1
|
Adams DS, Boyce BL, Hooks DE, Garber KW, Klitsner B, Price SA, Blob R. A Brief Introductory Guide to Nanoindentation for Comparative and Evolutionary Biologists, with a Case Study of Bone Material Property Diversity across Artiodactyl Skulls. Integr Org Biol 2025; 7:obaf010. [PMID: 40161253 PMCID: PMC11953029 DOI: 10.1093/iob/obaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Quantifying the material properties of hard biological materials can improve understanding of the relationships between form, function, and performance. This study illustrates the use of nanoindentation as a tool for evaluating material properties in a comparative biology framework. We provide a step-by-step guide for comparative and evolutionary biologists illustrating the collection and analysis of nanoindentation data from samples of artiodactyl skull bones. We assess the impact of methodological decisions on the output of nanoindentation tests. We also investigate whether evolutionary variations in skull bone properties are present between artiodactyl species that engage in intraspecific head-to-head combat and those that do not. Elastic modulus exhibited little variation among numbers of indents performed per test and per bone sample. The average elastic modulus was significantly lower when bones were hydrated with deionized water. The skulls of artiodactyls exhibited a gradient of elastic modulus values in which the anterior of the skull is less stiff than more posterior locations. Species involved in head-to-head combat showed little difference in elastic modulus values compared to non-combat species. This suggests that ecological factors influence the evolutionary diversity of bone material properties, rather than strictly phylogenetic constraints. In a phylogenetic context, nanoindentation reveals tetrapod bone heterogeneity and provides insights into the evolution of these traits.
Collapse
Affiliation(s)
- D S Adams
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - B L Boyce
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - D E Hooks
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - K W Garber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - B Klitsner
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Pacher K, Breuker M, Hansen MJ, Kurvers RHJM, Häge J, Dhellemmes F, Domenici P, Steffensen JF, Krause S, Hildebrandt T, Fritsch G, Bach P, Sabarros PS, Zaslansky P, Mahlow K, Müller J, Armas RG, Ortiz HV, Galván-Magaña F, Krause J. The rostral micro-tooth morphology of blue marlin, Makaira nigricans. JOURNAL OF FISH BIOLOGY 2024; 104:713-722. [PMID: 37987173 DOI: 10.1111/jfb.15608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Billfish rostra potentially have several functions; however, their role in feeding is unequivocal in some species. Recent work linked morphological variation in rostral micro-teeth to differences in feeding behavior in two billfish species, the striped marlin (Kajikia audax) and the sailfish (Istiophorus platypterus). Here, we present the rostral micro-tooth morphology for a third billfish species, the blue marlin (Makaira nigricans), for which the use of the rostrum in feeding behavior is still undocumented from systematic observations in the wild. We measured the micro-teeth on rostrum tips of blue marlin, striped marlin, and sailfish using a micro-computed tomography approach and compared the tooth morphology among the three species. This was done after an analysis of video-recorded hunting behavior of striped marlin and sailfish revealed that both species strike prey predominantly with the first third of the rostrum, which provided the justification to focus our analysis on the rostrum tips. In blue marlin, intact micro-teeth were longer compared to striped marlin but not to sailfish. Blue marlin had a higher fraction of broken teeth than both striped marlin and sailfish, and broken teeth were distributed more evenly on the rostrum. Micro-tooth regrowth was equally low in both marlin species but higher in sailfish. Based on the differences and similarities in the micro-tooth morphology between the billfish species, we discuss potential feeding-related rostrum use in blue marlin. We put forward the hypothesis that blue marlin might use their rostra in high-speed dashes as observed in striped marlin, rather than in the high-precision rostral strikes described for sailfish, possibly focusing on larger prey organisms.
Collapse
Affiliation(s)
- Korbinian Pacher
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Michael Breuker
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck, Germany
| | - Matthew J Hansen
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ralf H J M Kurvers
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Excellence Cluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| | - Jan Häge
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Felicie Dhellemmes
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Paolo Domenici
- CNR-IBF Istituto di Biofisica, Pisa, Italy
- CNR-IAS Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Oristano, Italy
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Stefan Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck, Germany
| | | | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Pascal Bach
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
- Institut de Recherche pour le Développement, Sète, France
| | - Philippe S Sabarros
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
- Institut de Recherche pour le Développement, Sète, France
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Centrum für Zahn-, Mund- und Kieferheilkunde, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Rogelio González Armas
- Departamento de Pesquerías y Biología Marina, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Instituto Politécnico Nacional, La Paz, Mexico
| | - Hector Villalobos Ortiz
- Departamento de Pesquerías y Biología Marina, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Instituto Politécnico Nacional, La Paz, Mexico
| | - Felipe Galván-Magaña
- Departamento de Pesquerías y Biología Marina, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Instituto Politécnico Nacional, La Paz, Mexico
| | - Jens Krause
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Excellence Cluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Coste A, Fordyce RE, Loch C. A new dolphin with tusk-like teeth from the late Oligocene of New Zealand indicates evolution of novel feeding strategies. Proc Biol Sci 2023; 290:20230873. [PMID: 37312551 PMCID: PMC10265015 DOI: 10.1098/rspb.2023.0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
All extant toothed whales (Cetacea, Odontoceti) are aquatic mammals with homodont dentitions. Fossil evidence from the late Oligocene suggests a greater diversity of tooth forms among odontocetes, including heterodont species with a variety of tooth shapes and orientations. A new fossil dolphin from the late Oligocene of New Zealand, Nihohae matakoi gen. et sp. nov., consisting of a near complete skull, earbones, dentition and some postcranial material, represents this diverse dentition. Several preserved teeth are horizontally procumbent, including all incisors and canines. These tusk-like teeth suggest adaptive advantages for horizontally procumbent teeth in basal dolphins. Phylogenetic analysis places Nihohae among the poorly constrained basal waipatiid group, many with similarly procumbent teeth. Features of N. matakoi such as its dorsoventrally flattened and long rostrum, long mandibular symphysis, unfused cervical vertebrae, lack of attritional or occlusal wear on the teeth and thin enamel cover suggest the rostrum and horizontally procumbent teeth were used to injure and stun prey though swift lateral head movements, a feeding mode that did not persist in extant odontocetes.
Collapse
Affiliation(s)
- Ambre Coste
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - R. Ewan Fordyce
- Department of Geology, University of Otago, Dunedin, New Zealand
| | - Carolina Loch
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Pazzaglia UE, Reguzzoni M, Saroglia M, Manconi R, Zarattini G, Raspanti M. The complex rostral morphology and the endoskeleton ossification process of two adult samples of Xiphias gladius (Xiphiidae). JOURNAL OF FISH BIOLOGY 2022; 101:42-54. [PMID: 35481825 PMCID: PMC9545449 DOI: 10.1111/jfb.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The authors studied the morphology of the upper and lower jaws, vertebrae and dorsal-fin rays of the teleost fish Xiphias gladius to analyse the skeletal architecture and ossification pattern. The analogies and differences among these segments were investigated to identify a common morphogenetic denominator of the bone tissue osteogenesis and modeling. The large fat glands in the proximal upper jaw and their relationship to the underlying cartilage (absent in the lower jaw) suggested that there is a mechanism that explains rostral overgrowth in the Xiphiidae and Istiophoriidae families. Thus far, the compact structure of the distal rostrum has been interpreted as being the result of remodeling. Nonetheless, no evidence of cutting cones, scalloped outer border of osteons and sequence of bright-dark bands in polarized light was observed in this study, suggesting a primary osteon texture formed by compacting of collagen matrix and mineral deposition in the fat stroma lacunae of the bone, but without being oriented in layers of the collagen fibrils. A similar histology also characterizes the circular structures present in the other examined segments of the skeleton. The early phases of fibrillogenesis carried out by fibroblast-like cells occurred farther from the already-calcified bone surface inside the fat stroma lacunae. The fibrillar matrix was compacted and underwent mineral deposition near the previously calcified bone surface. This pattern of collagen matrix synthesis and calcification was different from that of mammalian osteoblasts, especially concerning the ability to build a lacuno-canalicular system among cells. Necrosis or apoptosis of the latter and refilling of the empty lacunae by mineral deposits might explain the anosteocytic bone formation.
Collapse
Affiliation(s)
- Ugo E. Pazzaglia
- Department of Specialità Chirurgiche, Scienze radiologiche e Sanità PubblicaUniversity of BresciaBresciaItaly
| | | | - Marco Saroglia
- Department of Biotecnologie e Scienze della VitaUniversity of InsubriaVareseItaly
| | - Renata Manconi
- Department of Veterinary Medicine, Zoology LabUniversity of SassariSassariItaly
| | - Guido Zarattini
- Department of Specialità Chirurgiche, Scienze radiologiche e Sanità PubblicaUniversity of BresciaBresciaItaly
| | - Mario Raspanti
- Department of Medicina e ChirurgiaUniversity of InsubriaVareseItaly
| |
Collapse
|
5
|
Eigen L, Baum D, Dean MN, Werner D, Wölfer J, Nyakatura JA. Ontogeny of a tessellated surface: Carapace growth of the longhorn cowfish Lactoria cornuta. J Anat 2022; 241:565-580. [PMID: 35638264 PMCID: PMC9358767 DOI: 10.1111/joa.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high‐throughput fashion, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g., around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box‐like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e., where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric, and developmental constraints of this species but also perspectives into natural strategies for constructing mutable tiled architectures. The carapace of boxfish is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. To clarify whether or how this armor is maintained or altered with age, we quantify architectural aspects of the carapace of the longhorn cowfish Lactoria cornuta through ontogeny, using high‐resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual.![]()
Collapse
Affiliation(s)
- Lennart Eigen
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany
| | - Daniel Baum
- Visual and Data-Centric Computing Department, Zuse Institute Berlin, Berlin, Germany
| | - Mason N Dean
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniel Werner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jan Wölfer
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - John A Nyakatura
- Comparative Zoology, Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
Häge J, Hansen MJ, Pacher K, Dhellemmes F, Domenici P, Steffensen JF, Breuker M, Krause S, Hildebrandt TB, Fritsch G, Bach P, Sabarros PS, Zaslansky P, Mahlow K, Schauer M, Müller J, Krause J. Lacunae rostralis: A new structure on the rostrum of sailfish Istiophorus platypterus. JOURNAL OF FISH BIOLOGY 2022; 100:1205-1213. [PMID: 35194781 DOI: 10.1111/jfb.15018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Recent comparative studies of billfishes (Istiophoridae and Xiphiidae) have provided evidence of differences in the form and function of the rostra (bill) among species. Here, we report the discovery of a new structure, lacuna rostralis, on the rostra of sailfish Istiophorus platypterus, which is absent on the rostra of swordfish Xiphias gladius, striped marlin Kajikia audax and blue marlin Makaira nigricans. The lacunae rostralis are small cavities that contain teeth. They were found on the ventral rostrum surface of all I. platypterus specimens examined and dorsally in half of them. Ventrally, the lacunae rostralis were most prominent in the mid-section of the rostrum. Dorsally, they occurred closer to the tip. The density of lacunae rostralis increased towards the rostrum tip but, because they are smaller in size, the percentage of rostrum coverage decreased. The teeth located within the lacunae rostralis were found to be different in size, location and orientation from the previously identified micro-teeth of billfish. We propose two potential functions of the lacunae rostralis that both relate to the use of the bill in feeding: mechanoreception of prey before tapping it with the bill and more efficient prey handling via the creation of suction, or physical grip.
Collapse
Affiliation(s)
- Jan Häge
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthew J Hansen
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Korbinian Pacher
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Félicie Dhellemmes
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | - John F Steffensen
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Michael Breuker
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck, Germany
| | - Stefan Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck, Germany
| | | | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Pascal Bach
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
- Institut de Recherche pour le Développement, Sète, France
| | - Philippe S Sabarros
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sète, France
- Institut de Recherche pour le Développement, Sète, France
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Centrum für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Maria Schauer
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Jens Krause
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
7
|
Houck EL, Cohen EB, Harms CA, Runde BJ, Rudershausen PJ, Buckel JA. Computed Tomographic Assessment of Hooking-Related Injuries in Recreationally Angled Blue Marlin. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:20-27. [PMID: 34738678 DOI: 10.1002/aah.10145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Acute morbidity and mortality of marlins (family Istiophoridae) in hook-and-line fisheries have been studied; however, there has been little or no investigation of the skeletal injuries incurred from terminal tackles that could lead to decreased rates of postrelease survival. The objective of this study was to evaluate skeletal injuries in recreationally angled Atlantic Blue Marlin Makaira nigricans from the 2019 Big Rock Blue Marlin Tournament in Morehead City, North Carolina. We examined heads of six Blue Marlin that were angled using artificial lures rigged with J-hooks and harvested for weigh-in. The head of each Blue Marlin was scanned using computed tomography (CT) and examined with gross dissection. The CT interpretation revealed that two Blue Marlin had minimally displaced fractures of the maxilla, one of which also had a fracture to the lachrymal bone. These radiographic lesions were associated with penetrating hook injuries. The CT images also revealed degenerative changes within the quadrate-articular joint in four Blue Marlin, which was associated with fish weight; the causes and consequences of these degenerative changes are unknown. Although the hooking-related jaw fractures likely result in acute pain, their impact on postrelease morbidity is unknown and the impact on postrelease mortality is suspected to be small.
Collapse
Affiliation(s)
- Emma L Houck
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina, 27606, USA
| | - Eli B Cohen
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, North Carolina, 27606, USA
| | - Craig A Harms
- Department of Clinical Sciences, Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, 303 College Circle, Morehead City, North Carolina, 28557, USA
| | - Brendan J Runde
- Department of Applied Ecology, Center for Marine Sciences and Technology, North Carolina State University, 303 College Circle, Morehead City, North Carolina, 28557, USA
| | - Paul J Rudershausen
- Department of Applied Ecology, Center for Marine Sciences and Technology, North Carolina State University, 303 College Circle, Morehead City, North Carolina, 28557, USA
| | - Jeffrey A Buckel
- Department of Applied Ecology, Center for Marine Sciences and Technology, North Carolina State University, 303 College Circle, Morehead City, North Carolina, 28557, USA
| |
Collapse
|
8
|
Jambura PL, Türtscher J, Kriwet J, Al Mabruk SAA. Deadly interaction between a swordfish Xiphias gladius and a bigeye thresher shark Alopias superciliosus. ICHTHYOLOGICAL RESEARCH 2021; 68:317-321. [PMID: 34658650 PMCID: PMC7611837 DOI: 10.1007/s10228-020-00787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/13/2023]
Affiliation(s)
| | - Julia Türtscher
- Department of Palaeontology, University of Vienna, 1090 Vienna, Austria
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
9
|
Bones of teleost fish demonstrate high fracture strain. J Biomech 2021; 120:110341. [PMID: 33743397 DOI: 10.1016/j.jbiomech.2021.110341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022]
Abstract
The endoskeleton of teleosts (bony fish) includes a vertebral spine with articulating rib bones (RBs) similar to humans and further encompasses mineralized tissues that are not found in mammals, including intermuscular bones (IBs). RBs form through endochondral ossification and protect the inner organs, and IBs form through intramembranous ossification within the myosepta and play a role in force transmission and propulsion during locomotion. Based on previous findings suggesting that IBs show a much higher ability for fracture strain compared to mammalian bones, this study aims to investigate whether this ability is general to teleost bones or specific to IBs. We analyzed RBs and IBs of 25 North Atlantic Herring fish. RBs were analyzed using micro-mechanical tensile testing and micro-computed tomography, and both RB and IB were additionally analyzed with Raman spectroscopy. Based on our previous results from IB, we found that RBs are more elastically deformable (on average, 50% higher yield strain and 115% higher elastic work) and stronger (55% higher fracture stress) than values reported for IBs. However, these differences were neither associated with a higher Young's modulus nor a higher degree of mineralization in RBs. Astonishingly, RBs and IBs showed similar fracture strains (12-15% on average, reaching up to 20%), reflecting a much higher ability for tensile deformation than reported for mammalian bone, and further highlighting the biomimetic potential of teleost fish bones for inspiring innovative biomaterials.
Collapse
|
10
|
Dhellemmes F, Hansen MJ, Bouet SD, Videler JJ, Domenici P, Steffensen JF, Hildebrandt T, Fritsch G, Bach P, Sabarros PS, Krüger A, Kurvers RHJM, Krause J. Oil gland and oil pores in billfishes: in search of a function. J Exp Biol 2020; 223:jeb224956. [PMID: 32796039 DOI: 10.1242/jeb.224956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022]
Abstract
Billfishes are well known for their distinctive elongated rostra, i.e. bills. The functional significance of billfish rostra has been frequently discussed and the recent discovery of an oil gland (glandula oleofera) at the base of the rostrum in swordfish, Xiphias gladius, has added an interesting facet to this discussion regarding the potential co-evolution of gland and rostra. Here, we investigated the oil gland and oil pores (through which the oil is brought to the skin surface) of four billfish species - swordfish, Atlantic blue marlin (Makaira nigricans), Indo-Pacific sailfish (Istiophorus platypterus) and striped marlin (Kajikia audax) - and provide detailed evidence for the presence of an oil gland in the last three. All four species had a high density of oil pores on the forehead which is consistent with the hypothesis of hydrodynamic benefits of the oil. The extension of the pores onto the front half of the rostrum in sailfish and striped marlin, but not in swordfish or blue marlin, suggests that the oil may have additional functions. One such function could be linked to the antibacterial and anti-inflammatory properties of the oil. However, the available evidence on predatory rostrum use (and hence the likelihood of tissue damage) is only partly consistent with the extension of pores on rostra across species. We conclude that the oil gland probably serves multiple, non-mutually exclusive functions. More detailed information on rostrum use in blue marlin and swordfish is needed to better link behavioural and morphological data with the aim of accomplishing a full comparative analysis.
Collapse
Affiliation(s)
- F Dhellemmes
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - M J Hansen
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - S D Bouet
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - J J Videler
- Groningen & Leiden University, Zuidlaarderweg 57, Noordlaren, The Netherlands
| | - P Domenici
- IAS-CNR, Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170, Torregrande, Oristano, Italy
| | - J F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - T Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Freie Universität Berlin, 14195 Berlin, Germany
| | - G Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - P Bach
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34203 Sète, France
- Institut de Recherche pour le Développement, Ob7, 34203 Sète, France
| | - P S Sabarros
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, 34203 Sète, France
- Institut de Recherche pour le Développement, Ob7, 34203 Sète, France
| | - A Krüger
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - R H J M Kurvers
- Centre for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - J Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
11
|
Bianucci G, de Muizon C, Urbina M, Lambert O. Extensive Diversity and Disparity of the Early Miocene Platanistoids (Cetacea, Odontoceti) in the Southeastern Pacific (Chilcatay Formation, Peru). Life (Basel) 2020; 10:life10030027. [PMID: 32197480 PMCID: PMC7151620 DOI: 10.3390/life10030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/27/2022] Open
Abstract
Several aspects of the fascinating evolutionary history of toothed and baleen whales (Cetacea) are still to be clarified due to the fragmentation and discontinuity (in space and time) of the fossil record. Here we open a window on the past, describing a part of the extraordinary cetacean fossil assemblage deposited in a restricted interval of time (19–18 Ma) in the Chilcatay Formation (Peru). All the fossils here examined belong to the Platanistoidea clade as here redefined, a toothed whale group nowadays represented only by the Asian river dolphin Platanista gangetica. Two new genera and species, the hyper-longirostrine Ensidelphis riveroi and the squalodelphinid Furcacetus flexirostrum, are described together with new material referred to the squalodelphinid Notocetus vanbenedeni and fragmentary remains showing affinities with the platanistid Araeodelphis. Our cladistic analysis defines the new clade Platanidelphidi, sister-group to Allodelphinidae and including E. riveroi and the clade Squalodelphinidae + Platanistidae. The fossils here examined further confirm the high diversity and disparity of platanistoids during the early Miocene. Finally, morphofunctional considerations on the entire platanistoid assemblage of the Chilcatay Formation suggest a high trophic partitioning of this peculiar cetacean paleocommunity.
Collapse
Affiliation(s)
- Giovanni Bianucci
- Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Christian de Muizon
- CR2P (CNRS, MNHN, SU), Muséum National d’Histoire Naturelle, Département Origines et Évolution, 75005 Paris, France;
| | - Mario Urbina
- Departamento de Paleontología de Vertebrados, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima 15072, Peru;
| | - Olivier Lambert
- Institut Royal des Sciences Naturelles de Belgique, D.O. Terre et Histoire de la Vie, 1000 Brussels, Belgium
| |
Collapse
|
12
|
Hansen MJ, Krause S, Breuker M, Kurvers RHJM, Dhellemmes F, Viblanc PE, Müller J, Mahlow C, Boswell K, Marras S, Domenici P, Wilson ADM, Herbert-Read JE, Steffensen JF, Fritsch G, Hildebrandt TB, Zaslansky P, Bach P, Sabarros PS, Krause J. Linking hunting weaponry to attack strategies in sailfish and striped marlin. Proc Biol Sci 2020; 287:20192228. [PMID: 31937224 DOI: 10.1098/rspb.2019.2228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linking morphological differences in foraging adaptations to prey choice and feeding strategies has provided major evolutionary insights across taxa. Here, we combine behavioural and morphological approaches to explore and compare the role of the rostrum (bill) and micro-teeth in the feeding behaviour of sailfish (Istiophorus platypterus) and striped marlin (Kajikia audax) when attacking schooling sardine prey. Behavioural results from high-speed videos showed that sailfish and striped marlin both regularly made rostrum contact with prey but displayed distinct strategies. Marlin used high-speed dashes, breaking schools apart, often contacting prey incidentally or tapping at isolated prey with their rostra; while sailfish used their rostra more frequently and tended to use a slower, less disruptive approach with more horizontal rostral slashes on cohesive prey schools. Capture success per attack was similar between species, but striped marlin had higher capture rates per minute. The rostra of both species are covered with micro-teeth, and micro-CT imaging showed that species did not differ in average micro-tooth length, but sailfish had a higher density of micro-teeth on the dorsal and ventral sides of their rostra and a higher amount of micro-teeth regrowth, suggesting a greater amount of rostrum use is associated with more investment in micro-teeth. Our analysis shows that the rostra of billfish are used in distinct ways and we discuss our results in the broader context of relationships between morphological and behavioural feeding adaptations across species.
Collapse
Affiliation(s)
- M J Hansen
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - S Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck 23562, Germany
| | - M Breuker
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck 23562, Germany
| | - R H J M Kurvers
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany.,Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - F Dhellemmes
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - P E Viblanc
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| | - J Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, an der Humboldt-Universität zu Berlin, Invalidenstr. 43, Berlin 10115, Germany
| | - C Mahlow
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, an der Humboldt-Universität zu Berlin, Invalidenstr. 43, Berlin 10115, Germany
| | - K Boswell
- Department of Biological Science, Marine Sciences Program, Florida International University, North Miami, FL 33181, USA
| | - S Marras
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - P Domenici
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - A D M Wilson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - J E Herbert-Read
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - J F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, Helsingør 3000, Denmark
| | - G Fritsch
- Department for Reproduction Management and Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße, Berlin 1710315, Germany
| | - T B Hildebrandt
- Department for Reproduction Management and Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße, Berlin 1710315, Germany
| | - P Zaslansky
- Julius Wolff Institute, Charité - Universitätsmedizin, Berlin 13353, Germany
| | - P Bach
- IRD, Centre Halieutique Méditerranéen et Tropical, BP 171, Sète Cedex 34203, France
| | - P S Sabarros
- IRD, Centre Halieutique Méditerranéen et Tropical, BP 171, Sète Cedex 34203, France.,Institut de Recherche pour le Développement, UMR 248 MARBEC, Ob7, Avenue Jean Monnet, CS 30171, Sète Cedex 34203, France
| | - J Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany.,Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin 10115, Germany
| |
Collapse
|
13
|
Schmidt FN, Zimmermann EA, Walsh F, Plumeyer C, Schaible E, Fiedler IAK, Milovanovic P, Rößle M, Amling M, Blanchet C, Gludovatz B, Ritchie RO, Busse B. On the Origins of Fracture Toughness in Advanced Teleosts: How the Swordfish Sword's Bone Structure and Composition Allow for Slashing under Water to Kill or Stun Prey. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900287. [PMID: 31380168 PMCID: PMC6662059 DOI: 10.1002/advs.201900287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Indexed: 05/05/2023]
Abstract
The osseous sword of a swordfish (Xiphias gladius) is specialized to incapacitate prey with stunning blows. Considering the sword's growth and maturation pattern, aging from the sword's base to the tip, while missing a mechanosensitive osteocytic network, an in-depth understanding of its mechanical properties and bone quality is lacking. Microstructural, compositional, and nanomechanical characteristics of the bone along the sword are investigated to reveal structural mechanisms accounting for its exceptional mechanical competence. The degree of mineralization, homogeneity, and particle size increase from the base toward the tip, reflecting aging along its length. Fracture experiments reveal that crack-growth toughness vastly decreases at the highly and homogeneously mineralized tip, suggesting the importance of aging effects. Initiation toughness, however, is unchanged suggesting that aging effects on this hierarchical level are counteracted by constant mineral/fibril interaction. In conclusion, the sword of the swordfish provides an excellent model reflecting base-to-tip-wise aging of bone, as indicated by increasing mineralization and decreasing crack-growth toughness toward the tip. The hierarchical, structural, and compositional changes along the sword reflect peculiar prerequisites needed for resisting high mechanical loads. Further studies on advanced teleosts bone tissue may help to unravel structure-function relationships of heavily loaded skeletons lacking mechanosensing cells.
Collapse
Affiliation(s)
- Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Elizabeth A. Zimmermann
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Flynn Walsh
- Materials Sciences DivisionLawrence Berkeley National LaboratoryDepartment of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Christine Plumeyer
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Eric Schaible
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Petar Milovanovic
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Manfred Rößle
- European Molecular Biology LaboratoryHamburg OutstationHamburg22607Germany
| | - Michael Amling
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
| | - Clément Blanchet
- European Molecular Biology LaboratoryHamburg OutstationHamburg22607Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUNSW SydneyNSW2052Australia
| | - Robert O. Ritchie
- Materials Sciences DivisionLawrence Berkeley National LaboratoryDepartment of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfLottestrasse 55A22529HamburgGermany
- Forum Medical Technology Health Hamburg (FMTHH)Hamburg22529Germany
| |
Collapse
|
14
|
Anderson PSL, Crofts SB, Kim JT, Chamorro LP. Taking a Stab at Quantifying the Energetics of Biological Puncture. Integr Comp Biol 2019; 59:1586-1596. [DOI: 10.1093/icb/icz078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
An organism’s ability to control the timing and direction of energy flow both within its body and out to the surrounding environment is vital to maintaining proper function. When physically interacting with an external target, the mechanical energy applied by the organism can be transferred to the target as several types of output energy, such as target deformation, target fracture, or as a transfer of momentum. The particular function being performed will dictate which of these results is most adaptive to the organism. Chewing food favors fracture, whereas running favors the transfer of momentum from the appendages to the ground. Here, we explore the relationship between deformation, fracture, and momentum transfer in biological puncture systems. Puncture is a widespread behavior in biology requiring energy transfer into a target to allow fracture and subsequent insertion of the tool. Existing correlations between both tool shape and tool dynamics with puncture success do not account for what energy may be lost due to deformation and momentum transfer in biological systems. Using a combination of pendulum tests and particle tracking velocimetry (PTV), we explored the contributions of fracture, deformation and momentum to puncture events using a gaboon viper fang. Results on unrestrained targets illustrate that momentum transfer between tool and target, controlled by the relative masses of the two, can influence the extent of fracture achieved during high-speed puncture. PTV allowed us to quantify deformation throughout the target during puncture and tease apart how input energy is partitioned between deformation and fracture. The relationship between input energy, target deformation and target fracture is non-linear; increasing impact speed from 2.0 to 2.5 m/s created no further fracture, but did increase deformation while increasing speed to 3.0 m/s allowed an equivalent amount of fracture to be achieved for less overall deformation. These results point to a new framework for examining puncture systems, where the relative resistances to deformation, fracture and target movement dictate where energy flows during impact. Further developing these methods will allow researchers to quantify the energetics of puncture systems in a way that is comparable across a broad range of organisms and connect energy flow within an organism to how that energy is eventually transferred to the environment.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Animal Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Stephanie B Crofts
- Department of Animal Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Jin-Tae Kim
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, IL, USA
| |
Collapse
|
15
|
Rico-Guevara A, Hurme KJ. Intrasexually selected weapons. Biol Rev Camb Philos Soc 2019; 94:60-101. [PMID: 29924496 DOI: 10.1111/brv.12436] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/24/2023]
Abstract
We propose a practical concept that distinguishes the particular kind of weaponry that has evolved to be used in combat between individuals of the same species and sex, which we term intrasexually selected weapons (ISWs). We present a treatise of ISWs in nature, aiming to understand their distinction and evolution from other secondary sex traits, including from 'sexually selected weapons', and from sexually dimorphic and monomorphic weaponry. We focus on the subset of secondary sex traits that are the result of same-sex combat, defined here as ISWs, provide not previously reported evolutionary patterns, and offer hypotheses to answer questions such as: why have only some species evolved weapons to fight for the opposite sex or breeding resources? We examined traits that seem to have evolved as ISWs in the entire animal phylogeny, restricting the classification of ISW to traits that are only present or enlarged in adults of one of the sexes, and are used as weapons during intrasexual fights. Because of the absence of behavioural data and, in many cases, lack of sexually discriminated series from juveniles to adults, we exclude the fossil record from this review. We merge morphological, ontogenetic, and behavioural information, and for the first time thoroughly review the tree of life to identify separate evolution of ISWs. We found that ISWs are only found in bilateral animals, appearing independently in nematodes, various groups of arthropods, and vertebrates. Our review sets a reference point to explore other taxa that we identify with potential ISWs for which behavioural or morphological studies are warranted. We establish that most ISWs come in pairs, are located in or near the head, are endo- or exoskeletal modifications, are overdeveloped structures compared with those found in females, are modified feeding structures and/or locomotor appendages, are most common in terrestrial taxa, are frequently used to guard females, territories, or both, and are also used in signalling displays to deter rivals and/or attract females. We also found that most taxa lack ISWs, that females of only a few species possess better-developed weapons than males, that the cases of independent evolution of ISWs are not evenly distributed across the phylogeny, and that animals possessing the most developed ISWs have non-hunting habits (e.g. herbivores) or are faunivores that prey on very small prey relative to their body size (e.g. insectivores). Bringing together perspectives from studies on a variety of taxa, we conceptualize that there are five ways in which a sexually dimorphic trait, apart from the primary sex traits, can be fixed: sexual selection, fecundity selection, parental role division, differential niche occupation between the sexes, and interference competition. We discuss these trends and the factors involved in the evolution of intrasexually selected weaponry in nature.
Collapse
Affiliation(s)
- Alejandro Rico-Guevara
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA, 94720, U.S.A.,Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Unit 3043, Storrs, CT, 06269, U.S.A.,Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Código Postal 11001, Bogotá DC, Colombia
| | - Kristiina J Hurme
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA, 94720, U.S.A.,Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Unit 3043, Storrs, CT, 06269, U.S.A
| |
Collapse
|
16
|
Habegger L, Motta P, Huber D, Pulaski D, Grosse I, Dumont E. Feeding Biomechanics in Billfishes: Investigating the Role of the Rostrum through Finite Element Analysis. Anat Rec (Hoboken) 2019; 303:44-52. [PMID: 30623594 DOI: 10.1002/ar.24059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022]
Abstract
Billfishes are large pelagic fishes that have an extreme elongation of the upper jaw bones forming the rostrum. Recent kinematic and biomechanical studies show the rostrum to be associated to feeding, however, it is less clear how the wide range of morphologies present among billfish may affect their striking behavior. In this study, we aim to assess the mechanical performance of different rostrum morphologies under loads that simulate feeding and to test existing hypotheses of species-specific feeding behaviors. We use finite element analysis (FEA)-a physics-based method that predicts patterns of stress and strain in morphologically complex structures under specified boundary conditions-to test hypotheses on the form and mechanical performance of billfish rostra. Patterns of von Mises stress and total strain energy suggest that distinct rostral morphologies may be functionally segregated. The rounder blue marlin rostrum may be better suited for a wide range of slashing motions to disable prey, whereas the more flattened swordfish rostrum appears to be more specialized for lateral swiping during prey capture. The almost homogenous stress distribution along each rostrum implies their possible use as a predatory weapon regardless of morphological differences between species. The mechanical implications of other less commonly reported behaviors such as spearing are discussed, as well as the potential impact of hydrodynamics in shaping the evolution of the rostrum in this lineage. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Laura Habegger
- Department of Biology, Florida Southern College, 111 Lake Hollingsworth Dr., Lakeland, Florida.,Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida
| | - Philip Motta
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida
| | - Daniel Huber
- Department of Biology, The University of Tampa, 401 W. Kennedy Blvd, Tampa, Florida
| | - Daniel Pulaski
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts.,Department of Mechanical and Industrial Engineering, University of Massachusetts, 160 Governor's Drive, Amherst, Massachusetts
| | - Ian Grosse
- Department of Mechanical and Industrial Engineering, University of Massachusetts, 160 Governor's Drive, Amherst, Massachusetts
| | - Elizabeth Dumont
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts.,School of Natural Sciences, University of California, Merced, 5200 North Lake Rd, Merced, California
| |
Collapse
|
17
|
Gidmark NJ, Pos K, Matheson B, Ponce E, Westneat MW. Functional Morphology and Biomechanics of Feeding in Fishes. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Anderson PSL. Making a point: shared mechanics underlying the diversity of biological puncture. ACTA ACUST UNITED AC 2018; 221:221/22/jeb187294. [PMID: 30446527 DOI: 10.1242/jeb.187294] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A viper injecting venom into a target, a mantis shrimp harpooning a fish, a cactus dispersing itself via spines attaching to passing mammals; all these are examples of biological puncture. Although disparate in terms of materials, kinematics and phylogeny, all three examples must adhere to the same set of fundamental physical laws that govern puncture mechanics. The diversity of biological puncture systems is a good case study for how physical laws can be used as a baseline for comparing disparate biological systems. In this Review, I explore the diversity of biological puncture and identify key variables that influence these systems. First, I explore recent work on biological puncture in a diversity of organisms, based on their hypothesized objectives: gripping, injection, damage and defence. Variation within each category is discussed, such as the differences between gripping for prey capture, gripping for dispersal of materials or gripping during reproduction. The second half of the Review is focused on specific physical parameters that influence puncture mechanics, such as material properties, stress, energy, speed and the medium within which puncture occurs. I focus on how these parameters have been examined in biology, and how they influence the evolution of biological systems. The ultimate objective of this Review is to outline an initial framework for examining the mechanics and evolution of puncture systems across biology. This framework will not only allow for broad biological comparisons, but also create a baseline for bioinspired design of both tools that puncture efficiently and materials that can resist puncture.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Nevatte RJ, Wueringer BE, Jacob DE, Park JM, Williamson JE. First insights into the function of the sawshark rostrum through examination of rostral tooth microwear. JOURNAL OF FISH BIOLOGY 2017; 91:1582-1602. [PMID: 29034467 DOI: 10.1111/jfb.13467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Potential roles of the rostrum of sawsharks (Pristiophoridae), including predation and self-defence, were assessed through a variety of inferential methods. Comparison of microwear on the surface of the rostral teeth of sawsharks and sawfishes (Pristidae) show that microwear patterns are alike and suggest that the elongate rostra in these two elasmobranch families are used for a similar purpose (predation). Raman spectroscopy indicates that the rostral teeth of both sawsharks and sawfishes are composed of hydroxyapatite, but differ in their collagen content. Sawfishes possess collagen throughout their rostral teeth whereas collagen is present only in the centre of the rostral teeth of sawsharks, which may relate to differences in ecological use. The ratio of rostrum length to total length in the common sawshark Pristiophorus cirratus was found to be similar to the largetooth sawfish Pristis pristis but not the knifetooth sawfish Anoxypristis cuspidata. Analysis of the stomach contents of P. cirratus indicates that the diet consists of demersal fishes and crustaceans, with shrimp from the family Pandalidae being the most important dietary component. No prey item showed evidence of wounds inflicted by the rostral teeth. In light of the similarities in microwear patterns, rostral tooth chemistry and diet with sawfishes, it is hypothesised that sawsharks use their rostrum in a similar manner for predation (sensing and capturing prey) and possibly for self-defence.
Collapse
Affiliation(s)
- R J Nevatte
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - B E Wueringer
- College of Marine and Environmental Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- Sharks and Rays Australia, P. O. Box 575, Bungalow, Queensland, 4870, Australia
| | - D E Jacob
- Department of Earth and Planetary Sciences, Macquarie University, New South Wales 2109, Australia
| | - J M Park
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - J E Williamson
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
20
|
Habegger ML, Huber DH, Lajeunesse MJ, Motta PJ. Theoretical calculations of bite force in billfishes. J Zool (1987) 2017. [DOI: 10.1111/jzo.12465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. L. Habegger
- Department of Biology Florida Southern College Lakeland FL USA
- Department of Integrative Biology University of South Florida Tampa FL USA
- Fish and Wildlife Research Institute Florida Fish and Wildlife Conservation Commission St. Petersburg FL USA
| | - D. H. Huber
- Department of Biology The University of Tampa Tampa FL USA
| | - M. J. Lajeunesse
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - P. J. Motta
- Department of Integrative Biology University of South Florida Tampa FL USA
| |
Collapse
|
21
|
Currey JD, Dean MN, Shahar R. Revisiting the links between bone remodelling and osteocytes: insights from across phyla. Biol Rev Camb Philos Soc 2016; 92:1702-1719. [DOI: 10.1111/brv.12302] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/01/2023]
Affiliation(s)
- John D. Currey
- Department of Biology; University of York; York YO10 5DD U.K
| | - Mason N. Dean
- Department Biomaterials; Max Planck Institute of Colloids & Interfaces; 14424 Potsdam Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| |
Collapse
|
22
|
Videler JJ, Haydar D, Snoek R, Hoving HJT, Szabo BG. Lubricating the swordfish head. J Exp Biol 2016; 219:1953-6. [PMID: 27385753 DOI: 10.1242/jeb.139634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/17/2016] [Indexed: 11/20/2022]
Abstract
The swordfish is reputedly the fastest swimmer on Earth. The concave head and iconic sword are unique characteristics, but how they contribute to its speed is still unknown. Recent computed tomography scans revealed a poorly mineralised area near the base of the rostrum. Here we report, using magnetic resonance imaging and electron microscopy scanning, the discovery of a complex organ consisting of an oil-producing gland connected to capillaries that communicate with oil-excreting pores in the skin of the head. The capillary vessels transport oil to abundant tiny circular pores that are surrounded by denticles. The oil is distributed from the pores over the front part of the head. The oil inside the gland is identical to that found on the skin and is a mixture of methyl esters. We hypothesize that the oil layer, in combination with the denticles, creates a super-hydrophobic layer that reduces streamwise friction drag and increases swimming efficiency.
Collapse
Affiliation(s)
- John J Videler
- Prof. Em. Groningen & Leiden University, Zuidlaarderweg 57, Noordlaren 9479 TH, The Netherlands
| | - Deniz Haydar
- Faculty of Behavioural and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, Groningen 9712 TS, The Netherlands
| | - Roelant Snoek
- Waterproof, Marine Consultancy & Services BV, Flevo Marina Trade Centre, IJsselmeerdijk 2, Lelystad 8221 RC, The Netherlands
| | - Henk-Jan T Hoving
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel D-24105, Germany
| | - Ben G Szabo
- Faculty of Medical Sciences, Groningen University, Institute for Medical Education, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| |
Collapse
|