1
|
Brocklehurst RJ, Fahn-Lai L, Biewener A, Pierce SE. Relationship between joint shape and function as revealed through ex vivo XROMM. J Exp Biol 2025; 228:jeb249261. [PMID: 40181760 DOI: 10.1242/jeb.249261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Skeletal joint morphology and mobility underlie movement, behavior and ecology in vertebrates. Joints can be categorized by their shape and articulation type, but such schemes might be unreliable for inferring function across the full diversity of vertebrates. We test hypothesized relationships between joint form and function by collecting marker-based ex vivo, cadaveric XROMM data on the shoulder and elbow joints of the tegu lizard (Salvator merianae) and Virginia opossum (Didelphis virginiana), which between them contain articulations historically classified as ball-and-socket, hemi-sellar, hinge and condylar joints. We measured 3D rotational and translational mobility at each joint and compared our experimental results against predictions based on articular morphology. Contrary to our predictions, the opossum ball-and-socket shoulder joint was less mobile - it had a smaller 3D range of motion envelope - than the tegu hemi-sellar shoulder joint and even the tegu condylar elbow joint, challenging the notion that ball-and-socket joints provide an inherent mobility advantage. However, the ball-and-socket opossum shoulder also had a less complex mobility envelope, with fewer interactions between degrees of freedom, allowing it to transition between poses more easily. Matching osteological predictions, the hinge elbow of the opossum was the least mobile. All joints exhibited coupling between rotational and translational degrees of freedom, further emphasizing the need to incorporate translational motion and soft tissue constraints for accurately modeling joint mobility. Our findings underscore the complexity of form-function relationships in vertebrate skeletal joints, and demonstrate that joint morphology alone, in the absence of soft tissues, does not provide a complete picture of joint mobility.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - L Fahn-Lai
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Andrew Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01730, USA
| | - Stephanie E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Wang S, Ruan Y, Wang K, Chang F, Chen B, Zhang N, Qian Z, Ren L, Ren L. New insights into chronic ankle instability: an in vivo evaluation of three-dimensional motion and stability of the ankle joint complex. Front Bioeng Biotechnol 2025; 13:1556291. [PMID: 40206825 PMCID: PMC11979236 DOI: 10.3389/fbioe.2025.1556291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Chronic ankle instability (CAI) is generally associated with repetitive ankle sprains with concomitant ligament injuries and abnormal joint motion, which affects the stability of the joint. This study aims to quantify and compare the 3D motion differences in the ankle joint complex (AJC) during walking between CAI patients and healthy controls and to analyze the effect of CAI on the vertical ground reaction force (vGRF) and center of pressure (COP) distribution. Methods Fifteen CAI patients (6 males, 9 females; height 165 ± 3.8 cm; weight 68.5 ± 10.2 kg; BMI 21.6 ± 3.5 kg/m2) with anterior talofibular and calcaneofibular ligament sprains and fifteen healthy participants (8 males, 7 females; height 168 ± 4.2 cm; weight 74.5 ± 12.6 kg; BMI 22.3 ± 4.2 kg/m2) participated in this study. Dynamic biplanar radiography were used to analyze the 3D motion and stability of the ankle joint complex during the stance phase. Synchronous force plate data were used to assess vGRF and COP trajectories. Results Compared to controls, CAI patients showed increased plantarflexion (1.3°), internal rotation (2.0°), and medial translation (0.6 mm) in the tibiotalar joint, along with decreased dorsiflexion (3.0°). For the subtalar joint, plantarflexion decreased (1.8°), and external rotation increased (0.9°). The tibio-calcaneal joint showed increased internal rotation (1.9°) and posterior translation (0.5 mm). Stability differences included more dispersed axes of rotation and greater spatial motion volumes of landmarks in the CAI group. Additionally, CAI patients exhibited greater peak vGRF with earlier peaks, higher loading rates, and more lateral and unstable COP trajectories. Conclusion These findings reveal that CAI not only alters the 3D motion and stability of the AJC but also affects foot-ground interaction forces, such as vGRF and COP distribution, during walking. This study provides critical insights into the altered biomechanics of the AJC in CAI patients and contributes to the clinical diagnosis of CAI and evaluation of results from surgical or conservative intervention.
Collapse
Affiliation(s)
- Shengli Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yaokuan Ruan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Kaize Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Boya Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Zhihui Qian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
3
|
Cerroni MA, Otero A, Novas FE. Appendicular myology of Skorpiovenator bustingorryi: A first attempt to reconstruct pelvic and hindlimb musculature in an abelisaurid theropod. Anat Rec (Hoboken) 2025; 308:114-162. [PMID: 38989612 DOI: 10.1002/ar.25532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
We present the pelvic and hindlimb musculature of the abelisaurid Skorpiovenator bustingorryi, constituting the most comprehensive muscle reconstruction to date in ceratosaur theropods. Using extant phylogenetic bracket method, we reconstructed 39 muscles that can commonly found in extant archosaurs. Through the identification of bone correlates, we recognized thigh and hindlimb muscles including knee extensors, m. iliofibularis, m. flexor tibialis externus, mm. caudofemorales, mm. puboischiofemorales, and crus muscles important in foot extension and flexion (e.g., m. tibialis anterior, mm. gastrocnemii). Also, autopodial intrinsic muscles were reconstructed whose function involve extension (m. extensor digiti 2-4), flexion (mm. flexor digitorum brevis superficialis), interdigital adduction (m. interosseus dorsalis) and abduction (m. interosseous plantaris, m. abductor 4). Abelisaurids like Skorpiovenator show a deep pre- and postacetabular blade of the ilia and enlarged cnemial crests, which would have helped increasing the moment arm of muscles related to hip flexion and hindlimb extension. Also, pedal muscles related to pronation were probably present but reduced (e.g., m. pronator profundus). Despite some gross differences in the autopodial morphology in extant outgroups (e.g., crocodilian metatarsus and avian tarsometatarsus), the present study allows us to hypothesize several pedal muscles in Skorpiovenator. These muscles would not be arranged in tendinous bundles as in Neornithes, but rather the condition would be similar to that of crocodilians with several layers formed by fleshy bellies on the plantar and dorsal aspects of the metatarsus. The musculature of Skorpiovenator is key for future studies concerning abelisaurid biomechanics, including the integration of functional morphology and ichnological data.
Collapse
Affiliation(s)
- Mauricio A Cerroni
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Alejandro Otero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- División Paleontología de Vertebrados (Anexo Laboratorios), Museo de La Plata, La Plata, Argentina
| | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| |
Collapse
|
4
|
Lin Y, Rankin JW, Lamas LP, Moazen M, Hutchinson JR. Hindlimb kinematics, kinetics and muscle dynamics during sit-to-stand and sit-to-walk transitions in emus (Dromaius novaehollandiae). J Exp Biol 2024; 227:jeb247519. [PMID: 39445465 PMCID: PMC11708823 DOI: 10.1242/jeb.247519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animals not only need to walk and run but also lie prone to rest and then stand up. Sit-to-stand (STS) and sit-to-walk (STW) transitions are vital behaviours little studied in species other than humans so far, but likely impose biomechanical constraints on limb design because they involve near-maximal excursions of limb joints that should require large length changes and force production from muscles. By integrating data from experiments into musculoskeletal simulations, we analysed joint motions, ground reaction forces, and muscle dynamics during STS and STW in a large terrestrial, bipedal and cursorial bird: the emu (Dromaius novaehollandiae; body mass ∼30 kg). Simulation results suggest that in both STS and STW, emus operate near the functional limits (∼50% of shortening/lengthening) of some of their hindlimb muscles, particularly in distal muscles with limited capacity for length change and leverage. Both movements involved high muscle activations (>50%) and force generation of the major joint extensor muscles early in the transition. STW required larger net joint moments and non-sagittal motions than STS, entailing greater demands for muscle capacity. Whilst our study involves multiple assumptions, our findings lay the groundwork for future studies to understand, for example, how tendon contributions may reduce excessive muscle demands, especially in the distal hindlimb. As the first investigation into how an avian species stands up, this study provides a foundational framework for future comparative studies investigating organismal morphofunctional specialisations and evolution, offering potential robotics and animal welfare applications.
Collapse
Affiliation(s)
- Yuting Lin
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Jeffery W. Rankin
- Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Luís P. Lamas
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Lisbon 1300-477, Portugal
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
5
|
Griffin BW, Martin-Silverstone E, Pêgas RV, Meilak EA, Costa FR, Palmer C, Rayfield EJ. Modelling take-off moment arms in an ornithocheiraean pterosaur. PeerJ 2024; 12:e17678. [PMID: 39119105 PMCID: PMC11308997 DOI: 10.7717/peerj.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Take-off is a vital part of powered flight which likely constrains the size of birds, yet extinct pterosaurs are known to have reached far larger sizes. Three different hypothesised take-off motions (bipedal burst launching, bipedal countermotion launching, and quadrupedal launching) have been proposed as explanations for how pterosaurs became airborne and circumvented this proposed morphological limit. We have constructed a computational musculoskeletal model of a 5 m wingspan ornithocheiraean pterosaur, reconstructing thirty-four key muscles to estimate the muscle moment arms throughout the three hypothesised take-off motions. Range of motion constrained hypothetical kinematic sequences for bipedal and quadrupedal take-off motions were modelled after extant flying vertebrates. Across our simulations we did not find higher hindlimb moment arms for bipedal take-off motions or noticeably higher forelimb moment arms in the forelimb for quadrupedal take-off motions. Despite this, in all our models we found the muscles utilised in the quadrupedal take-off have the largest total launch applicable moment arms throughout the entire take-off sequences and for the take-off pose. This indicates the potential availability of higher leverage for a quadrupedal take-off than hypothesised bipedal motions in pterosaurs pending further examination of muscle forces.
Collapse
Affiliation(s)
- Benjamin W. Griffin
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Rodrigo V. Pêgas
- Laboratory of Vertebrate Paleontology and Animal Behavior. Federal University of ABC, Alameda da Universidade, São Bernardo do Campo, SP, Brazil
| | - Erik Anthony Meilak
- School of Pharmacy and Bioengineering, University of Keele, Keele, United Kingdom
| | - Fabiana R. Costa
- Laboratory of Vertebrate Paleontology and Animal Behavior. Federal University of ABC, Alameda da Universidade, São Bernardo do Campo, SP, Brazil
| | - Colin Palmer
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Senter PJ. Restudy of shoulder motion in the theropod dinosaur Mononykus olecranus (Alvarezsauridae). PeerJ 2023; 11:e16605. [PMID: 38077415 PMCID: PMC10704983 DOI: 10.7717/peerj.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Background Range of motion in the forelimb of the Upper Cretaceous theropod dinosaur Mononykus olecranus, a member of the family Alvarezsauridae, has previously been investigated. However, the method used to investigate range of motion at the shoulder in M. olecranus did not follow the standardized procedure used in subsequent studies. The latter procedure yields more reliable results, and its standardization provides that its results are directly comparable to the results of similar studies in other species. I therefore reinvestigated the range of motion at the shoulder in M. olecranus, using the latter procedure. Methods Casts of the left scapula and coracoid of M. olecranus were posed on a horizontal surface, supported from beneath with modeling clay, with the medial surface of the scapula facing toward the horizontal surface. A cast of the left humerus was posed at the limits of motion through the transverse and parasagittal planes. Photos of the poses in orthal views were superimposed and used to measure range of motion, which was measured as the angle between lines drawn down the long axis of the humerus in each position. Results Through the transverse plane, the humerus of M. olecranus could be elevated to a subhorizontal position and depressed to a subvertical position. It could move through the parasagittal plane from a subvertical position at full protraction to a position above the horizontal at full retraction. These results correct the previous mischaracterization of shoulder motion in M. olecranus as restricted to a small arc with the arms held in a permanent sprawl. The range of humeral motion in M. olecranus is much greater than that found by the previous method and allowed the animal to tuck its arms in at the sides, in addition to allowing them to sprawl so as to orient the palm downward. The wide range of humeral motion allowed M. olecranus to forage for insects by employing hook-and-pull digging at surfaces with a wider range of orientations than the previous study showed to be possible.
Collapse
Affiliation(s)
- Philip J. Senter
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, North Carolina, United States
| |
Collapse
|
7
|
Xue J, Han F, Klaassen van Oorschot B, Clifton G, Fan D. Exploring storm petrel pattering and sea-anchoring using deep reinforcement learning. BIOINSPIRATION & BIOMIMETICS 2023; 18:066016. [PMID: 37797650 DOI: 10.1088/1748-3190/ad00a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Developing hybrid aerial-aquatic vehicles that can interact with water surfaces while remaining aloft is valuable for various tasks, including ecological monitoring, water quality sampling, and search and rescue operations. Storm petrels are a group of pelagic seabirds that exhibit a unique locomotion pattern known as 'pattering' or 'sea-anchoring,' which is hypothesized to support forward locomotion and/or stationary posture at the water surface. In this study, we use morphological measurements of three storm petrel species and aero/hydrodynamic models to develop a computational storm petrel model and interact it with a hybrid fluid environment. Using deep reinforcement learning algorithms, we find that the storm petrel model exhibits high maneuverability and stability under a wide range of constant wind velocities after training. We also verify in the simulation that the storm petrel can use its 'pattering' or 'sea-anchoring' behavior to achieve different biomechanical sub-tasks (e.g. weight support, forward locomotion, stabilization) and adapt it under different wind speeds and optimization objectives. Specifically, we observe an adjustment in storm petrel's movement patterns as wind velocity increases and quantitively analyze its biomechanics underneath. Our results provide new insights into how storm petrels achieve efficient locomotion and dynamic stability at the air-water interface and adapt their behaviors to different wind velocities and tasks in open environments. Ultimately, our study will guide the design of next-generation biomimetic petrel-inspired robots for tasks requiring proximity to the water interface and efficiency.
Collapse
Affiliation(s)
- Jiaqi Xue
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States of America
| | - Fei Han
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| | | | - Glenna Clifton
- Department of Biology, University of Portland, Portland, OR, United States of America
| | - Dixia Fan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
8
|
Han D, Liu H, Tong Z, Pan J, Wang X. Effects of the speed on the webbed foot kinematics of mallard ( Anas platyrhynchos). PeerJ 2023; 11:e15362. [PMID: 37214106 PMCID: PMC10194065 DOI: 10.7717/peerj.15362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
In this study, the effect of the speed on the webbed foot locomotion of the mallard was analyzed based on a considerable number of reliable indoor test data. Four adult male mallards were selected for analysis, and the locomotion speed of the mallard was controlled using the treadmill at an accurate and adjustable speed. The locomotion pattern of the webbed foot of the mallard at different speeds was recorded using a high-speed camera. The changes in the position and conformation of the webbed foot during locomotion on a treadmill were tracked and analyzed using Simi-Motion kinematics software. The results indicated that the stride length of the mallard increased, and the stance phase duration was shortened with the increase of the speed, whereas the swing phase duration did not vary significantly. The duty factor decreased with the increase of the mallard speed but not drop below to 0.5, because the mallards flew with their wings, or moved backward relative to the treadmill with the further increase of the speed. Using the energy method to further distinguish gait, and through the percentage of congruity analysis, it was found that between 0.73 and 0.93 m/s, the gait experienced a transition from walking to grounded running, with no significant changes in spatiotemporal parameters. At speeds between 0.93 and 1.6 m/s, mallards adopt a grounded running gait. The instantaneous changes of the tarsometatarso-phalangeal joint (TMTPJ) angle and the intertarsal joint (ITJ) angle at touch-down, mid-stance and lift-off concomitant with the change of the speed were examined with the TMTPJ and ITJ angle as the research objects. Moreover, the continuous changes of the joint angles were examined in a complete stride cycle. The result indicated that the increase of the speed will also make the TMTPJ and ITJ angle change ahead of time in a stride cycle, proving the shortened stance phase duration. The ITJ angle changed much more than the TMTPJ. Thus, the above result reveals that the mallard primarily responds with the increase of the speed by adjusting the ITJ, instead of the TMTPJ. The vertical displacement of the toe joint points and the toe joint angle was studied (α joint angle is between the second toe and the third toe; β joint angle is between the third toe and the fourth toe) with a complete stride cycle as the research object. The distal phalanxes of the second, third and fourth toes first contacted the ground, and the proximal phalanx touched the ground in turn during the early stance phase duration of the mallard, as indicated by the result of this study. However, the toes got off the ground in turn from the proximal phalanxes when the mallard foot got off the ground. With the decrease of the interphalangeal α and β joint angles, the foot web tended to be close and rapidly recovered before the next touch-down. The above result reveals that the webbed foot of the mallard is a coupling system that plays a role in the adjustment of speed.
Collapse
|
9
|
Demuth OE, Herbst E, Polet DT, Wiseman ALA, Hutchinson JR. Modern three-dimensional digital methods for studying locomotor biomechanics in tetrapods. J Exp Biol 2023; 226:jeb245132. [PMID: 36810943 PMCID: PMC10042237 DOI: 10.1242/jeb.245132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Here, we review the modern interface of three-dimensional (3D) empirical (e.g. motion capture) and theoretical (e.g. modelling and simulation) approaches to the study of terrestrial locomotion using appendages in tetrapod vertebrates. These tools span a spectrum from more empirical approaches such as XROMM, to potentially more intermediate approaches such as finite element analysis, to more theoretical approaches such as dynamic musculoskeletal simulations or conceptual models. These methods have much in common beyond the importance of 3D digital technologies, and are powerfully synergistic when integrated, opening a wide range of hypotheses that can be tested. We discuss the pitfalls and challenges of these 3D methods, leading to consideration of the problems and potential in their current and future usage. The tools (hardware and software) and approaches (e.g. methods for using hardware and software) in the 3D analysis of tetrapod locomotion have matured to the point where now we can use this integration to answer questions we could never have tackled 20 years ago, and apply insights gleaned from them to other fields.
Collapse
Affiliation(s)
- Oliver E. Demuth
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Eva Herbst
- Palaeontological Institute and Museum, University of Zurich, 8006 Zürich, Switzerland
| | - Delyle T. Polet
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| | - Ashleigh L. A. Wiseman
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 3ER, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, AL9 7TA, UK
| |
Collapse
|
10
|
Turner ML, Gatesy SM. Inner workings of the alligator ankle reveal the mechanistic origins of archosaur locomotor diversity. J Anat 2023; 242:592-606. [PMID: 36484567 PMCID: PMC10008286 DOI: 10.1111/joa.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
Major transformations in the locomotor system of archosaurs (a major clade of reptiles including birds, crocodiles, dinosaurs, and pterosaurs) were accompanied by significant modifications to ankle anatomy. How the evolution of such a complex multi-joint structure is related to shifts in ankle function and locomotor diversity across this clade remains unclear and weakly grounded in extant experimental data. Here, we used X-ray Reconstruction of Moving Morphology to reconstruct skeletal motion and quantify the sources of three-dimensional ankle mobility in the American alligator, a species that retains the ancestral archosaur ankle structure. We then applied the observed relationships between joint excursion and locomotor behaviors to predict ankle function in extinct archosaurs. High-resolution reconstructions of Alligator skeletal movement revealed previously unseen regionalized coordination among joints responsible for overall ankle rotation. Differences in joint contributions between maneuvers and steady walking parallel transitions in mobility inferred from the ankle structure of fossil taxa in lineages with more erect hind limb postures. Key ankle structures related to ankle mobility were identified in the alligator, which permitted the characterization of ancestral archosaur ankle function. Modifications of these structures provide morphological evidence for functional convergence among sublineages of bird-line and crocodylian-line archosaurs. Using the dynamic insight into the internal sources of Alligator ankle mobility and trends among locomotor modes, we trace anatomical shifts and propose a mechanistic hypothesis for the evolution of ankle structure and function across Archosauria.
Collapse
Affiliation(s)
- Morgan L Turner
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
McHenry MJ, Hedrick TL. The science and technology of kinematic measurements in a century of Journal of Experimental Biology. J Exp Biol 2023; 226:286615. [PMID: 36637450 DOI: 10.1242/jeb.245147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Kinematic measurements have been essential to the study of comparative biomechanics and offer insight into relationships between technological development and scientific progress. Here, we review the 100 year history of kinematic measurements in Journal of Experimental Biology (JEB) through eras that used film, analog video and digital video, and approaches that have circumvented the use of image capture. This history originated with the career of Sir James Gray and has since evolved over the generations of investigators that have followed. Although some JEB studies have featured technological developments that were ahead of their time, the vast majority of research adopted equipment that was broadly available through the consumer or industrial markets. We found that across eras, an emphasis on high-speed phenomena outpaced the growth of the number of articles published by JEB and the size of datasets increased significantly. Despite these advances, the number of species studied within individual reports has not differed significantly over time. Therefore, we find that advances in technology have helped to enable a growth in the number of JEB studies that have included kinematic measurements, contributed to an emphasis on high-speed phenomena, and yielded biomechanical studies that are more data rich, but are no more comparative now than in previous decades.
Collapse
Affiliation(s)
- Matthew J McHenry
- Department of Ecology and Evolutionary Biology , University of California, Irvine, CA 92697, USA
| | - Tyson L Hedrick
- Department of Biology , University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Abstract
Joints enable nearly all vertebrate animal motion, from feeding to locomotion. However, despite well over a century of arthrological research, we still understand very little about how the structure of joints relates to the kinematics they exhibit in life. This Commentary discusses the value of joint mobility as a lens through which to study articular form and function. By independently exploring form-mobility and mobility-function relationships and integrating the insights gained, we can develop a deep understanding of the strength and causality of articular form-function relationships. In turn, we will better illuminate the basics of 'how joints work' and be well positioned to tackle comparative investigations of the diverse repertoire of vertebrate animal motion.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06520, USA.,Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA.,Yale Peabody Museum of Natural History, 170 Whitney Avenue, New Haven, CT 06520, USA.,Department of Mechanical Engineering and Materials Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06520-8292, USA
| |
Collapse
|
13
|
Demuth OE, Wiseman ALA, Hutchinson JR. Quantitative biomechanical assessment of locomotor capabilities of the stem archosaur Euparkeria capensis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221195. [PMID: 36704253 PMCID: PMC9874271 DOI: 10.1098/rsos.221195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Birds and crocodylians are the only remaining members of Archosauria (ruling reptiles) and they exhibit major differences in posture and gait, which are polar opposites in terms of locomotor strategies. Their broader lineages (Avemetatarsalia and Pseudosuchia) evolved a multitude of locomotor modes in the Triassic and Jurassic periods, including several occurrences of bipedalism. The exact timings and frequencies of bipedal origins within archosaurs, and thus their ancestral capabilities, are contentious. It is often suggested that archosaurs ancestrally exhibited some form of bipedalism. Euparkeria capensis is a central taxon for the investigation of locomotion in archosaurs due to its phylogenetic position and intermediate skeletal morphology, and is argued to be representative of facultative bipedalism in this group. However, no studies to date have biomechanically tested if bipedality was feasible in Eupakeria. Here, we use musculoskeletal models and static simulations in its hindlimb to test the influences of body posture and muscle parameter estimation methods on locomotor potential. Our analyses show that the resulting negative pitching moments around the centre of mass were prohibitive to sustainable bipedality. We conclude that it is unlikely that Euparkeria was facultatively bipedal, and was probably quadrupedal, rendering the inference of ancestral bipedal abilities in Archosauria unlikely.
Collapse
Affiliation(s)
- Oliver E. Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Ashleigh L. A. Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
14
|
Herbst EC, Eberhard EA, Hutchinson JR, Richards CT. Spherical frame projections for visualising joint range of motion, and a complementary method to capture mobility data. J Anat 2022; 241:1054-1065. [PMID: 35819977 PMCID: PMC9482700 DOI: 10.1111/joa.13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Quantifying joint range of motion (RoM), the reachable poses at a joint, has many applications in research and clinical care. Joint RoM measurements can be used to investigate the link between form and function in extant and extinct animals, to diagnose musculoskeletal disorders and injuries or monitor rehabilitation progress. However, it is difficult to visually demonstrate how the rotations of the joint axes interact to produce joint positions. Here, we introduce the spherical frame projection (SFP), which is a novel 3D visualisation technique, paired with a complementary data collection approach. SFP visualisations are intuitive to interpret in relation to the joint anatomy because they 'trace' the motion of the coordinate system of the distal bone at a joint relative to the proximal bone. Furthermore, SFP visualisations incorporate the interactions of degrees of freedom, which is imperative to capture the full joint RoM. For the collection of such joint RoM data, we designed a rig using conventional motion capture systems, including live audio-visual feedback on torques and sampled poses. Thus, we propose that our visualisation and data collection approach can be adapted for wide use in the study of joint function.
Collapse
Affiliation(s)
- Eva C. Herbst
- Palaeontological Institute and MuseumUniversity of ZurichZurichSwitzerland
- Structure and Motion LaboratoryRoyal Veterinary CollegeLondonUK
| | | | | | | |
Collapse
|
15
|
Andrada E, Mothes O, Stark H, Tresch MC, Denzler J, Fischer MS, Blickhan R. Limb, joint and pelvic kinematic control in the quail coping with steps upwards and downwards. Sci Rep 2022; 12:15901. [PMID: 36151454 PMCID: PMC9508109 DOI: 10.1038/s41598-022-20247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Small cursorial birds display remarkable walking skills and can negotiate complex and unstructured terrains with ease. The neuromechanical control strategies necessary to adapt to these challenging terrains are still not well understood. Here, we analyzed the 2D- and 3D pelvic and leg kinematic strategies employed by the common quail to negotiate visible steps (upwards and downwards) of about 10%, and 50% of their leg length. We used biplanar fluoroscopy to accurately describe joint positions in three dimensions and performed semi-automatic landmark localization using deep learning. Quails negotiated the vertical obstacles without major problems and rapidly regained steady-state locomotion. When coping with step upwards, the quail mostly adapted the trailing limb to permit the leading leg to step on the elevated substrate similarly as it did during level locomotion. When negotiated steps downwards, both legs showed significant adaptations. For those small and moderate step heights that did not induce aerial running, the quail kept the kinematic pattern of the distal joints largely unchanged during uneven locomotion, and most changes occurred in proximal joints. The hip regulated leg length, while the distal joints maintained the spring-damped limb patterns. However, to negotiate the largest visible steps, more dramatic kinematic alterations were observed. There all joints contributed to leg lengthening/shortening in the trailing leg, and both the trailing and leading legs stepped more vertically and less abducted. In addition, locomotion speed was decreased. We hypothesize a shift from a dynamic walking program to more goal-directed motions that might be focused on maximizing safety.
Collapse
Affiliation(s)
- Emanuel Andrada
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Oliver Mothes
- Computer Vision Group, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Matthew C Tresch
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Joachim Denzler
- Computer Vision Group, Friedrich-Schiller-University Jena, Jena, Germany
| | - Martin S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
16
|
Herbst EC, Eberhard EA, Richards CT, Hutchinson JR. In vivo and ex vivo range of motion in the fire salamander
Salamandra salamandra. J Anat 2022; 241:1066-1082. [PMID: 35986620 PMCID: PMC9482696 DOI: 10.1111/joa.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eva C. Herbst
- Palaeontological Institute and Museum University of Zurich Zurich Switzerland
- Structure and Motion Laboratory Royal Veterinary College London UK
| | - Enrico A. Eberhard
- Palaeontological Institute and Museum University of Zurich Zurich Switzerland
- LASA, EPFL Lausanne Switzerland
| | | | | |
Collapse
|
17
|
Young MW, Lynch SK, Dickinson E, Currier AA, Davoli EC, Hanna CS, Fischer HM, DiUbaldi GA, Granatosky MC. Patterns of single limb forces during terrestrial and arboreal locomotion in rosy-faced lovebirds (Psittaciformes: Agapornis roseicollis). J Exp Biol 2022; 225:276123. [PMID: 35822351 DOI: 10.1242/jeb.244571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
The biomechanical demands of arboreal locomotion are generally thought to necessitate specialized kinetic and kinematic gait characteristics. While such data has been widely collected across arboreal quadrupeds, no study has yet explored how arboreal substrates influence the locomotor behavior of birds. Parrots - an ancient arboreal lineage that exhibit numerous anatomical specializations towards life in the trees - represent an ideal model group within which to examine this relationship. Here, we quantify limb loading patterns within the rosy-faced lovebird (Agapornis roseicollis) across a range of experimental conditions to define under which circumstances arboreal gaits are triggered, and how, during arboreal walking, gait patterns change across substrates of varying diameter. In so doing, we address longstanding questions as to how the challenges associated with arboreality affect gait parameters. Arboreal locomotion was associated with the adoption of a sidling gait, which was employed exclusively on the small- and medium-poles but not terrestrially. When sidling, the hindlimbs are decoupled into a distinct leading limb (which imparts exclusively braking forces) and trailing limb (which generates only propulsive forces). Sidling was also associated with relatively low pitching forces, even on the smallest substrate. Indeed, these forces were significantly lower than mediolateral forces experienced during striding on terrestrial and large-diameter substrates. We propose that the adoption of sidling gaits is a consequence of avian foot morphology and represents a novel form of arboreal locomotion where inversion/eversion is impossible. Such movement mechanics is likely widespread among avian taxa and may also typify patterns of arboreal locomotion in humans.
Collapse
Affiliation(s)
- Melody W Young
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Samantha K Lynch
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Edwin Dickinson
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Allen A Currier
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Elizabeth C Davoli
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Christopher S Hanna
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Hannah M Fischer
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Gianluca A DiUbaldi
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
18
|
Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR. A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs. J Anat 2022; 241:101-118. [PMID: 35118654 PMCID: PMC9178381 DOI: 10.1111/joa.13635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three‐dimensional (3‐D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3‐D pose (joint or limb configuration) and 3‐D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3‐D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.
Collapse
Affiliation(s)
- Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Armita R Manafzadeh
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Peter J Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Geosciences Program, Queensland Museum, Brisbane, Queensland, Australia
| | - Morgan L Turner
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert E Kambic
- Department of Biology, Hood College, Frederick, Maryland, USA
| | - Andrew R Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Human Anatomy Resource Centre, University of Liverpool, Liverpool, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
19
|
Manafzadeh AR, Gatesy SM. Paleobiological reconstructions of articular function require all six degrees of freedom. J Anat 2021; 239:1516-1524. [PMID: 34275132 PMCID: PMC8602027 DOI: 10.1111/joa.13513] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Paleobiologists typically exclude impossible joint poses from reconstructions of extinct animals by estimating the rotational range of motion (ROM) of fossil joints. However, this ubiquitous practice carries the assumption that osteological estimates of ROM consistently overestimate true joint mobility. Because studies founded on ROM-based exclusion have contributed substantially to our understanding of functional and locomotor evolution, it is critical that this assumption be tested. Here, we evaluate whether ROM-based exclusion is, as currently implemented, a reliable strategy. We measured the true mobilities of five intact cadaveric joints using marker-based X-ray Reconstruction of Moving Morphology and compared them to virtual osteological estimates of ROM made allowing (a) only all three rotational, (b) all three rotational and one translational, and (c) all three rotational and all three translational degrees of freedom. We found that allowing combinations of motions in all six degrees of freedom is necessary to ensure that true mobility is always successfully captured. In other words, failing to include joint translations in ROM analyses results in the erroneous exclusion of many joint poses that are possible in life. We therefore suggest that the functional and evolutionary conclusions of existing paleobiological reconstructions may be weakened or even overturned when all six degrees of freedom are considered. We offer an expanded methodological framework for virtual ROM estimation including joint translations and outline recommendations for future ROM-based exclusion studies.
Collapse
Affiliation(s)
- Armita R. Manafzadeh
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
| | - Stephen M. Gatesy
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRIUSA
| |
Collapse
|
20
|
Meilak EA, Gostling NJ, Palmer C, Heller MO. On the 3D Nature of the Magpie (Aves: Pica pica) Functional Hindlimb Anatomy During the Take-Off Jump. Front Bioeng Biotechnol 2021; 9:676894. [PMID: 34268296 PMCID: PMC8275989 DOI: 10.3389/fbioe.2021.676894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Take-off is a critical phase of flight, and many birds jump to take to the air. Although the actuation of the hindlimb in terrestrial birds is not limited to the sagittal plane, and considerable non-sagittal plane motion has been observed during take-off jumps, how the spatial arrangement of hindlimb muscles in flying birds facilitates such jumps has received little attention. This study aims to ascertain the 3D hip muscle function in the magpie (Pica pica), a bird known to jump to take-off. A musculoskeletal model of the magpie hindlimb was developed using μCT scans (isotropic resolution of 18.2 μm) to derive bone surfaces, while the 3D muscle path definition was further informed by the literature. Function was robustly characterized by determining the 3D moment-generating capacity of 14 hip muscles over the functional joint range of motion during a take-off leap considering variations across the attachment areas and uncertainty in dynamic muscle geometry. Ratios of peak flexion-extension (FE) to internal-external rotation (IER) and abduction-adduction (ABD) moment-generating capacity were indicators of muscle function. Analyses of 972 variations of the 3D muscle paths showed that 11 of 14 muscles can act as either flexor or extensor, while all 14 muscles demonstrated the capacity to act as internal or external rotators of the hip with the mean ratios of peak FE to IER and ABD moment-generating capacity were 0.89 and 0.31, respectively. Moment-generating capacity in IER approaching levels in the FE moment-generating capacity determined here underline that the avian hip muscle function is not limited to the sagittal plane. Together with previous findings on the 3D nature of hindlimb kinematics, our results suggest that musculoskeletal models to develop a more detailed understanding of how birds orchestrate the use of muscles during a take-off jump cannot be restricted to the sagittal plane.
Collapse
Affiliation(s)
- E A Meilak
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - N J Gostling
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - C Palmer
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - M O Heller
- Bioengineering Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom.,Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
21
|
Richards HL, Bishop PJ, Hocking DP, Adams JW, Evans AR. Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial. J Anat 2021; 238:1425-1441. [PMID: 33533053 PMCID: PMC8128769 DOI: 10.1111/joa.13389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Joint mobility is a key factor in determining the functional capacity of tetrapod limbs, and is important in palaeobiological reconstructions of extinct animals. Recent advances have been made in quantifying osteological joint mobility using virtual computational methods; however, these approaches generally focus on the proximal limb joints and have seldom been applied to fossil mammals. Palorchestes azael is an enigmatic, extinct ~1000 kg marsupial with no close living relatives, whose functional ecology within Australian Pleistocene environments is poorly understood. Most intriguing is its flattened elbow morphology, which has long been assumed to indicate very low mobility at this important joint. Here, we tested elbow mobility via virtual range of motion (ROM) mapping and helical axis analysis, to quantitatively explore the limits of Palorchestes' elbow movement and compare this with their living and extinct relatives, as well as extant mammals that may represent functional analogues. We find that Palorchestes had the lowest elbow mobility among mammals sampled, even when afforded joint translations in addition to rotational degrees of freedom. This indicates that Palorchestes was limited to crouched forelimb postures, something highly unusual for mammals of this size. Coupled flexion and abduction created a skewed primary axis of movement at the elbow, suggesting an abducted forelimb posture and humeral rotation gait that is not found among marsupials and unlike that seen in any large mammals alive today. This work introduces new quantitative methods and demonstrates the utility of comparative ROM mapping approaches, highlighting that Palorchestes' forelimb function was unlike its contemporaneous relatives and appears to lack clear functional analogues among living mammals.
Collapse
Affiliation(s)
- Hazel L. Richards
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| | - Peter J. Bishop
- Structure and Motion LaboratoryDepartment of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
- Geosciences ProgramQueensland MuseumBrisbaneQldAustralia
| | - David P. Hocking
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| | - Justin W. Adams
- Department of Anatomy & Developmental BiologySchool of Biomedical SciencesFaculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVicAustralia
| | - Alistair R. Evans
- School of Biological SciencesMonash UniversityClaytonVicAustralia
- GeosciencesMuseums VictoriaMelbourneVicAustralia
| |
Collapse
|
22
|
Turner ML, Gatesy SM. Alligators employ intermetatarsal reconfiguration to modulate plantigrade ground contact. J Exp Biol 2021; 224:269005. [PMID: 34086907 PMCID: PMC8214830 DOI: 10.1242/jeb.242240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022]
Abstract
Feet must mediate substrate interactions across an animal's entire range of limb poses used in life. Metatarsals, the ‘bones of the sole’, are the dominant pedal skeletal elements for most tetrapods. In plantigrade species that walk on the entirety of their sole, such as living crocodylians, intermetatarsal mobility offers the potential for a continuum of reconfiguration within the foot itself. Alligator hindlimbs are capable of postural extremes from a belly sprawl to a high walk to sharp turns – how does the foot morphology dynamically accommodate these diverse demands? We implemented a hybrid combination of marker-based and markerless X-ray reconstruction of moving morphology (XROMM) to measure 3D metatarsal kinematics in three juvenile American alligators (Alligator mississippiensis) across their locomotor and maneuvering repertoire on a motorized treadmill and flat-surfaced arena. We found that alligators adaptively conformed their metatarsals to the ground, maintaining plantigrade contact throughout a spectrum of limb placements with non-planar feet. Deformation of the metatarsus as a whole occurred through variable abduction (twofold range of spread) and differential metatarsal pitching (45 deg arc of skew). Internally, metatarsals also underwent up to 65 deg of long-axis rotation. Such reorientation, which correlated with skew, was constrained by the overlapping arrangement of the obliquely expanded metatarsal bases. Such a proximally overlapping metatarsal morphology is shared by fossil archosaurs and archosaur relatives. In these extinct taxa, we suggest that intermetatarsal mobility likely played a significant role in maintaining ground contact across plantigrade postural extremes. Summary: We measured 3D metatarsal kinematics in American alligators. Alligator metatarsals conform with the ground across a diversity of high walk and maneuvering postures, providing a context for interpreting the evolutionary history of metatarsals in the fossil record.
Collapse
Affiliation(s)
- Morgan L Turner
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
23
|
Bishop PJ, Michel KB, Falisse A, Cuff AR, Allen VR, De Groote F, Hutchinson JR. Computational modelling of muscle fibre operating ranges in the hindlimb of a small ground bird (Eudromia elegans), with implications for modelling locomotion in extinct species. PLoS Comput Biol 2021; 17:e1008843. [PMID: 33793558 PMCID: PMC8016346 DOI: 10.1371/journal.pcbi.1008843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.
Collapse
Affiliation(s)
- Peter J. Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Geosciences Program, Queensland Museum, Brisbane, Australia
| | - Krijn B. Michel
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Antoine Falisse
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Andrew R. Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| | - Vivian R. Allen
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
24
|
Wiseman ALA, Bishop PJ, Demuth OE, Cuff AR, Michel KB, Hutchinson JR. Musculoskeletal modelling of the Nile crocodile (Crocodylus niloticus) hindlimb: Effects of limb posture on leverage during terrestrial locomotion. J Anat 2021; 239:424-444. [PMID: 33754362 PMCID: PMC8273584 DOI: 10.1111/joa.13431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
We developed a three-dimensional, computational biomechanical model of a juvenile Nile crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, to investigate muscle function. We tested whether crocodiles, which are known to use a variety of limb postures during movement, use limb orientations (joint angles) that optimise the moment arms (leverages) or moment-generating capacities of their muscles during different limb postures ranging from a high walk to a sprawling motion. We also describe the three-dimensional (3D) kinematics of the crocodylian hindlimb during terrestrial locomotion across an instrumented walkway and a treadmill captured via X-ray Reconstruction of Moving Morphology (biplanar fluoroscopy; 'XROMM'). We reconstructed the 3D positions and orientations of each of the hindlimb bones and used dissection data for muscle lines of action to reconstruct a focal, subject-specific 3D musculoskeletal model. Motion data for different styles of walking (a high, crouched, bended and two types of sprawling motion) were fed into the 3D model to identify whether any joints adopted near-optimal poses for leverage across each of the behaviours. We found that (1) the hip adductors and knee extensors had their largest leverages during sprawling postures and (2) more erect postures typically involved greater peak moment arms about the hip (flexion-extension), knee (flexion) and metatarsophalangeal (flexion) joints. The results did not fully support the hypothesis that optimal poses are present during different locomotory behaviours because the peak capacities were not always reached around mid-stance phase. Furthermore, we obtained few clear trends for isometric moment-generating capacities. Therefore, perhaps peak muscular leverage in Nile crocodiles is instead reached either in early/late stance or possibly during swing phase or other locomotory behaviours that were not studied here, such as non-terrestrial movement. Alternatively, our findings could reflect a trade-off between having to execute different postures, meaning that hindlimb muscle leverage is not optimised for any singular posture or behaviour. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in extant crocodiles which can form a basis for investigating muscle function in extinct archosaurs.
Collapse
Affiliation(s)
- Ashleigh L A Wiseman
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - Peter J Bishop
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Geosciences Program, Queensland Museum, Brisbane, Qld, Australia.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | - Oliver E Demuth
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Andrew R Cuff
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK.,Hull York Medical School, University of York, York, UK
| | - Krijn B Michel
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
25
|
Karakostis FA, Haeufle D, Anastopoulou I, Moraitis K, Hotz G, Tourloukis V, Harvati K. Biomechanics of the human thumb and the evolution of dexterity. Curr Biol 2021; 31:1317-1325.e8. [PMID: 33513351 PMCID: PMC7987722 DOI: 10.1016/j.cub.2020.12.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
Systematic tool production and use is one of humanity's defining characteristics, possibly originating as early as >3 million years ago.1-3 Although heightened manual dexterity is considered to be intrinsically intertwined with tool use and manufacture, and critical for human evolution, its role in the emergence of early culture remains unclear. Most previous research on this question exclusively relied on direct morphological comparisons between early hominin and modern human skeletal elements, assuming that the degree of a species' dexterity depends on its similarity with the modern human form. Here, we develop a new approach to investigate the efficiency of thumb opposition, a fundamental component of manual dexterity, in several species of fossil hominins. Our work for the first time takes into account soft tissue as well as bone anatomy, integrating virtual modeling of musculus opponens pollicis and its interaction with three-dimensional bone shape form. Results indicate that a fundamental aspect of efficient thumb opposition appeared approximately 2 million years ago, possibly associated with our own genus Homo, and did not characterize Australopithecus, the earliest proposed stone tool maker. This was true also of the late Australopithecus species, Australopithecus sediba, previously found to exhibit human-like thumb proportions. In contrast, later Homo species, including the small-brained Homo naledi, show high levels of thumb opposition dexterity, highlighting the increasing importance of cultural processes and manual dexterity in later human evolution.
Collapse
Affiliation(s)
- Fotios Alexandros Karakostis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Daniel Haeufle
- Hertie Institute for Clinical Brain Research and Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany; Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
| | - Ioanna Anastopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias Street 75, 11527 Athens, Greece
| | - Konstantinos Moraitis
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias Street 75, 11527 Athens, Greece
| | - Gerhard Hotz
- Anthropological Collection, Natural History Museum of Basel, Basel 4051, Switzerland
| | - Vangelis Tourloukis
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany; DFG Centre of Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Rümelinstrasse 23, D-72070 Tübingen, Germany.
| |
Collapse
|
26
|
Abstract
X-Ray Reconstruction of Moving Morphology (XROMM), though traditionally used for studies of in vivo skeletal kinematics, can also be used to precisely and accurately measure ex vivo range of motion from cadaveric manipulations. The workflow for these studies is holistically similar to the in vivo XROMM workflow but presents several unique challenges. This paper aims to serve as a practical guide by walking through each step of the ex vivo XROMM process: how to acquire and prepare cadaveric specimens, how to manipulate specimens to collect X-ray data, and how to use these data to compute joint rotational mobility. Along the way, it offers recommendations for best practices and for avoiding common pitfalls to ensure a successful study.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
27
|
Manafzadeh AR, Gatesy SM. A coordinate-system-independent method for comparing joint rotational mobilities. J Exp Biol 2020; 223:jeb227108. [PMID: 32747453 DOI: 10.1242/jeb.227108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/29/2020] [Indexed: 08/26/2023]
Abstract
Three-dimensional studies of range of motion currently plot joint poses in a 'Euler space' whose axes are angles measured in the joint's three rotational degrees of freedom. Researchers then compute the volume of a pose cloud to measure rotational mobility. However, pairs of poses that are equally different from one another in orientation are not always plotted equally far apart in Euler space. This distortion causes a single joint's mobility to change when measured based on different joint coordinate systems and precludes fair comparison among joints. Here, we present two alternative spaces inspired by a 16th century map projection - cosine-corrected and sine-corrected Euler spaces - that allow coordinate-system-independent comparison of joint rotational mobility. When tested with data from a bird hip joint, cosine-corrected Euler space demonstrated a 10-fold reduction in variation among mobilities measured from three joint coordinate systems. This new quantitative framework enables previously intractable, comparative studies of articular function.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
28
|
Demuth OE, Rayfield EJ, Hutchinson JR. 3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria. Sci Rep 2020; 10:15357. [PMID: 32958770 PMCID: PMC7506000 DOI: 10.1038/s41598-020-70175-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Triassic archosaurs and stem-archosaurs show a remarkable disparity in their ankle and pelvis morphologies. However, the implications of these different morphologies for specific functions are still poorly understood. Here, we present the first quantitative analysis into the locomotor abilities of a stem-archosaur applying 3D modelling techniques. μCT scans of multiple specimens of Euparkeria capensis enabled the reconstruction and three-dimensional articulation of the hindlimb. The joint mobility of the hindlimb was quantified in 3D to address previous qualitative hypotheses regarding the stance of Euparkeria. Our range of motion analysis implies the potential for an erect posture, consistent with the hip morphology, allowing the femur to be fully adducted to position the feet beneath the body. A fully sprawling pose appears unlikely but a wide range of hip abduction remained feasible-the hip appears quite mobile. The oblique mesotarsal ankle joint in Euparkeria implies, however, a more abducted hindlimb. This is consistent with a mosaic of ancestral and derived osteological characters in the hindlimb, and might suggest a moderately adducted posture for Euparkeria. Our results support a single origin of a pillar-erect hip morphology, ancestral to Eucrocopoda that preceded later development of a hinge-like ankle joint and a more erect hindlimb posture.
Collapse
Affiliation(s)
- Oliver E Demuth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK.
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK.
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| |
Collapse
|
29
|
Taylor-Burt KR, Biewener AA. Aquatic and terrestrial takeoffs require different hindlimb kinematics and muscle function in mallard ducks. J Exp Biol 2020; 223:jeb223743. [PMID: 32587070 DOI: 10.1242/jeb.223743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Mallard ducks are capable of performing a wide range of behaviors including nearly vertical takeoffs from both terrestrial and aquatic habitats. The hindlimb plays a key role during takeoffs from both media. However, because force generation differs in water versus on land, hindlimb kinematics and muscle function are likely modulated between these environments. Specifically, we hypothesize that hindlimb joint motion and muscle shortening are faster during aquatic takeoffs, but greater hindlimb muscle forces are generated during terrestrial takeoffs. In this study, we examined the hindlimb kinematics and in vivo contractile function of the lateral gastrocnemius (LG), a major ankle extensor and knee flexor, during takeoffs from water versus land in mallard ducks. In contrast to our hypothesis, we observed no change in ankle angular velocity between media. However, the hip and metatarsophalangeal joints underwent large excursions during terrestrial takeoffs but exhibited almost no motion during aquatic takeoffs. The knee extended during terrestrial takeoffs but flexed during aquatic takeoffs. Correspondingly, LG fascicle shortening strain, shortening velocity and pennation angle change were greater during aquatic takeoffs than during terrestrial takeoffs because of the differences in knee motion. Nevertheless, we observed no significant differences in LG stress or work, but did see an increase in muscle power output during aquatic takeoffs. Because differences in the physical properties of aquatic and terrestrial media require differing hindlimb kinematics and muscle function, animals such as mallards may be challenged to tune their muscle properties for movement across differing environments.
Collapse
Affiliation(s)
- Kari R Taylor-Burt
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA 01730, USA
| | - Andrew A Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Harvard University, Bedford, MA 01730, USA
| |
Collapse
|
30
|
Tsai HP, Middleton KM, Hutchinson JR, Holliday CM. More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs. Evolution 2020; 74:1654-1681. [PMID: 32433795 DOI: 10.1111/evo.14017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Saurischian dinosaurs evolved seven orders of magnitude in body mass, as well as a wide diversity of hip joint morphology and locomotor postures. The very largest saurischians possess incongruent bony hip joints, suggesting that large volumes of soft tissues mediated hip articulation. To understand the evolutionary trends and functional relationships between body size and hip anatomy of saurischians, we tested the relationships among discrete and continuous morphological characters using phylogenetically corrected regression. Giant theropods and sauropods convergently evolved highly cartilaginous hip joints by reducing supraacetabular ossifications, a condition unlike that in early dinosauromorphs. However, transitions in femoral and acetabular soft tissues indicate that large sauropods and theropods built their hip joints in fundamentally different ways. In sauropods, the femoral head possesses irregularly rugose subchondral surfaces for thick hyaline cartilage. Hip articulation was achieved primarily using the highly cartilaginous femoral head and the supraacetabular labrum on the acetabular ceiling. In contrast, theropods covered their femoral head and neck with thinner hyaline cartilage and maintained extensive articulation between the fibrocartilaginous femoral neck and the antitrochanter. These findings suggest that the hip joints of giant sauropods were built to sustain large compressive loads, whereas those of giant theropods experienced compression and shear forces.
Collapse
Affiliation(s)
- Henry P Tsai
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| | - John R Hutchinson
- Structure and Motion Lab, The Royal Veterinary College, Hertfordshire, AL9 7TA, United Kingdom
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, 65212
| |
Collapse
|
31
|
Mayerl CJ, Capano JG, Moreno AA, Wyneken J, Blob RW, Brainerd EL. Pectoral and pelvic girdle rotations during walking and swimming in a semi-aquatic turtle: testing functional role and constraint. ACTA ACUST UNITED AC 2019; 222:jeb.212688. [PMID: 31767737 DOI: 10.1242/jeb.212688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023]
Abstract
Pectoral and pelvic girdle rotations play a substantial role in enhancing stride length across diverse tetrapod lineages. However, the pectoral and pelvic girdle attach the limbs to the body in different ways and may exhibit dissimilar functions, especially during locomotion in disparate environments. Here, we tested for functional differences between the forelimb and hindlimb of the freshwater turtle Pseudemys concinna during walking and swimming using X-ray reconstruction of moving morphology (XROMM). In doing so, we also tested the commonly held notion that the shell constrains girdle motion in turtles. We found that the pectoral girdle exhibited greater rotations than the pelvic girdle on land and in water. Additionally, pelvic girdle rotations were greater on land than in water, whereas pectoral girdle rotations were similar in the two environments. These results indicate that although the magnitude of pelvic girdle rotations depends primarily on whether the weight of the body must be supported against gravity, the magnitude of pectoral girdle rotations likely depends primarily on muscular activity associated with locomotion. Furthermore, the pectoral girdle of turtles rotated more than has been observed in other taxa with sprawling postures, showing an excursion similar to that of mammals (∼38 deg). These results suggest that a rigid axial skeleton and internally positioned pectoral girdle have not constrained turtle girdle function, but rather the lack of lateral undulations in turtles and mammals may contribute to a functional convergence whereby the girdle acts as an additional limb segment to increase stride length.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Adam A Moreno
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jeanette Wyneken
- Department of Biology, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
32
|
Brocklehurst RJ, Moritz S, Codd J, Sellers WI, Brainerd EL. XROMM kinematics of ventilation in wild turkeys ( Meleagris gallopavo). ACTA ACUST UNITED AC 2019; 222:jeb.209783. [PMID: 31704902 DOI: 10.1242/jeb.209783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
The avian ribcage is derived relative to other amniotes, and is hypothesised to be constrained in its movements during ventilation. The double-headed ribs form two articulations with the vertebrae, and are thought to rotate about a strict anatomical axis. However, this costovertebral joint constraint has not been demonstrated empirically and was not found in other taxa with double-headed ribs (i.e. crocodilians). Here, we used X-ray reconstruction of moving morphology (XROMM) to quantify rib rotation in wild turkeys (Meleagris gallopavo) during breathing. We demonstrate that, as predicted from anatomy, the ribs do rotate in a hinge-like manner about a single axis. There is also evidence for elliptical motion of the sternum, as has been reported in other taxa. The evolution of the avian ribcage is closely related to the co-evolution of ventilation and flight, and these results are important for how we model ventilation mechanics in living and fossil birds.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Sabine Moritz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - Jonathan Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
33
|
van Meer NMME, Weller HI, Manafzadeh AR, Kaczmarek EB, Scott B, Gussekloo SWS, Wilga CD, Brainerd EL, Camp AL. Intra-oropharyngeal food transport and swallowing in white-spotted bamboo sharks. ACTA ACUST UNITED AC 2019; 222:jeb.201426. [PMID: 31672726 DOI: 10.1242/jeb.201426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023]
Abstract
Despite the importance of intraoral food transport and swallowing, relatively few studies have examined the biomechanics of these behaviors in non-tetrapods, which lack a muscular tongue. Studies show that elasmobranch and teleost fishes generate water currents as a 'hydrodynamic tongue' that presumably transports food towards and into the esophagus. However, it remains largely unknown how specific musculoskeletal motions during transport correspond to food motion. Previous studies of white-spotted bamboo sharks (Chiloscyllium plagiosum) hypothesized that motions of the hyoid, branchial arches and pectoral girdle, generate caudal motion of the food through the long oropharynx of modern sharks. To test these hypotheses, we measured food and cartilage motion with XROMM during intra-oropharyngeal transport and swallowing (N=3 individuals, 2-3 trials per individual). After entering the mouth, food does not move smoothly toward the esophagus, but rather moves in distinct steps with relatively little retrograde motion. Caudal food motion coincides with hyoid elevation and a closed mouth, supporting earlier studies showing that hyoid motion contributes to intra-oropharyngeal food transport by creating caudally directed water currents. Little correspondence between pectoral girdle and food motion was found, indicating minimal contribution of pectoral girdle motion. Transport speed was fast as food entered the mouth, slower and step-wise through the pharyngeal region and then fast again as it entered the esophagus. The food's static periods in the step-wise motion and its high velocity during swallowing could not be explained by hyoid or girdle motion, suggesting these sharks may also use the branchial arches for intra-oropharyngeal transport and swallowing.
Collapse
Affiliation(s)
- Noraly M M E van Meer
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Hannah I Weller
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elska B Kaczmarek
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Bradley Scott
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, Victor E. Shelford Vivarium, Champaign, IL 61820, USA
| | - Sander W S Gussekloo
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Cheryl D Wilga
- Department of Biological Sciences, University of Alaska Anchorage, 3101 Science Circle, Anchorage, AK 99508, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Ariel L Camp
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
34
|
Tsai HP, Turner ML, Manafzadeh AR, Gatesy SM. Contrast-enhanced XROMM reveals in vivo soft tissue interactions in the hip of Alligator mississippiensis. J Anat 2019; 236:288-304. [PMID: 31691966 DOI: 10.1111/joa.13101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 11/28/2022] Open
Abstract
Extant archosaurs exhibit highly divergent articular soft tissue anatomies between avian and crocodilian lineages. However, the general lack of understanding of the dynamic interactions among archosaur joint soft tissues has hampered further inferences about the function and evolution of these joints. Here we use contrast-enhanced computed tomography to generate 3D surface models of the pelvis, femora, and hip joint soft tissues in an extant archosaur, the American alligator. The hip joints were then animated using marker-based X-Ray Reconstruction of Moving Morphology (XROMM) to visualize soft tissue articulation during forward terrestrial locomotion. We found that the anatomical femoral head of the alligator travels beyond the cranial extent of the bony acetabulum and does not act as a central pivot, as has been suggested for some extinct archosaurs. Additionally, the fibrocartilaginous surfaces of the alligator's antitrochanter and femoral neck remain engaged during hip flexion and extension, similar to the articulation between homologous structures in birds. Moreover, the femoral insertion of the ligamentum capitis moves dorsoventrally against the membrane-bound portion of the medial acetabular wall, suggesting that the inner acetabular foramen constrains the excursion of this ligament as it undergoes cyclical stretching during the step cycle. Finally, the articular surface of the femoral cartilage model interpenetrates with those of the acetabular labrum and antitrochanter menisci; we interpret such interpenetration as evidence of compressive deformation of the labrum and of sliding movement of the menisci. Our data illustrate the utility of XROMM for studying in vivo articular soft tissue interactions. These results also allow us to propose functional hypotheses for crocodilian hip joint soft tissues, expanding our knowledge of vertebrate connective tissue biology and the role of joint soft tissues in locomotor behavior.
Collapse
Affiliation(s)
- Henry P Tsai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Morgan L Turner
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
35
|
Laurence-Chasen JD, Ramsay JB, Brainerd EL. Shearing overbite and asymmetrical jaw motions facilitate food breakdown in a freshwater stingray, Potamotrygon motoro. ACTA ACUST UNITED AC 2019; 222:222/13/jeb197681. [PMID: 31292213 DOI: 10.1242/jeb.197681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
Abstract
Many species of fish process their prey with cyclic jaw motions that grossly resemble those seen in mammalian mastication, despite starkly different tooth and jaw morphologies. The degree of similarity between the processing behaviors of these disparate taxa has implications for our understanding of convergence in vertebrate feeding systems. Here, we used XROMM (X-ray reconstruction of moving morphology) to investigate prey processing behavior of Potamotrygon motoro, the ocellate river stingray, which has recently been found to employ asymmetrical, shearing jaw motions to break down its prey. We found that P. motoro modulates its feeding kinematics to produce two distinct types of chew cycles: compressive cycles and overbite cycles. The latter are characterized by over-rotation of the upper jaw relative to the lower jaw, past the expected occlusal limit, and higher levels of bilateral asymmetry as compared with compressive chews. We did not find evidence of the mediolateral shearing motions typical of mammalian mastication, but overbite cycles appear to shear the prey item between the upper and lower toothplates in a propalinal fashion. Additionally, comparison of hyomandibular and jaw motions demonstrates that the angular cartilages decouple jaw displacement from hyomandibular displacement in rostrocaudal and mediolateral directions. The multiple similarities between mammalian mastication and the dynamic processing behavior of P. motoro support the use of sub-family Potamotrygoninae as a model for studying evolutionary convergence of mastication-like processing.
Collapse
Affiliation(s)
- J D Laurence-Chasen
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th St, Chicago, IL 60637, USA .,Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| | - Jason B Ramsay
- Biology Department, Westfield State University, 577 Western Avenue, Westfield, MA 01086, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
| |
Collapse
|
36
|
Manafzadeh AR, Padian K. ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans. Proc Biol Sci 2019; 285:rspb.2018.0727. [PMID: 29794053 DOI: 10.1098/rspb.2018.0727] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
Studies of soft tissue effects on joint mobility in extant animals can help to constrain hypotheses about joint mobility in extinct animals. However, joint mobility must be considered in three dimensions simultaneously, and applications of mobility data to extinct taxa require both a phylogenetically informed reconstruction of articular morphology and justifications for why specific structures' effects on mobility are inferred to be similar. We manipulated cadaveric hip joints of common quail and recorded biplanar fluoroscopic videos to measure a 'ligamentous' range of motion (ROM), which was then compared to an 'osteological' ROM on a ROM map. Nearly 95% of the joint poses predicted to be possible at the hip based on osteological manipulation were rendered impossible by ligamentous constraints. Because the hip joint capsule reliably includes a ventral ligamentous thickening in extant diapsids, the hip abduction of extinct ornithodirans with an offset femoral head and thin articular cartilage was probably similarly constrained by ligaments as that of birds. Consequently, in the absence of extraordinary evidence to the contrary, our analysis casts doubt on the 'batlike' hip pose traditionally inferred for pterosaurs and basal maniraptorans, and underscores that reconstructions of joint mobility based on manipulations of bones alone can be misleading.
Collapse
Affiliation(s)
- Armita R Manafzadeh
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Kevin Padian
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, USA
| |
Collapse
|
37
|
Jannel A, Nair JP, Panagiotopoulou O, Romilio A, Salisbury SW. “Keep your feet on the ground”: Simulated range of motion and hind foot posture of the Middle Jurassic sauropod
Rhoetosaurus brownei
and its implications for sauropod biology. J Morphol 2019; 280:849-878. [DOI: 10.1002/jmor.20989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Andréas Jannel
- School of Biological SciencesThe University of Queensland Brisbane Queensland Australia
| | - Jay P. Nair
- School of Biological SciencesThe University of Queensland Brisbane Queensland Australia
| | - Olga Panagiotopoulou
- Department of Anatomy and Developmental BiologyMonash Biomedicine Discovery Institute, Monash University Clayton Victoria Australia
| | - Anthony Romilio
- School of Biological SciencesThe University of Queensland Brisbane Queensland Australia
| | - Steven W. Salisbury
- School of Biological SciencesThe University of Queensland Brisbane Queensland Australia
| |
Collapse
|
38
|
Scott B, Wilga CAD, Brainerd EL. Skeletal kinematics of the hyoid arch in the suction-feeding shark Chiloscyllium plagiosum. ACTA ACUST UNITED AC 2019; 222:222/5/jeb193573. [PMID: 30824570 DOI: 10.1242/jeb.193573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022]
Abstract
White-spotted bamboo sharks, Chiloscyllium plagiosum, generate strong suction-feeding pressures that rival the highest levels measured in ray-finned fishes. However, the hyostylic jaw suspension of these sharks is fundamentally different from the actinopterygian mechanism, including more mobile hyomandibulae, with the jaws and ceratohyal suspended from the hyomandibulae. Prior studies have proposed skeletal kinematics during feeding in orectolobid sharks from indirect measurements. Here, we tested these hypotheses using XROMM to measure cartilage motions directly. In agreement with prior hypotheses, we found extremely large retraction and depression of the ceratohyal, facilitated by large protraction and depression of the hyomandibula. Somewhat unexpectedly, XROMM also showed tremendous long-axis rotation (LAR) of both the ceratohyal and hyomandibula. This LAR likely increases the range of motion for the hyoid arch by keeping the elements properly articulated through their large arcs of motion. XROMM also confirmed that upper jaw protraction occurs before peak gape, similarly to actinopterygian suction feeders, but different from most other sharks in which jaw protrusion serves primarily to close the mouth. Early jaw protraction results from decoupling the rotations of the hyomandibula, with much of protraction occurring before peak gape with the other rotations lagging behind. In addition, the magnitudes of retraction and protraction of the hyoid elements are independent of the magnitude of depression, varying the shape of the mouth among feeding strikes. Hence, the large variation in suction-feeding behavior and performance may contribute to the wide dietary breadth of bamboo sharks.
Collapse
Affiliation(s)
- Bradley Scott
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA .,Department of Animal Biology, University of Illinois Urbana-Champaign, Victor E. Shelford Vivarium, Champaign, IL 61820, USA
| | - Cheryl A D Wilga
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA.,Department of Biological Sciences, University of Alaska Anchorage 3101 Science Circle, Anchorage, AK 99508, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
39
|
Capano JG, Moritz S, Cieri RL, Reveret L, Brainerd EL. Rib Motions Don't Completely Hinge on Joint Design: Costal Joint Anatomy and Ventilatory Kinematics in a Teiid Lizard, Salvator merianae. Integr Org Biol 2019; 1:oby004. [PMID: 33791512 PMCID: PMC7780499 DOI: 10.1093/iob/oby004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rib rotations contribute to lung ventilation in most extant amniotes. These rotations are typically described as bucket-handle rotation about a dorsoventral axis, caliper rotation about a craniocaudal axis, and pump-handle rotation about a mediolateral axis. A synapomorphy for Lepidosauria is single-headed costovertebral articulations derived from the ancestral double-headed articulations of most amniotes. With a single articular surface, the costovertebral joints of squamates have the potential to rotate with three degrees-of-freedom (DOFs), but considerable variation exists in joint shape. We compared the costovertebral morphology of the Argentine black and white tegu, Salvator merianae, with the green iguana, Iguana iguana, and found that the costovertebral articulations of I. iguana were hemispherical, while those of S. merianae were dorsoventrally elongated and hemiellipsoidal. We predicted that the elongate joints in S. merianae would permit bucket-handle rotations while restricting caliper and pump-handle rotations, relative to the rounded joints of I. iguana. We used X-ray reconstruction of moving morphology to quantify rib rotations during breathing in S. merianae for comparison with prior work in I. iguana. Consistent with our hypothesis, we found less caliper motion in S. merianae than in I. iguana, but unexpectedly found similar pump-handle magnitudes in each species. The dorsoventrally elongate costovertebral morphology of S. merianae may provide passive rib support to reduce the conflict between locomotion and ventilation. Moreover, the observation of multiple DOFs during rib rotations in both species suggests that permissive costovertebral morphology may be more related to the biological roles of ribs outside of ventilation and help explain the evolution of this trait.
Collapse
Affiliation(s)
- J G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - S Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - R L Cieri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - L Reveret
- Inria Grenoble Rhone Alpes, 655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France
| | - E L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
40
|
Granatosky MC, McElroy EJ, Laird MF, Iriarte-Diaz J, Reilly SM, Taylor AB, Ross CF. Joint angular excursions during cyclical behaviors differ between tetrapod feeding and locomotor systems. J Exp Biol 2019; 222:jeb.200451. [DOI: 10.1242/jeb.200451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Tetrapod musculoskeletal diversity is usually studied separately in feeding and locomotor systems. However, comparisons between these systems promise important insight into how natural selection deploys the same basic musculoskeletal toolkit—connective tissues, bones, nerves and skeletal muscle—to meet the differing performance criteria of feeding and locomotion. In this study, we compare average joint angular excursions during cyclic behaviors– chewing, walking and running–in a phylogenetic context to explore differences in the optimality criteria of these two systems. Across 111 tetrapod species, average limb-joint angular excursions during cyclic locomotion are greater and more evolutionarily labile than those of the jaw joint during cyclic chewing. We argue that these findings reflect fundamental functional dichotomies between tetrapod locomotor and feeding systems. Tetrapod chewing systems are optimized for precise application of force over a narrower, more controlled and predictable range of displacements, the principal aim being to fracture the substrate, the size and mechanical properties of which are controlled at ingestion and further reduced and homogenized (respectively) by the chewing process. In contrast, tetrapod limbed locomotor systems are optimized for fast and energetically efficient application of force over a wider and less predictable range of displacements, the principal aim being to move the organism at varying speeds relative to a substrate whose geometry and mechanical properties need not become more homogenous as locomotion proceeds. Hence, the evolution of tetrapod locomotor systems has been accompanied by an increasing diversity of limb-joint excursions, as tetrapods have expanded across a range of locomotor substrates and environments.
Collapse
Affiliation(s)
- Michael C. Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Eric J. McElroy
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Myra F. Laird
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Jose Iriarte-Diaz
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | | | | | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Fischer MS, Lehmann SV, Andrada E. Three-dimensional kinematics of canine hind limbs: in vivo, biplanar, high-frequency fluoroscopic analysis of four breeds during walking and trotting. Sci Rep 2018; 8:16982. [PMID: 30451855 PMCID: PMC6242825 DOI: 10.1038/s41598-018-34310-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/12/2018] [Indexed: 01/27/2023] Open
Abstract
The first high-precision 3D in vivo hindlimb kinematic data to be recorded in normal dogs of four different breeds (Beagle, French bulldog, Malinois, Whippet) using biplanar, high-frequency fluoroscopy combined with a 3D optoelectric system followed by a markerless XROMM analysis (Scientific Rotoscoping, SR or 3D-2D registration process) reveal a) 3D hindlimb kinematics to an unprecedented degree of precision and b) substantial limitations to the use of skin marker-based data. We expected hindlimb kinematics to differ in relation to body shape. But, a comparison of the four breeds sets the French bulldog aside from the others in terms of trajectories in the frontal plane (abduction/adduction) and long axis rotation of the femur. French bulldogs translate extensive femoral long axis rotation (>30°) into a strong lateral displacement and rotations about the craniocaudal (roll) and the distal-proximal (yaw) axes of the pelvis in order to compensate for a highly abducted hindlimb position from the beginning of stance. We assume that breeds which exhibit unusual kinematics, especially high femoral abduction, might be susceptible to a higher long-term loading of the cruciate ligaments.
Collapse
Affiliation(s)
- Martin S Fischer
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany.
| | - Silvia V Lehmann
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| | - Emanuel Andrada
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstr. 1, 07743, Jena, Germany
| |
Collapse
|
42
|
Cieri RL, Moritz S, Capano JG, Brainerd EL. Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. ACTA ACUST UNITED AC 2018; 221:jeb.189449. [PMID: 30257921 DOI: 10.1242/jeb.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sabine Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
43
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Farke AA, Beck BR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part I-an examination of cancellous bone architecture in the hindlimb bones of theropods. PeerJ 2018; 6:e5778. [PMID: 30402347 PMCID: PMC6215452 DOI: 10.7717/peerj.5778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
This paper is the first of a three-part series that investigates the architecture of cancellous ('spongy') bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology at The Webb Schools, Claremont, CA, USA
| | - Belinda R. Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Exercise and Human Performance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
44
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part II-a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates. PeerJ 2018; 6:e5779. [PMID: 30402348 PMCID: PMC6215447 DOI: 10.7717/peerj.5779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
This paper is the second of a three-part series that investigates the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and therefore has the potential to provide insight into locomotor biomechanics in extinct tetrapod vertebrates such as dinosaurs. Here in Part II, a new biomechanical modelling approach is outlined, one which mechanistically links cancellous bone architectural patterns with three-dimensional musculoskeletal and finite element modelling of the hindlimb. In particular, the architecture of cancellous bone is used to derive a single 'characteristic posture' for a given species-one in which bone continuum-level principal stresses best align with cancellous bone fabric-and thereby clarify hindlimb locomotor biomechanics. The quasi-static approach was validated for an extant theropod, the chicken, and is shown to provide a good estimate of limb posture at around mid-stance. It also provides reasonable predictions of bone loading mechanics, especially for the proximal hindlimb, and also provides a broadly accurate assessment of muscle recruitment insofar as limb stabilization is concerned. In addition to being useful for better understanding locomotor biomechanics in extant species, the approach hence provides a new avenue by which to analyse, test and refine palaeobiomechanical hypotheses, not just for extinct theropods, but potentially many other extinct tetrapod groups as well.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
45
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Farke AA, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part III-Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds. PeerJ 2018; 6:e5777. [PMID: 30402346 PMCID: PMC6215443 DOI: 10.7717/peerj.5777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022] Open
Abstract
This paper is the last of a three-part series that investigates the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is highly sensitive to its prevailing mechanical environment, and may therefore help further understanding of locomotor biomechanics in extinct tetrapod vertebrates such as dinosaurs. Here in Part III, the biomechanical modelling approach derived previously was applied to two species of extinct, non-avian theropods, Daspletosaurus torosus and Troodon formosus. Observed cancellous bone architectural patterns were linked with quasi-static, three-dimensional musculoskeletal and finite element models of the hindlimb of both species, and used to derive characteristic postures that best aligned continuum-level principal stresses with cancellous bone fabric. The posture identified for Daspletosaurus was largely upright, with a subvertical femoral orientation, whilst that identified for Troodon was more crouched, but not to the degree observed in extant birds. In addition to providing new insight on posture and limb articulation, this study also tested previous hypotheses of limb bone loading mechanics and muscular control strategies in non-avian theropods, and how these aspects evolved on the line to birds. The results support the hypothesis that an upright femoral posture is correlated with bending-dominant bone loading and abduction-based muscular support of the hip, whereas a crouched femoral posture is correlated with torsion-dominant bone loading and long-axis rotation-based muscular support. Moreover, the results of this study also support the inference that hindlimb posture, bone loading mechanics and muscular support strategies evolved in a gradual fashion along the line to extant birds.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology at The Webb Schools, Claremont, CA, USA
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
46
|
Klinkhamer AJ, Mallison H, Poropat SF, Sinapius GH, Wroe S. Three‐Dimensional Musculoskeletal Modeling of the Sauropodomorph Hind Limb: The Effect of Postural Change on Muscle Leverage. Anat Rec (Hoboken) 2018; 301:2145-2163. [DOI: 10.1002/ar.23950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Ada J. Klinkhamer
- Function, Evolution, and Anatomy Research Lab, School of Environmental and Rural Science University of New England Armidale New South Wales Australia
- Australian Age of Dinosaurs Museum of Natural History Winton Queenland Australia
| | | | - Stephen F. Poropat
- Australian Age of Dinosaurs Museum of Natural History Winton Queenland Australia
- Faculty of Science, Engineering, and Technology Swinburne University of Technology Hawthorn Victoria Australia
| | - George H.K. Sinapius
- Australian Age of Dinosaurs Museum of Natural History Winton Queenland Australia
| | - Stephen Wroe
- Function, Evolution, and Anatomy Research Lab, School of Environmental and Rural Science University of New England Armidale New South Wales Australia
| |
Collapse
|
47
|
A novel kinematics analysis method using quaternion interpolation-a case study in frog jumping. J Theor Biol 2018; 454:410-424. [PMID: 29913132 DOI: 10.1016/j.jtbi.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022]
Abstract
Spherical Linear Interpolation (SLERP) has long been used in computer animation to interpolate movements between two 3D orientations. We developed a forward kinematics (FK) approach using quaternions and SLERP to predict how frogs modulate jump kinematics between start posture and takeoff. Frog limb kinematics have been studied during various activities, yet the causal link between differences in joint kinematics and locomotor variation remains unknown. We varied 1) takeoff angle from 8 to 60°; 2) turn angle from 0 to 18°; and 3) initial body pitch from 0 to 70°. Simulations were similar to experimentally observed frog kinematics. Findings suggest a fundamental mechanism whereby limb elevation is modulated by thigh and shank adduction. Forward thrust is produced by thigh and proximal foot retraction with little contribution from the shank except to induce asymmetries for turning. Kinematic shifts causing turns were subtle, marked only by slight counter-rotation of the left versus right shank as well as a 10% timing offset in proximal foot adduction. Additionally, inclining initial body tilt influenced the centre of mass trajectory to determine direction of travel at takeoff. Most importantly, our theory suggests firstly that the convergence of leg segment rotation axes toward a common orientation is crucial both for limb extension and for coordinating jump direction; and, secondly, the challenge of simulating 3D kinematics is simplified using SLERP because frog limbs approximately follow linear paths in unit quaternion space. Our methodology can be applied more broadly to study living and fossil frog taxa as well as to inspire new control algorithms for robotic limbs.
Collapse
|
48
|
Daley MA, Birn-Jeffery A. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait. ACTA ACUST UNITED AC 2018; 221:221/10/jeb152538. [PMID: 29789347 DOI: 10.1242/jeb.152538] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors.
Collapse
Affiliation(s)
- Monica A Daley
- Structure and Motion Lab, Royal Veterinary College, Hawkshead Campus, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK
| | - Aleksandra Birn-Jeffery
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
49
|
Lai PH, Biewener AA, Pierce SE. Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont Massetognathus pascuali (Romer, 1967). J Anat 2018; 232:383-406. [PMID: 29392730 PMCID: PMC5807948 DOI: 10.1111/joa.12766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2017] [Indexed: 01/21/2023] Open
Abstract
The musculoskeletal configuration of the mammalian pectoral limb has been heralded as a key anatomical feature leading to the adaptive radiation of mammals, but limb function in the non-mammaliaform cynodont outgroup remains unresolved. Conflicting reconstructions of abducted and adducted posture are based on mutually incompatible interpretations of ambiguous osteology. We reconstruct the pectoral limb of the Triassic non-mammaliaform cynodont Massetognathus pascuali in three dimensions, by combining skeletal morphology from micro-computed tomography with muscle anatomy from an extended extant phylogenetic bracket. Conservative tests of maximum range of motion suggest a degree of girdle mobility, as well as substantial freedom at the shoulder and the elbow joints. The glenoid fossa supports a neutral pose in which the distal end of the humerus points 45° posterolaterally from the body wall, intermediate between classically 'sprawling' and 'parasagittal' limb postures. Massetognathus pascuali is reconstructed as having a near-mammalian complement of shoulder muscles, including an incipient rotator cuff (m. subscapularis, m. infraspinatus, m. supraspinatus, and m. teres minor). Based on close inspection of the morphology of the glenoid fossa, we hypothesize a posture-driven scenario for the evolution of the therian ball-and-socket shoulder joint. The musculoskeletal reconstruction presented here provides the anatomical scaffolding for more detailed examination of locomotor evolution in the precursors to mammals.
Collapse
Affiliation(s)
- Phil H. Lai
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
- Concord Field Station and Department of Organismic and Evolutionary BiologyHarvard UniversityBedfordMAUSA
| | - Andrew A. Biewener
- Concord Field Station and Department of Organismic and Evolutionary BiologyHarvard UniversityBedfordMAUSA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| |
Collapse
|
50
|
Camp AL, Scott B, Brainerd EL, Wilga CD. Dual function of the pectoral girdle for feeding and locomotion in white-spotted bamboo sharks. Proc Biol Sci 2018; 284:rspb.2017.0847. [PMID: 28724735 DOI: 10.1098/rspb.2017.0847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Positioned at the intersection of the head, body and forelimb, the pectoral girdle has the potential to function in both feeding and locomotor behaviours-although the latter has been studied far more. In ray-finned fishes, the pectoral girdle attaches directly to the skull and is retracted during suction feeding, enabling the ventral body muscles to power rapid mouth expansion. However, in sharks, the pectoral girdle is displaced caudally and entirely separate from the skull (as in tetrapods), raising the question of whether it is mobile during suction feeding and contributing to suction expansion. We measured three-dimensional kinematics of the pectoral girdle in white-spotted bamboo sharks during suction feeding with X-ray reconstruction of moving morphology, and found the pectoral girdle consistently retracted about 11° by rotating caudoventrally about the dorsal scapular processes. This motion occurred mostly after peak gape, so it likely contributed more to accelerating captured prey through the oral cavity and pharynx, than to prey capture as in ray-finned fishes. Our results emphasize the multiple roles of the pectoral girdle in feeding and locomotion, both of which should be considered in studying the functional and evolutionary morphology of this structure.
Collapse
Affiliation(s)
- Ariel L Camp
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
| | - Bradley Scott
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Cheryl D Wilga
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA.,Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|