Collapse
Affiliation(s)
- Basil El Jundi
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden.
| | - James J Foster
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Lana Khaldy
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Marcus J Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden; School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa
| | - Emily Baird
- Lund Vision Group, Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
43
|
Smolka J, Baird E, el Jundi B, Reber T, Byrne MJ, Dacke M. Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Zeller M, Held M, Bender J, Berz A, Heinloth T, Hellfritz T, Pfeiffer K. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input. PLoS One 2015; 10:e0143244. [PMID: 26630286 PMCID: PMC4667876 DOI: 10.1371/journal.pone.0143244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 01/27/2023] Open
Abstract
Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.
Collapse
Affiliation(s)
- Maximilian Zeller
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Martina Held
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Julia Bender
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Annuska Berz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Tanja Heinloth
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Timm Hellfritz
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Department of Biology - Animal Physiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
45
|
Abstract
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
Collapse
|
46
|
Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:575-89. [PMID: 24589854 DOI: 10.1007/s00359-014-0890-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/13/2023]
Abstract
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.
Collapse
|