1
|
HARAGUCHI A, TAKANO M, HAKOZAKI J, NAKAYAMA K, NAKAMURA S, YOSHIKAWA Y, FUKUMOTO S, KUSAKISAKO K, IKADAI H. Formation of free oocysts in Anopheles mosquitoes injected with Plasmodium ookinetes. J Vet Med Sci 2023; 85:921-928. [PMID: 37407494 PMCID: PMC10539829 DOI: 10.1292/jvms.23-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Malaria needs new strategies for its control. Plasmodium spp., the causative agent of malaria, is transmitted by mosquitoes. These parasites develop into oocysts and sporozoites in the body of the mosquitoes. A deeper understanding of oocysts that produce the infectious form of the parasite, sporozoites, can facilitate the development of novel countermeasures. However, the isolation of Plasmodium oocysts is challenging as these are formed between midgut epithelial cells and basal lamina after gametocytes enter the mosquito's body through blood feeding. Further research on oocysts has been impeded by issues related to oocyst isolation. Therefore, in this study, we injected Plasmodium into mosquitoes-an artificial and unique method-and aimed to clarify how oocysts were formed in mosquitoes after Plasmodium injection and whether free oocysts were formed from the mosquito tissue. Plasmodium berghei (ANKA strain) ookinetes cultured in vitro were injected into the thoracic body cavity (hemocoel) of female and male Anopheles stephensi mosquitoes. Oocysts were formed in the body of female and male mosquitoes at 14 days post injection. In addition, oocysts formed as a result of injection developed into sporozoites, which were infectious to mice. These findings suggest that P. berghei can complete its developmental stage in mosquitoes by injection. Some of the oocysts formed were free from mosquito tissue, and it was possible to collect oocysts with minimal contamination of mosquito tissue. These free oocysts can be used for investigating oocyst proteins and metabolism.
Collapse
Affiliation(s)
- Asako HARAGUCHI
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Makoto TAKANO
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Jun HAKOZAKI
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuhiko NAKAYAMA
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Sakure NAKAMURA
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yasunaga YOSHIKAWA
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Shinya FUKUMOTO
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Kodai KUSAKISAKO
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Hiromi IKADAI
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
2
|
Ziemer T, Wetjen F, Herbst A. The Antenna Base Plays a Crucial Role in Mosquito Courtship Behavior. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.803611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes are vectors of pathogens that cause diseases like malaria, dengue fever, yellow fever, chikungunya and Zika. For mosquito control it is crucial to understand their hearing system, as mosquitoes’ courting behavior is mostly auditory. Many nonlinear characteristics of the mosquito hearing organ have been observed through behavioral studies and neural measurements. These enable mosquitoes to detect and synchronize to other mosquitoes. Many hypotheses concerning the role of the flagellum and the fibrillae of the antenna in mosquito hearing have been made, and neural processes have been considered as the origin of the nonlinearities. In this study we introduce a geometric model based on the morphology of the mosquito antenna base. The model produces many of the observed nonlinear characteristics, providing evidence that the base of the antenna plays a crucial role in mosquito hearing. Even without neural processing, the antenna response to sound produces behaviorally relevant cues that can inform about the presence, location, and sex of other mosquitoes.
Collapse
|
3
|
Kay AR, Eberl DF, Wang JW. Myogenic contraction of a somatic muscle powers rhythmic flow of hemolymph through Drosophila antennae and generates brain pulsations. J Exp Biol 2021; 224:jeb242699. [PMID: 34585241 PMCID: PMC8545754 DOI: 10.1242/jeb.242699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022]
Abstract
Hemolymph is driven through the antennae of Drosophila melanogaster by the rhythmic contraction of muscle 16 (m16), which runs through the brain. Contraction of m16 results in the expansion of an elastic ampulla, opening ostia and filling the ampulla. Relaxation of the ampullary membrane forces hemolymph through vessels into the antennae. We show that m16 is an auto-active rhythmic somatic muscle. The activity of m16 leads to the rapid perfusion of the antenna by hemolymph. In addition, it leads to the rhythmic agitation of the brain, which could be important for clearing the interstitial space.
Collapse
Affiliation(s)
- Alan R. Kay
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jing W. Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Schachat SR, Boyce CK, Payne JL, Lentink D. Lepidoptera demonstrate the relevance of Murray's Law to circulatory systems with tidal flow. BMC Biol 2021; 19:204. [PMID: 34526028 PMCID: PMC8444497 DOI: 10.1186/s12915-021-01130-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Murray's Law, which describes the branching architecture of bifurcating tubes, predicts the morphology of vessels in many amniotes and plants. Here, we use insects to explore the universality of Murray's Law and to evaluate its predictive power for the wing venation of Lepidoptera, one of the most diverse insect orders. Lepidoptera are particularly relevant to the universality of Murray's Law because their wing veins have tidal, or oscillatory, flow of air and hemolymph. We examined over one thousand wings representing 667 species of Lepidoptera. RESULTS We found that veins with a diameter above approximately 50 microns conform to Murray's Law, with veins below 50 microns in diameter becoming less and less likely to conform to Murray's Law as they narrow. The minute veins that are most likely to deviate from Murray's Law are also the most likely to have atrophied, which prevents efficient fluid transport regardless of branching architecture. However, the veins of many taxa continue to branch distally to the areas where they atrophied, and these too conform to Murray's Law at larger diameters (e.g., Sesiidae). CONCLUSIONS This finding suggests that conformity to Murray's Law in larger taxa may reflect requirements for structural support as much as fluid transport, or may indicate that selective pressures for fluid transport are stronger during the pupal stage-during wing development prior to vein atrophy-than the adult stage. Our results increase the taxonomic scope of Murray's Law and provide greater clarity about the relevance of body size.
Collapse
Affiliation(s)
| | - C. Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, USA
| | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, USA
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Rump MT, Kozma MT, Pawar SD, Derby CD. G protein-coupled receptors as candidates for modulation and activation of the chemical senses in decapod crustaceans. PLoS One 2021; 16:e0252066. [PMID: 34086685 PMCID: PMC8177520 DOI: 10.1371/journal.pone.0252066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Many studies have characterized class A GPCRs in crustaceans; however, their expression in crustacean chemosensory organs has yet to be detailed. Class A GPCRs comprise several subclasses mediating diverse functions. In this study, using sequence homology, we classified all putative class A GPCRs in two chemosensory organs (antennular lateral flagellum [LF] and walking leg dactyls) and brain of four species of decapod crustaceans (Caribbean spiny lobster Panulirus argus, American lobster Homarus americanus, red-swamp crayfish Procambarus clarkii, and blue crab Callinectes sapidus). We identified 333 putative class A GPCRs– 83 from P. argus, 81 from H. americanus, 102 from P. clarkii, and 67 from C. sapidus–which belong to five distinct subclasses. The numbers of sequences for each subclass in the four decapod species are (in parentheses): opsins (19), small-molecule receptors including biogenic amine receptors (83), neuropeptide receptors (90), leucine-rich repeat-containing GPCRs (LGRs) (24), orphan receptors (117). Most class A GPCRs are predominately expressed in the brain; however, we identified multiple transcripts enriched in the LF and several in the dactyl. In total, we found 55 sequences with higher expression in the chemosensory organs relative to the brain across three decapod species. We also identified novel transcripts enriched in the LF including a metabotropic histamine receptor and numerous orphan receptors. Our work establishes expression patterns for class A GPCRs in the chemosensory organs of crustaceans, providing insight into molecular mechanisms mediating neurotransmission, neuromodulation, and possibly chemoreception.
Collapse
Affiliation(s)
- Matthew T. Rump
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shrikant D. Pawar
- Yale Center for Genomic Analysis, Yale University, New Haven, Connecticut, United States of America
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Sigle LT, Hillyer JF. Mosquito Hemocytes Associate With Circulatory Structures That Support Intracardiac Retrograde Hemolymph Flow. Front Physiol 2018; 9:1187. [PMID: 30210361 PMCID: PMC6121077 DOI: 10.3389/fphys.2018.01187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023] Open
Abstract
A powerful immune system protects mosquitoes from pathogens and influences their ability to transmit disease. The mosquito's immune and circulatory systems are functionally integrated, whereby intense immune processes occur in areas of high hemolymph flow. The primary circulatory organ of mosquitoes is the dorsal vessel, which consists of a thoracic aorta and an abdominal heart. In adults of the African malaria mosquito, Anopheles gambiae, the heart periodically alternates contraction direction, resulting in intracardiac hemolymph flowing toward the head (anterograde) and toward the posterior of the abdomen (retrograde). During anterograde contractions, hemolymph enters the dorsal vessel through ostia located in abdominal segments 2-7, and exits through an excurrent opening located in the head. During retrograde contractions, hemolymph enters the dorsal vessel through ostia located at the thoraco-abdominal junction, and exits through posterior excurrent openings located in the eighth abdominal segment. The ostia in abdominal segments 2 to 7-which function in anterograde intracardiac flow-are sites of intense immune activity, as a subset of hemocytes, called periostial hemocytes, respond to infection by aggregating, phagocytosing, and killing pathogens. Here, we assessed whether hemocytes are present and active at two sites important for retrograde intracardiac hemolymph flow: the thoraco-abdominal ostia and the posterior excurrent openings of the heart. We detected sessile hemocytes around both of these structures, and these hemocytes readily engage in phagocytosis. However, they are few in number and a bacterial infection does not induce the aggregation of additional hemocytes at these locations. Finally, we describe the process of hemocyte attachment and detachment to regions of the dorsal vessel involved in intracardiac retrograde flow.
Collapse
Affiliation(s)
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Sigle LT, Hillyer JF. Structural and functional characterization of the contractile aorta and associated hemocytes of the mosquito Anopheles gambiae. J Exp Biol 2018; 221:jeb.181107. [DOI: 10.1242/jeb.181107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022]
Abstract
The primary pump of the circulatory system of insects is a dorsal vessel that traverses the length of the insect. The anterior portion, located in the head, neck and thorax, is the aorta, and the posterior portion, located in the abdomen, is the heart. Here, we characterize the structure and function of the aorta and conical chamber of the mosquito, Anopheles gambiae. The aorta begins in the head with an excurrent opening located above the dorsal pharyngeal plate and ends at the thoraco-abdominal junction where it joins the conical chamber of the heart. The aorta lacks ostia, and based on the diameter of the vessel as well as the density and helical orientation of muscle, is comprised of three regions: the anterior aorta, the bulbous chamber, and the posterior aorta. The aorta contracts in the anterograde direction, but these contractions are independent of heart contractions and do not play a major role in hemolymph propulsion. Intravital imaging of the venous channels, the first abdominal segment and the neck revealed that hemolymph only travels through the aorta in the anterograde direction, and does so only during periods of anterograde heart flow. Furthermore, hemolymph only enters the thoraco-abdominal ostia of the conical chamber when the heart contracts in the retrograde direction, propelling this hemolymph to the posterior of the body. Finally, very few hemocytes associate with the aorta, and unlike what is seen in the periostial regions of the heart, infection does not induce the aggregation of hemocytes on the aorta.
Collapse
Affiliation(s)
- Leah T. Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Antemann V, Pass G, Pflüger HJ. Octopaminergic innervation and a neurohaemal release site in the antennal heart of the locust Schistocerca gregaria. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:131-143. [DOI: 10.1007/s00359-017-1213-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 02/02/2023]
|
10
|
Zhukovskaya MI, Polyanovsky AD. Biogenic Amines in Insect Antennae. Front Syst Neurosci 2017; 11:45. [PMID: 28701930 PMCID: PMC5487433 DOI: 10.3389/fnsys.2017.00045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022] Open
Abstract
Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA) and its metabolic precursor tyramine (TA) affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA) modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.
Collapse
Affiliation(s)
- Marianna I Zhukovskaya
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Biochemistry and Physiology, Russian Academy of SciencesSaint Petersburg, Russia
| | - Andrey D Polyanovsky
- Laboratory of Evolution of Sense Organs, Sechenov Institute of Evolutionary Biochemistry and Physiology, Russian Academy of SciencesSaint Petersburg, Russia
| |
Collapse
|
11
|
Randolf S, Zimmermann D, Aspöck U. Head anatomy of adult Coniopteryx pygmaea: Effects of miniaturization and the systematic position of Coniopterygidae (Insecta: Neuroptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:304-322. [PMID: 28012892 DOI: 10.1016/j.asd.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
External and internal head structures of adult Coniopteryx pygmaea Enderlein, 1906, one of the smallest known lacewings, are described in detail for the first time. Possible effects of miniaturization and two hypotheses on the phylogenetic position of Coniopterygidae are evaluated and compared with data from literature. Several convergent modifications in C. pygmaea and other miniaturized insect species are outlined, e.g., a relative increase in the size of the brain, simplification of the tracheal system with respect to the number of tracheae, and reduction of the number of ommatidia and diameter of the facets. Further, the ocular ridge is bell-shaped and countersunk into the head capsule. The cuticle is weakly sclerotized and equipped with wax glands which are unique in Neuroptera. The total number of muscles is not affected by miniaturization. The phylogenetic analysis yields Coniopterygidae as sistergroup to the dilarid clade based on one larval character, the shape of the stylets. The enforced basal position of Coniopterygidae is supported by one disputable synapomorphy of the remaining Neuroptera, the presence of paraglossae in adults.
Collapse
Affiliation(s)
- Susanne Randolf
- Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria; University of Vienna, Department of Integrative Zoology, Althanstrasse 14, 1090 Vienna, Austria.
| | - Dominique Zimmermann
- Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria; University of Vienna, Department of Integrative Zoology, Althanstrasse 14, 1090 Vienna, Austria.
| | - Ulrike Aspöck
- Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria; University of Vienna, Department of Integrative Zoology, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Meyers JI, Gray M, Kuklinski W, Johnson LB, Snow CD, Black WC, Partin KM, Foy BD. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae. ACTA ACUST UNITED AC 2016; 218:1478-86. [PMID: 25994631 DOI: 10.1242/jeb.118570] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM.
Collapse
Affiliation(s)
- Jacob I Meyers
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523-1617, USA
| | - Meg Gray
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Wojtek Kuklinski
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Lucas B Johnson
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523-1370, USA
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523-1370, USA
| | - William C Black
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| | - Kathryn M Partin
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523-1617, USA
| | - Brian D Foy
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, 1692 Campus Delivery, Fort Collins, CO 80523-1692, USA
| |
Collapse
|
13
|
Hillyer JF. Insect immunology and hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:102-18. [PMID: 26695127 PMCID: PMC4775421 DOI: 10.1016/j.dci.2015.12.006] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA.
| |
Collapse
|
14
|
Sigle LT, Hillyer JF. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:90-101. [PMID: 26526332 DOI: 10.1016/j.dci.2015.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
When a mosquito acquires an infection in the hemocoel, dedicated immune cells called hemocytes aggregate around the valves of the heart. These sessile hemocytes are called periostial hemocytes. In the present study we scrutinized the immune response mounted by the periostial hemocytes of the malaria mosquito, Anopheles gambiae, against bacterial pathogens, and tested the relationship between periostial hemocyte aggregation, immune activity, and hemolymph flow. Initially, we quantified the process of periostial hemocyte aggregation and found that hemocytes migrate to the periostial regions in response to infection with Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus (all infections tested). Then, we investigated whether the periostial hemocytes are evenly distributed along the six periostial regions of the heart, and found that they preferentially aggregate in the periostial regions of the mid-abdominal segments (4, 5 and 6). This distribution perfectly correlates with the spatial distribution of phagocytic activity along the surface of the heart, and to a lesser extent, with the distribution of melanin deposits. Finally, experiments measuring circulatory physiology found that the majority of hemolymph enters the heart through the ostia located in the periostial regions of abdominal segments 4, 5, and 6. These data show that periostial hemocytes aggregate on the surface of the heart in response to diverse foreign stimuli, and that both hemocytes and immune activity preferentially occur in the regions that experience the swiftest hemolymph flow. Thus, these data show that two major organ systems - the immune and circulatory systems - interact to control infections.
Collapse
Affiliation(s)
- Leah T Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
15
|
Chintapalli RTV, Hillyer JF. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito, Anopheles gambiae. J Exp Biol 2016; 219:3945-3951. [DOI: 10.1242/jeb.148254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/06/2016] [Indexed: 01/22/2023]
Abstract
The wings of insects are composed of membranes supported by interconnected veins. Within these veins are epithelial cells, nerves and tracheae, and their maintenance requires the flow of hemolymph. For this purpose, insects employ accessory pulsatile organs (auxiliary hearts) that circulate hemolymph throughout the wings. Here, we used correlative approaches to determine the functional mechanics of hemolymph circulation in the wings of the malaria mosquito, Anopheles gambiae. Examination of sectioned tissues and intravital videos showed that the wing heart is located underneath the scutellum and is separate from the dorsal vessel. It is composed of a single pulsatile diaphragm (indicating that it is unpaired) that contracts at 3 Hz and circulates hemolymph throughout both wings. The wing heart contracts significantly faster than the dorsal vessel, and there is no correlation between the contractions of these two pulsatile organs. The wing heart functions by aspirating hemolymph out of the posterior wing veins, which forces hemolymph into the wings via anterior veins. By tracking the movement of fluorescent microspheres, we show that the flow diameter of the wing circulatory circuit is less than 1 µm, and we present a spatial map detailing the flow of hemolymph across all the wing veins, including the costa, sub-costa, ambient costa, radius, media, cubitus anterior, anal vein, and crossveins. We also quantified the movement of hemolymph within the radius and within the ambient costa, and show that hemolymph velocity and maximum acceleration are higher when hemolymph is exiting the wing.
Collapse
Affiliation(s)
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA, 37205
| |
Collapse
|
16
|
Suggs JM, Jones TH, Murphree CS, Hillyer JF. CCAP and FMRFamide-like peptides accelerate the contraction rate of the antennal accessory pulsatile organs (auxiliary hearts) of mosquitoes. J Exp Biol 2016; 219:2388-95. [DOI: 10.1242/jeb.141655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Insects rely on specialized accessory pulsatile organs (APOs), also known as auxiliary hearts, to propel hemolymph into their antennae. In most insects, this is accomplished via the pulsations of a pair of ampulla located in the head, each of which propels hemolymph across an antenna via an antennal vessel. Once at the distal end of the appendage, hemolymph returns to the head via the antennal hemocoel. Although the structure of the antennal hearts has been elucidated in various insect orders, their hormonal modulation has only been studied in cockroaches and other hemimetabolous insects within the superorder Polyneoptera, where proctolin and FMRFamide-like peptides accelerate the contraction rate of these auxiliary hearts. Here, we assessed the hormonal modulation of the antennal APOs of mosquitoes, a group of holometabolous (Endopterygota) insects within the order Diptera. We show that crustacean cardioactive peptide (CCAP), FMRFamide and SALDKNFMRFamide increase the contraction rate of the antennal APOs and the heart of Anopheles gambiae. Both antennal hearts are synchronously responsive to these neuropeptides, but their contractions are asynchronous with the contraction of the heart. Furthermore, we show that these neuropeptides increase the velocity and maximum acceleration of hemolymph within the antennal space, suggesting that each contraction is also more forceful. To our knowledge, this is the first report demonstrating that hormones of a holometabolous insect modulate the contraction dynamics of an auxiliary heart, and the first report that shows that the hormones of any insect accelerate the velocity of hemolymph in the antennal space.
Collapse
Affiliation(s)
- Julia M. Suggs
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Talitha H. Jones
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biology, Belmont University, Nashville, TN, USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
17
|
Hillyer JF. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Integr Comp Biol 2015; 55:843-55. [DOI: 10.1093/icb/icv021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Ellison HE, Estévez-Lao TY, Murphree CS, Hillyer JF. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase. JOURNAL OF INSECT PHYSIOLOGY 2015; 74:1-9. [PMID: 25640058 DOI: 10.1016/j.jinsphys.2015.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology.
Collapse
Affiliation(s)
- Haley E Ellison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biology, Belmont University, Nashville, TN, USA
| | - Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
League GP, Onuh OC, Hillyer JF. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae. ACTA ACUST UNITED AC 2014; 218:370-80. [PMID: 25524976 DOI: 10.1242/jeb.114942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hemolymph circulation in insects is driven primarily by the contractile action of a dorsal vessel, which is divided into an abdominal heart and a thoracic aorta. As holometabolous insects, mosquitoes undergo striking morphological and physiological changes during metamorphosis. This study presents a comprehensive structural and functional analysis of the larval and adult dorsal vessel in the malaria mosquito Anopheles gambiae. Using intravital video imaging we show that, unlike the adult heart, the larval heart contracts exclusively in the anterograde direction and does not undergo heartbeat directional reversals. The larval heart contracts 24% slower than the adult heart, and hemolymph travels across the larval dorsal vessel at a velocity that is 68% slower than what is seen in adults. By fluorescently labeling muscle tissue we show that although the general structure of the heart and its ostia are similar across life stages, the heart-associated alary muscles are significantly less robust in larvae. Furthermore, unlike the adult ostia, which are the entry points for hemolymph into the heart, the larval ostia are almost entirely lacking in incurrent function. Instead, hemolymph enters the larval heart through incurrent openings located at the posterior terminus of the heart. These posterior openings are structurally similar across life stages, but in adults have an opposite, excurrent function. Finally, the larval aorta and heart differ significantly in the arrangement of their cardiomyocytes. In summary, this study provides an in-depth developmental comparison of the circulatory system of larval and adult mosquitoes.
Collapse
Affiliation(s)
- Garrett P League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ogechukwu C Onuh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|