1
|
Hua QQH, Young C, Pukala TL, Martino JC, Hoffmann P, Gillanders BM, Doubleday ZA. Better late than never: Optimising the proteomic analysis of field-collected octopus. PLoS One 2023; 18:e0288084. [PMID: 37437086 DOI: 10.1371/journal.pone.0288084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023] Open
Abstract
Proteomics, the temporal study of proteins expressed by an organism, is a powerful technique that can reveal how organisms respond to biological perturbations, such as disease and environmental stress. Yet, the use of proteomics for addressing ecological questions has been limited, partly due to inadequate protocols for the sampling and preparation of animal tissues from the field. Although RNAlater is an ideal alternative to freezing for tissue preservation in transcriptomics studies, its suitability for the field could be more broadly examined. Moreover, existing protocols require samples to be preserved immediately to maintain protein integrity, yet the effects of delays in preservation on proteomic analyses have not been thoroughly tested. Hence, we optimised a proteomic workflow for wild-caught samples. First, we conducted a preliminary in-lab test using SDS-PAGE analysis on aquaria-reared Octopus berrima confirming that RNAlater can effectively preserve proteins up to 6 h after incubation, supporting its use in the field. Subsequently, we collected arm tips from wild-caught Octopus berrima and preserved them in homemade RNAlater immediately, 3 h, and 6 h after euthanasia. Processed tissue samples were analysed by liquid chromatography tandem mass spectrometry to ascertain protein differences between time delay in tissue preservation, as well as the influence of sex, tissue type, and tissue homogenisation methods. Over 3500 proteins were identified from all tissues, with bioinformatic analysis revealing protein abundances were largely consistent regardless of sample treatment. However, nearly 10% additional proteins were detected from tissues homogenised with metal beads compared to liquid nitrogen methods, indicating the beads were more efficient at extracting proteins. Our optimised workflow demonstrates that sampling non-model organisms from remote field sites is achievable and can facilitate extensive proteomic coverage without compromising protein integrity.
Collapse
Affiliation(s)
- Qiaz Q H Hua
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Clifford Young
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
- Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Tara L Pukala
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jasmin C Martino
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
- Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bronwyn M Gillanders
- Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Zoe A Doubleday
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| |
Collapse
|
2
|
Andersen Ø, Johnsen H, Wittmann AC, Harms L, Thesslund T, Berg RS, Siikavuopio S, Mykles DL. De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia - Temperature effects on expression of molting and growth regulatory genes in adult red king crab. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110678. [PMID: 34655763 DOI: 10.1016/j.cbpb.2021.110678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) are deep-sea crustaceans widely distributed in the North Pacific and Northwest Atlantic Oceans. These giant predators have invaded the Barents Sea over the past decades, and climate-driven temperature changes may influence their distribution and abundance in the sub-Arctic region. Molting and growth in crustaceans are strongly affected by temperature, but the underlying molecular mechanisms are little known, particularly in cold-water species. Here, we describe multiple regulatory factors in the two high-latitude crabs by developing de novo transcriptomes from the molting gland (Y-organ or YO) and eye stalk ganglia (ESG), in addition to the hepatopancreas and claw muscle of red king crab. The Halloween genes encoding the ecdysteroidogenic enzymes were expressed in YO, and the ESG contained multiple neuropeptides, including molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), and ion-transport peptide (ITP). Both crabs expressed a diversity of growth-related factors, such as mTOR, AKT, Rheb and AMPKα, and stress-responsive factors, including multiple heat shock proteins (HSPs). Temperature effects on the expression of key regulatory genes were quantified by qPCR in adult red king crab males kept at 4 °C or 10 °C for two weeks during intermolt. The Halloween genes tended to be upregulated in YO at high temperature, while the ecdysteroid receptor and several growth regulators showed tissue-specific responses to elevated temperature. Constitutive and heat-inducible HSPs were expressed in an inverse temperature-dependent manner, suggesting that adult red king crabs can acclimate to increased water temperatures.
Collapse
Affiliation(s)
- Øivind Andersen
- Nofima, Tromsø NO-9291, Norway; Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, 1433 Ås, Norway.
| | - Hanne Johnsen
- Nofima, Tromsø NO-9291, Norway; Norwegian Polar Institute, 9296 Tromsø, Norway
| | - Astrid C Wittmann
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Lars Harms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | | | | | | | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
3
|
Bedulina D, Drozdova P, Gurkov A, von Bergen M, Stadler PF, Luckenbach T, Timofeyev M, Kalkhof S. Proteomics reveals sex-specific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143008. [PMID: 33187699 DOI: 10.1016/j.scitotenv.2020.143008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The ancient Lake Baikal is the largest source of liquid freshwater on Earth and home to a unique fauna. Several hundred mostly cold-adapted endemic amphipod species inhabit Baikal, an ecosystem that is already being influenced by global change. In this study, we characterized the core proteome and heat stress-induced changes in a temperature-tolerant endemic amphipod, Eulimnogammarus cyaneus, using a proteogenomic approach (PRIDE dataset PXD013237) to unravel the molecular mechanisms of the observed adverse effects. As males were previously found to be much more tolerant to thermal stress, we placed special emphasis on differences between the sexes. For both sexes, we observed adaption of energy metabolism, cytoskeleton, lipid, and carbohydrate metabolism upon heat stress. In contrast, significant differences were determined in the molecular chaperone response. Females from the control conditions possessed significantly higher levels of heat shock proteins (HSP70, HSPb1, Hsc70-3), which, in contrast to males, were not further increased in response to heat stress. The inability of females to further increase heat shock protein synthesis in response to temperature stress may be due to sex-specific processes, such as egg production, requiring a large proportion of the available energy. As ovigerous females synthesize generally higher amounts of protein, they also need higher levels of molecular chaperones for the folding of these new proteins. Thus, the higher sensitivity of females to heat shock may be due to the lack of molecular chaperone molecules to counteract the heat-induced protein denaturation.
Collapse
Affiliation(s)
- Daria Bedulina
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia.
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Interdisciplinary Center for Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany; Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.; Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Ciudad Universitaria, 111321 Bogotá, D.C., Colombia; Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM87501, USA
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Lenin str. 3, Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, Irkutsk, Russia
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Dept. Cell Engineering, Perlickstr. 1, 04103 Leipzig, Germany; Institute of Bioanalysis, University of Applied Sciences and Arts of Coburg, Friedrich-Streib-Str. 2, 96450 Coburg, Germany
| |
Collapse
|
4
|
Madeira D, Araújo JE, Madeira C, Mendonça V, Vitorino R, Vinagre C, Diniz MS. Seasonal proteome variation in intertidal shrimps under a natural setting: Connecting molecular networks with environmental fluctuations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134957. [PMID: 31767328 DOI: 10.1016/j.scitotenv.2019.134957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The ability of intertidal organisms to maintain their performance via molecular and physiological adjustments under low tide, seasonal fluctuations and extreme events ultimately determines population viability. Analyzing this capacity in the wild is extremely relevant since intertidal communities are under increased climate variability owing to global changes. We addressed the seasonal proteome signatures of a key intertidal species, the shrimp Palaemon elegans, in a natural setting. Shrimps were collected during spring and summer seasons at low tides and were euthanized in situ. Environmental variability was also assessed using hand-held devices and data loggers. Muscle samples were taken for 2D gel electrophoresis and protein identification through mass spectrometry. Proteome data revealed that 55 proteins (10.6% of the proteome) significantly changed between spring and summer collected shrimps, 24 of which were identified. These proteins were mostly involved in cytoskeleton remodelling, energy metabolism and transcription regulation. Overall, shrimps modulate gene expression leading to metabolic and structural adjustments related to seasonal differences in the wild (i.e. abiotic variation and possibly intrinsic cycles of reproduction and growth). This potentially promotes performance and fitness as suggested by the higher condition index in summer-collected shrimps. However, inter-individual variation (% coefficient of variation) in protein levels was quite low (min-max ranges were 0.6-8.3% in spring and 1.2-4.8% in summer), possibly suggesting reduced genetic diversity or physiological canalization. Protein plasticity is relevant to cope with present and upcoming environmental variation related to anthropogenic forcing (e.g. global change, pollution) but low inter-individual variation may limit evolutionary potential of shrimp populations.
Collapse
Affiliation(s)
- D Madeira
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Centre for Environmental and Marine Studies (CESAM), ECOMARE & Department of Biology, University of Aveiro, Estrada do Porto de Pesca, 3830-565 Gafanha da Nazaré, Portugal.
| | - J E Araújo
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - C Madeira
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - V Mendonça
- Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - R Vitorino
- Institute for Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Cardiovascular Research Centre (UnIC), Department of Cardiothoracic Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - C Vinagre
- Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - M S Diniz
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Königer A, Grath S. Transcriptome Analysis Reveals Candidate Genes for Cold Tolerance in Drosophila ananassae. Genes (Basel) 2018; 9:genes9120624. [PMID: 30545157 PMCID: PMC6315829 DOI: 10.3390/genes9120624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
Coping with daily and seasonal temperature fluctuations is a key adaptive process for species to colonize temperate regions all over the globe. Over the past 18,000 years, the tropical species Drosophila ananassae expanded its home range from tropical regions in Southeast Asia to more temperate regions. Phenotypic assays of chill coma recovery time (CCRT) together with previously published population genetic data suggest that only a small number of genes underlie improved cold hardiness in the cold-adapted populations. We used high-throughput RNA sequencing to analyze differential gene expression before and after exposure to a cold shock in cold-tolerant lines (those with fast chill coma recovery, CCR) and cold-sensitive lines (slow CCR) from a population originating from Bangkok, Thailand (the ancestral species range). We identified two candidate genes with a significant interaction between cold tolerance and cold shock treatment: GF14647 and GF15058. Further, our data suggest that selection for increased cold tolerance did not operate through the increased activity of heat shock proteins, but more likely through the stabilization of the actin cytoskeleton and a delayed onset of apoptosis.
Collapse
Affiliation(s)
- Annabella Königer
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
6
|
Bowman LL, Kondrateva ES, Timofeyev MA, Yampolsky LY. Temperature gradient affects differentiation of gene expression and SNP allele frequencies in the dominant Lake Baikal zooplankton species. Mol Ecol 2018; 27:2544-2559. [PMID: 29691934 DOI: 10.1111/mec.14704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022]
Abstract
Local adaptation and phenotypic plasticity are main mechanisms of organisms' resilience in changing environments. Both are affected by gene flow and are expected to be weak in zooplankton populations inhabiting large continuous water bodies and strongly affected by currents. Lake Baikal, the deepest and one of the coldest lakes on Earth, experienced epilimnion temperature increase during the last 100 years, exposing Baikal's zooplankton to novel selective pressures. We obtained a partial transcriptome of Epischura baikalensis (Copepoda: Calanoida), the dominant component of Baikal's zooplankton, and estimated SNP allele frequencies and transcript abundances in samples from regions of Baikal that differ in multiyear average surface temperatures. The strongest signal in both SNP and transcript abundance differentiation is the SW-NE gradient along the 600+ km long axis of the lake, suggesting isolation by distance. SNP differentiation is stronger for nonsynonymous than synonymous SNPs and is paralleled by differential survival during a laboratory exposure to increased temperature, indicating directional selection operating on the temperature gradient. Transcript abundance, generally collinear with the SNP differentiation, shows samples from the warmest, less deep location clustering together with the southernmost samples. Differential expression is more frequent among transcripts orthologous to candidate thermal response genes previously identified in model arthropods, including genes encoding cytoskeleton proteins, heat-shock proteins, proteases, enzymes of central energy metabolism, lipid and antioxidant pathways. We conclude that the pivotal endemic zooplankton species in Lake Baikal exists under temperature-mediated selection and possesses both genetic variation and plasticity to respond to novel temperature-related environmental pressures.
Collapse
Affiliation(s)
- Larry L Bowman
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Elizaveta S Kondrateva
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Maxim A Timofeyev
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk, Russia
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
7
|
Madeira D, Araújo JE, Vitorino R, Costa PM, Capelo JL, Vinagre C, Diniz MS. Molecular Plasticity under Ocean Warming: Proteomics and Fitness Data Provides Clues for a Better Understanding of the Thermal Tolerance in Fish. Front Physiol 2017; 8:825. [PMID: 29109689 PMCID: PMC5660107 DOI: 10.3389/fphys.2017.00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/06/2017] [Indexed: 11/24/2022] Open
Abstract
Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata, taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C). Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR), and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning). However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - José E. Araújo
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro M. Costa
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José L. Capelo
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Mário S. Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Cruzen SM, Baumgard LH, Gabler NK, Pearce SC, Lonergan SM. Temporal proteomic response to acute heat stress in the porcine muscle sarcoplasm1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
9
|
Bedulina D, Meyer MF, Gurkov A, Kondratjeva E, Baduev B, Gusdorf R, Timofeyev MA. Intersexual differences of heat shock response between two amphipods ( Eulimnogammarus verrucosus and Eulimnogammarus cyaneus) in Lake Baikal. PeerJ 2017; 5:e2864. [PMID: 28243524 PMCID: PMC5322754 DOI: 10.7717/peerj.2864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Acute temperature fluctuations are common in surface waters, and aquatic organisms may manifest physiological responses to punctuated temperature spikes long before behavioral responses. Ectotherms, especially cryophilic stenotherms such as those endemic to Lake Baikal (Siberia), may demonstrate specialized physiological responses to acute temperature increases because their proteomes have evolved to function most efficiently at lower temperatures (e.g., <10 °C). Therefore, our study questioned the nature and degree of variation in physiological response to acute thermal stress in two congenerous, endemic Baikal amphipod species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus. We hypothesized that because interspecific and intersexual thermosensitivity varies significantly among ectotherms, there would be divergent intersexual and interspecific strategies to withstand acute thermal stress, manifested in different protein compositions and concentrations. We exposed individuals to the species’ respective LT50 for one hour followed by a three-hour recovery period. We then performed 1D-PAGE, Western blotting, 2D-PAGE, and Mass Spectrometry techniques and assessed relative intersexual and interspecific changes in proteomic composition and heat shock protein 70 level. Our results demonstrate that females tend to be more sensitive to an acute thermal stimulus than males, most likely because females allocate significant energy to reproduction and less to heat shock response, evidenced by females’ significantly lower LT50time. Lower level of Hsp70 was found in females of the thermosensitive E. verrucosus compared to males of this species. No intersexual differences were found in Hsp70 level in thermotolerant E. cyaneus. Higher levels of hemocyanin subunits and arginine kinase were found in E. cyaneus females after heat shock and recovery compared to males, which was not found for E. verrucosus, suggesting interspecific mechanisms for E. cyaneus’s higher thermotolerance. These differing responses between species and sexes of Baikal amphipods may reflect more general strategies for maintaining homeostatic conditions during acute thermal stress. As mean surface water temperatures increase worldwide, the net efficiency and efficacy of these strategies could give rise to long term changes in physiology, behavior, and interactions with other species, potentially precipitating population and community level alterations.
Collapse
Affiliation(s)
- Daria Bedulina
- Institute of Biology, Irkutsk State University , Irkutsk , Russia
| | - Michael F Meyer
- School of the Environment, Washington State University , Pullman , WA , USA
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, Irkutsk, Russia; Baikal Research Centre, Irkutsk, Russia
| | | | - Boris Baduev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia; Baikal Research Centre, Irkutsk, Russia
| | - Roman Gusdorf
- University of Notre Dame , Notre Dame , United States
| | | |
Collapse
|
10
|
Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-lethal heat stress in the salt marsh mussel Geukensia demissa. ACTA ACUST UNITED AC 2016; 219:2673-86. [PMID: 27335449 DOI: 10.1242/jeb.141176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023]
Abstract
Acute heat stress perturbs cellular function on a variety of levels, leading to protein dysfunction and aggregation, oxidative stress and loss of metabolic homeostasis. If these challenges are not overcome quickly, the stressed organism can die. To better understand the earliest tissue-level responses to heat stress, we examined the proteomic response of gill from Geukensia demissa, an extremely eurythermal mussel from the temperate intertidal zone of eastern North America. We exposed 15°C-acclimated individuals to an acute near-lethal heat stress (45°C) for 1 h, and collected gill samples from 0 to 24 h of recovery. The changes in protein expression we found reveal a coordinated physiological response to acute heat stress: proteins associated with apoptotic processes were increased in abundance during the stress itself (i.e. at 0 h of recovery), while protein chaperones and foldases increased in abundance soon after (3 h). The greatest number of proteins changed abundance at 6 h; these included oxidative stress proteins and enzymes of energy metabolism. Proteins associated with the cytoskeleton and extracellular matrix also changed in abundance starting at 6 h, providing evidence of cell proliferation, migration and tissue remodeling. By 12 h, the response to acute heat stress was diminishing, with fewer stress and structural proteins changing in abundance. Finally, the proteins with altered abundances identified at 24 h suggest a return to the pre-stress anabolic state.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | | | - Kelly M Cox
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| | - Kelly R Karch
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA
| |
Collapse
|
11
|
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Sci Rep 2016; 6:30975. [PMID: 27487917 PMCID: PMC4973280 DOI: 10.1038/srep30975] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023] Open
Abstract
Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates.
Collapse
|
12
|
Madeira D, Araújo JE, Vitorino R, Capelo JL, Vinagre C, Diniz MS. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach. ENVIRONMENTAL RESEARCH 2016; 148:164-176. [PMID: 27062348 DOI: 10.1016/j.envres.2016.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species.
Collapse
Affiliation(s)
- D Madeira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - J E Araújo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - R Vitorino
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - J L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - C Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M S Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
13
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 1. structure, biosynthesis, and evolution. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Williams CM, Buckley LB, Sheldon KS, Vickers M, Pörtner HO, Dowd WW, Gunderson AR, Marshall KE, Stillman JH. Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter. Integr Comp Biol 2016; 56:73-84. [PMID: 27252194 DOI: 10.1093/icb/icw013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermal performance curves enable physiological constraints to be incorporated in predictions of biological responses to shifts in mean temperature. But do thermal performance curves adequately capture the biological impacts of thermal extremes? Organisms incur physiological damage during exposure to extremes, and also mount active compensatory responses leading to acclimatization, both of which alter thermal performance curves and determine the impact that current and future extremes have on organismal performance and fitness. Thus, these sub-lethal responses to extreme temperatures potentially shape evolution of thermal performance curves. We applied a quantitative genetic model and found that beneficial acclimatization and cumulative damage alter the extent to which thermal performance curves evolve in response to thermal extremes. The impacts of extremes on the evolution of thermal performance curves are reduced if extremes cause substantial mortality or otherwise reduce fitness differences among individuals. Further empirical research will be required to understand how responses to extremes aggregate through time and vary across life stages and processes. Such research will enable incorporating passive and active responses to sub-lethal stress when predicting the impacts of thermal extremes.
Collapse
Affiliation(s)
| | | | | | - Mathew Vickers
- Station d'Ecologie Théorique et Expérimentale, Moulis, 09200, UMR 5321, CNRS 2 route du CNRS, France
| | - Hans-Otto Pörtner
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremerhaven, Germany
| | - W Wesley Dowd
- Loyola Marymount University, Los Angeles, CA, USA 90045
| | - Alex R Gunderson
- *University of California, Berkeley, CA, USA 94720 San Francisco State University, Tiburon, CA, USA 94132
| | | | | |
Collapse
|
15
|
Time course of lead induced proteomic changes in gill of the Antarctic limpet Nacella Concinna (Gastropoda: Patellidae). J Proteomics 2016; 151:145-161. [PMID: 27126604 DOI: 10.1016/j.jprot.2016.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/06/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The effect of increasing levels of metals from anthropogenic sources on Antarctic invertebrates is poorly understood. Here we exposed limpets (Nacella concinna) to 0, 0.12 and 0.25 μg L− 1 lead for 12, 24, 48 and 168 h. We subsequently quantified the changes in protein abundance from gill, using 2D gel electrophoresis and mass spectrometry. We identified several antioxidant proteins, including the metal binding Mn-superoxide dismutase and ferritin, increasing abundances early on. Chaperones involved in the redox-dependent maturation of proteins in the endoplasmic reticulum (ER) showed higher abundance with lead at 48 h. Lead also increased the abundance of Zn-binding carbonic anhydrase at 12 h, suggesting a challenge to acid-base balance. Metabolic proteins increased abundance at 168 h, suggesting a greater ATP demand during prolonged exposure. Changes in abundance of the small G-protein cdc42, a signaling protein modifying cytoskeleton, increased early and subsequently reversed during prolonged exposure, possibly leading to the modification of thick filament structure and function. We hypothesize that the replacement of metals initially affected antioxidant proteins and increased the production of reactive oxygen species. This disrupted the redox-sensitive maturation of proteins in the ER and caused increased ATP demand later on, accompanied by changes in cytoskeleton. SIGNIFICANCE Proteomic analysis of gill tissue in Antarctic limpets exposed to different concentrations of lead (Pb) over a 168 h time period showed that proteomic changes vary with time. These changes included an increase in the demand of scavenging reactive oxygen species, acid-base balance and a challenge to protein homeostasis in the endoplasmic reticulum early on and subsequently an increase in energy metabolism, cellular signaling, and cytoskeletal modifications. Based on this time course, we hypothesize that the main mode of action of lead is a replacement of metal-cofactors of key enzymes involved in the scavenging of reactive oxygen species and the regulation of acid-base balance.
Collapse
|
16
|
Jayasundara N, Tomanek L, Dowd WW, Somero GN. Proteomic analysis of cardiac response to thermal acclimation in the eurythermal goby fish Gillichthys mirabilis. ACTA ACUST UNITED AC 2016; 218:1359-72. [PMID: 25954043 DOI: 10.1242/jeb.118760] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac function is thought to play a central role in determining thermal optima and tolerance limits in teleost fishes. Investigating proteomic responses to temperature in cardiac tissues may provide insights into mechanisms supporting the thermal plasticity of cardiac function. Here, we utilized a global proteomic analysis to investigate changes in cardiac protein abundance in response to temperature acclimation (transfer from 13°C to 9, 19 and 26°C) in a eurythermal goby, Gillichthys mirabilis. Proteomic data revealed 122 differentially expressed proteins across acclimation groups, 37 of which were identified using tandem mass-spectrometry. These 37 proteins are involved in energy metabolism, mitochondrial regulation, iron homeostasis, cytoprotection against hypoxia, and cytoskeletal organization. Compared with the 9 and 26°C groups, proteins involved in energy metabolism increased in 19°C-acclimated fish, indicating an overall increase in the capacity for ATP production. Creatine kinase abundance increased in 9°C-acclimated fish, suggesting an important role for the phosphocreatine energy shuttle in cold-acclimated hearts. Both 9 and 26°C fish also increased abundance of hexosaminidase, a protein directly involved in post-hypoxia stress cytoprotection of cardiac tissues. Cytoskeletal restructuring appears to occur in all acclimation groups; however, the most prominent effect was detected in 26°C-acclimated fish, which exhibited significantly increased actin levels. Overall, proteomic analysis of cardiac tissue suggests that the capacity to adjust ATP-generating processes is crucial to the thermal plasticity of cardiac function. Furthermore, G. mirabilis may optimize cellular functions at temperatures near 19°C, which lies within the species' preferred temperature range.
Collapse
Affiliation(s)
- Nishad Jayasundara
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Lars Tomanek
- Biological Sciences Department, 1 Grand Avenue, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - W Wesley Dowd
- Loyola Marymount University, Department of Biology, 1 LMU Drive, MS 8220, Los Angeles, CA 90045, USA
| | - George N Somero
- Stanford University, Hopkins Marine Station, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
17
|
Smith VJ, Dyrynda EA. Antimicrobial proteins: From old proteins, new tricks. Mol Immunol 2015; 68:383-98. [PMID: 26320628 DOI: 10.1016/j.molimm.2015.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis.
Collapse
Affiliation(s)
- Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB Scotland, UK.
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity & Biotechnology, School of Life Sciences, Heriot Watt University, Edinburgh, EH14 4AS Scotland, UK
| |
Collapse
|