1
|
Roberts NS, Jones M, Shah F, Butt TM, Allen WL. Modeling spatial acuity improves trap capture of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:5. [PMID: 40358518 PMCID: PMC12070478 DOI: 10.1093/jisesa/ieaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Colored sticky traps are used for management of many common agricultural insect pests. Several recent studies have shown that traps can be improved by systematically considering properties of color vision for the target species. In the current study, we extend this approach to spatial vision, using information about the interommatidial angle of an agriculturally important insect pest, western flower thrips Frankliniella occidentalis (Pergande), to predict spatial resolution capabilities for a yellow flower pattern across a range of viewing distances. We tested the hypothesis that pattern sizes matching the spatial resolution capabilities of western flower thrips at a given viewing distance would outperform traps with mismatched pattern sizes by measuring the number of western flower thrips caught on sticky traps containing differently sized flower patterns resolvable at 5, 10, or 20 cm. We found an interaction between pattern size and viewing distance, with significantly more western flower thrips caught on traps when the predicted resolvable distance of the pattern matched the distance traps were placed from a central release point. We further tested the range over which trap patterns are effective in more complex viewing environments using commercial polytunnels. In polytunnel trials, we found that increasing the resolvable distance of patterns increased western flower thrips capture up to approximately 26 cm, after which western flower thrips capture decreased up to the maximal visible range tested (50 cm) in the absence of additional sensory cues. Together, these results show the utility of considering spatial vision in improving trap performance and offers functional insights to improve pest management in visual trap design.
Collapse
Affiliation(s)
- Natalie S Roberts
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Department of Biology, Lund University, Lund, Sweden
| | - Madelyn Jones
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Farooq Shah
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Razbio Limited, Bridgend, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - William L Allen
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
| |
Collapse
|
2
|
Cryan DM, Vaughn KM, Caves EM. Nocturnal Cleaning Interactions Between the Giant Moray ( Gymnothorax javanicus) and the Clear Cleaner Shrimp ( Urocaridella antonbruunii). Ecol Evol 2024; 14:e70589. [PMID: 39717640 PMCID: PMC11664319 DOI: 10.1002/ece3.70589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
We observed a novel, nocturnal cleaning interaction between a cleaner shrimp (Genus Urocaridella) and the giant moray eel (Gymnothorax javanicus) on a lagoonal patch reef in Moorea, French Polynesia. Over the course of an 85-min foraging bout (recorded on video by a snorkeler), we observed three separate, stereotyped cleaning interactions between G. javanicus and a cleaner shrimp in the genus Urocaridella (which surveys of Moorea biodiversity previously visually identified as Urocaridella antonbruunii). During these interactions, the shrimp would slowly crawl along one of the eel's flanks towards its head, enter its mouth, emerge on the other side of its head, then crawl back towards the reef along the eel's opposite flank, often causing it to jolt in response. On each of the visits, the moray spent roughly 9-12 min at the cleaning station and was observed being cleaned for a total of 62 s. Although this was a chance observation of only a few instances of cleaning, it may have several important implications for our understanding of the behavioral ecology of cleaning mutualisms, including (1) indicating potential temporal trade-offs between being cleaned and foraging in eels, (2) suggesting a degree of temporal niche partitioning among sympatric cleaner species and (3) updating our understanding of cleaner-client communication, given the nocturnal nature of our observations.
Collapse
Affiliation(s)
| | | | - Eleanor M. Caves
- Department of Ecology, Evolution, and Organismal BiologyBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
3
|
Moreno VM, Schweikert LE. Visual acuity of the summer flounder (Paralichthys dentatus) captures spatial information relevant to dynamic camouflage at close range. Anat Rec (Hoboken) 2024. [PMID: 39096041 DOI: 10.1002/ar.25543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Dynamic camouflage is the capacity to rapidly change skin color and pattern, often for the purpose of background-matching camouflage. Summer flounder (Paralichthys dentatus) are demersal fish with an exceptional capacity for dynamic camouflage, but with eyes that face away from the substrate, it is unknown if this behavior is mediated by vision. Past studies have shown that summer flounder skin can match the pattern (i.e., spatial detail) of substrate with a high degree of precision, and for that to be achieved using sight, one testable assumption is that the resolution of vision must match the degree of detail produced in color-change performance. To test this, approaches in morphology and behavior were used to estimate visual acuity, which is the capacity of the visual system to resolve static spatial detail. Using image processing techniques, we then compared the degree of spatial detail from a relevant substrate with what may be detectable by summer flounder spatial vision. The morphological and behavioral estimates of visual acuity were calculated as 3.62 cycles per degree (CPD) ± 0.8 (s.d.) and 4.06 CPD ± 0.4 (s.d.), respectively. These estimates fall within a range of acuities known among other flatfishes and appear adequate for detecting the spatial information needed for background-matching camouflage, though only at close distances. These data provide new knowledge about summer flounder visual acuity and suggest the capacity of flounder vision to support dynamic camouflage of the skin.
Collapse
Affiliation(s)
- Vanessa M Moreno
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Lorian E Schweikert
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
4
|
Boussard A, Garate-Olaizola M, Fong S, Kolm N. Eye Size Does Not Change with Artificial Selection on Relative Telencephalon Size in Guppies (Poecilia reticulata). BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:212-221. [PMID: 39043150 PMCID: PMC11614305 DOI: 10.1159/000540491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Variation in eye size is sometimes closely associated with brain morphology. Visual information, detected by the retina, is transferred to the optic tectum to coordinate eye and body movements towards stimuli and thereafter distributed into other brain regions for further processing. The telencephalon is an important visual processing region in many vertebrate species and a highly developed region in visually dependent species. Yet, the existence of a coevolutionary relationship between telencephalon size and eye size remains relatively unknown. METHODS Here, we use male and female guppies artificially selected for small- and large-relative-telencephalon-size to test if artificial selection on telencephalon size results in changes in eye size. In addition, we performed an optomotor test as a proxy for visual acuity. RESULTS We found no evidence that eye size changes with artificial selection on telencephalon size. Eye size was similar in both absolute and relative terms between the two selection regimes but was larger in females. This is most likely because of the larger body size in females, but it could also reflect their greater need for visual capacity due to sex-specific differences in foraging and mating behaviour. Although the optomotor response was stronger in guppies with a larger telencephalon, we found no evidence for differences in visual acuity between the selection regimes. CONCLUSION Our study suggests that eye size and visual perception in guppies do not change rapidly with strong artificial selection on telencephalon size.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Maddi Garate-Olaizola
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
5
|
Hemingson CR, Cowman PF, Bellwood DR. Analysing biological colour patterns from digital images: An introduction to the current toolbox. Ecol Evol 2024; 14:e11045. [PMID: 38500859 PMCID: PMC10945235 DOI: 10.1002/ece3.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
Understanding the numerous roles that colouration serves in the natural world has remained a central focus in many evolutionary and ecological studies. However, to accurately characterise and then compare colours or patterns among individuals or species has been historically challenging. In recent years, there have been a myriad of new resources developed that allow researchers to characterise biological colours and patterns, specifically from digital imagery. However, each resource has its own strengths and weaknesses, answers a specific question and requires a detailed understanding of how it functions to be used properly. These nuances can make navigating this emerging field rather difficult. Herein, we evaluate several new techniques for analysing biological colouration, with a specific focus on digital images. First, we introduce fundamental background knowledge about light and perception to be considered when designing and implementing a study of colouration. We then show how numerous modifications can be made to images to ensure consistent formatting prior to analysis. After, we describe many of the new image analysis approaches and their respective functions, highlighting the type of research questions that they can address. We demonstrate how these various techniques can be brought together to examine novel research questions and test specific hypotheses. Finally, we outline potential future directions in colour pattern studies. Our goal is to provide a starting point and pathway for researchers wanting to study biological colour patterns from digital imagery.
Collapse
Affiliation(s)
- Christopher R. Hemingson
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Peter F. Cowman
- Biodiversity and Geosciences Program, Queensland Museum TropicsTownsvilleQueenslandAustralia
| | - David R. Bellwood
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
6
|
Qian R, Frank TM. Comparative study of spectral sensitivity, irradiance sensitivity, spatial resolution and temporal resolution in the visual systems of Ocypode quadrata and Aratus pisonii. J Exp Biol 2024; 227:jeb246813. [PMID: 38149660 DOI: 10.1242/jeb.246813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Early pioneering studies by Autrum on terrestrial arthropods first revealed that the visual systems of arthropods reflected their lifestyles and habitats. Subsequent studies have examined and confirmed Autrum's hypothesis that visual adaptions are driven by predator-prey interactions and activity cycles, with rapidly moving predatory diurnal species generally possessing better temporal resolution than slower moving nocturnal species. However, few studies have compared the vision between diurnal herbivores and nocturnal predators. In this study, the visual physiology of a nocturnal fast-moving predatory crab, the Atlantic ghost crab (Ocypode quadrata) and a diurnal herbivorous crab, the mangrove tree crab (Aratus pisonii), was examined. Spectral sensitivity, irradiance sensitivity and temporal resolution of the crabs were quantified using the electroretinogram (ERG), while the spatial resolution was calculated utilizing morphological methods. Both O. quadrata and A. pisonii had a single dark-adapted spectral sensitivity peak (494 and 499 nm, respectively) and chromatic adaptation had no effect on their spectral sensitivity, indicating that both species have monochromatic visual systems. The temporal resolution of O. quadrata was not significantly different from that of A. pisonii, but O. quadrata did possess a significantly greater spatial resolution and irradiance sensitivity. Both species possess an acute zone in the anterior region of their eyes. The data presented in this study will aid in the current understanding of the correlation between visual physiology and the life history of the animal.
Collapse
Affiliation(s)
- Ruchao Qian
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Tamara M Frank
- Halmos College of Natural Sciences and Oceanography, Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, FL 33004, USA
| |
Collapse
|
7
|
Wright DS, Manel AN, Guachamin-Rosero M, Chamba-Vaca P, Bacquet CN, Merrill RM. Quantifying visual acuity in Heliconius butterflies. Biol Lett 2023; 19:20230476. [PMID: 38087940 PMCID: PMC10716659 DOI: 10.1098/rsbl.2023.0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Heliconius butterflies are well-known for their colourful wing patterns, which advertise distastefulness to potential predators and are used during mate choice. However, the relative importance of different aspects of these signals will depend on the visual abilities of Heliconius and their predators. Previous studies have investigated colour sensitivity and neural anatomy, but visual acuity (the ability to perceive detail) has not been studied in these butterflies. Here, we provide the first estimate of visual acuity in Heliconius: from a behavioural optomotor assay, we found that mean visual acuity = 0.49 cycles-per-degree (cpd), with higher acuity in males than females. We also examined eye morphology and report more ommatidia in male eyes. Finally, we estimated how visual acuity affects Heliconius visual perception compared to a potential avian predator. Whereas the bird predator maintained high resolving power, Heliconius lost the ability to resolve detail at greater distances, though colours may remain salient. These results will inform future studies of Heliconius wing pattern evolution, as well as other aspects in these highly visual butterflies, which have emerged as an important system in studies of adaptation and speciation.
Collapse
Affiliation(s)
- Daniel Shane Wright
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Anupama Nayak Manel
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Michelle Guachamin-Rosero
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Pamela Chamba-Vaca
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | | | - Richard M. Merrill
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Bshary R, Noë R. A marine cleaning mutualism provides new insights in biological market dynamics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210501. [PMID: 36934753 PMCID: PMC10024986 DOI: 10.1098/rstb.2021.0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/22/2023] [Indexed: 03/21/2023] Open
Abstract
Most mutually beneficial social interactions (cooperation within species, mutualism between species) involve some degree of partner choice. In an analogy to economic theory as applied to human trading practices, biological market theory (BMT) focuses on how partner choice affects payoff distributions among non-human traders. BMT has inspired a great diversity of research, including research on the mutualism between cleaner fish Labroides dimidiatus and other marine fish, their 'clients'. In this mutualism, clients have ectoparasites removed and cleaners obtain food in return. We use the available data on L. dimidiatus cleaner-client interactions to identify avenues for future expansion of BMT. We focus on three main topics, namely how partner quality interacts with supply-to-demand ratios to affect service quality, the role of threats and forms of forceful intervention, and the potential role of cognition. We consider it essential to identify the specifics of each biological market as a basis for the development of more sophisticated BMT models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Ronald Noë
- Department of Psychology, Tuk, The Netherlands and Arizona State University, Tempe, AZ 85287-1104, USA
| |
Collapse
|
9
|
van den Berg CP, Endler JA, Papinczak DEJ, Cheney KL. Using colour pattern edge contrast statistics to predict detection speed and success in triggerfish (Rhinecanthus aculeatus). J Exp Biol 2022; 225:285905. [PMID: 36354306 PMCID: PMC9789405 DOI: 10.1242/jeb.244677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Edge detection is important for object detection and recognition. However, we do not know whether edge statistics accurately predict the detection of prey by potential predators. This is crucial given the growing availability of image analysis software and their application across non-human visual systems. Here, we investigated whether Boundary Strength Analysis (BSA), Local Edge Intensity Analysis (LEIA) and the Gabor edge disruption ratio (GabRat) could predict the speed and success with which triggerfish (Rhinecanthus aculeatus) detected patterned circular stimuli against a noisy visual background, in both chromatic and achromatic presentations. We found various statistically significant correlations between edge statistics and detection speed depending on treatment and viewing distance; however, individual pattern statistics only explained up to 2% of the variation in detection time, and up to 6% when considering edge statistics simultaneously. We also found changes in fish response over time. While highlighting the importance of spatial acuity and relevant viewing distances in the study of visual signals, our results demonstrate the importance of considering explained variation when interpreting colour pattern statistics in behavioural experiments. We emphasize the need for statistical approaches suitable for investigating task-specific predictive relationships and ecological effects when considering animal behaviour. This is particularly important given the ever-increasing dimensionality and size of datasets in the field of visual ecology.
Collapse
Affiliation(s)
- Cedric P. van den Berg
- Visual Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia,Author for correspondence ()
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Daniel E. J. Papinczak
- Visual Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karen L. Cheney
- Visual Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Brodrick EA, How MJ, Hemmi JM. Fiddler crab electroretinograms reveal vast circadian shifts in visual sensitivity and temporal summation in dim light. J Exp Biol 2022; 225:274663. [PMID: 35156128 PMCID: PMC8976941 DOI: 10.1242/jeb.243693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
Many animals with compound eyes undergo major optical changes to adjust visual sensitivity from day to night, often under control of a circadian clock. In fiddler crabs, this presents most conspicuously in the huge volume increase of photopigment-packed rhabdoms and the widening of crystalline cone apertures at night. These changes are hypothesised to adjust the light flux to the photoreceptors and to alter optical sensitivity as the eye moves between light- and dark-adapted states. Here, we compare optical sensitivity in fiddler crab eyes (Gelasimus dampieri) during daytime and night via three electroretinogram (ERG) experiments performed on light- and dark-adapted crabs.
1) Light intensity required to elicit a threshold ERG response varied over six orders of magnitude, allowing more sensitive vision for discriminating small contrasts in dim light after dusk. During daytime, the eyes remained relatively insensitive, which would allow effective vision on bright mudflats, even after prolonged dark adaptation.
2) Flicker fusion frequency (FFF) experiments indicated that temporal summation is employed in dim light to increase light-gathering integration times and enhance visual sensitivity during both night and day.
3) ERG responses to flickering lights during 60 mins of dark adaptation increased at a faster rate and greater extent after sunset compared to daytime. However, even brief, dim and intermittent light exposure strongly disrupted dark-adaptation processes.
Together, these findings demonstrate effective light adaptation to optimise vision over the large range of light intensities that these animals experience.
Collapse
Affiliation(s)
| | - Martin J. How
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Jan M. Hemmi
- School of Biological Sciences & UWA Oceans Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
11
|
Caves EM, de Busserolles F, Kelley LA. Sex differences in behavioural and anatomical estimates of visual acuity in the green swordtail Xiphophorus helleri. J Exp Biol 2021; 224:273770. [PMID: 34787303 PMCID: PMC8729911 DOI: 10.1242/jeb.243420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
Among fishes in the family Poeciliidae, signals such as colour patterns, ornaments and courtship displays play important roles in mate choice and male–male competition. Despite this, visual capabilities in poeciliids are understudied, in particular, visual acuity, the ability to resolve detail. We used three methods to quantify visual acuity in male and female green swordtails (Xiphophorus helleri), a species in which body size and the length of the male's extended caudal fin (‘sword’) serve as assessment signals during mate choice and agonistic encounters. Topographic distribution of retinal ganglion cells (RGCs) was similar in all individuals and was characterized by areas of high cell densities located centro-temporally and nasally, as well as a weak horizontal streak. Based on the peak density of RGCs in the centro-temporal area, anatomical acuity was estimated to be approximately 3 cycles per degree (cpd) in both sexes. However, a behavioural optomotor assay found significantly lower mean acuity in males (0.8 cpd) than females (3.0 cpd), which was not explained by differences in eye size between males and females. An additional behavioural assay, in which we trained individuals to discriminate striped gratings from grey stimuli of the same mean luminance, also showed lower acuity in males (1–2 cpd) than females (2–3 cpd). Thus, although retinal anatomy predicts identical acuity in males and females, two behavioural assays found higher acuity in females than males, a sexual dimorphism that is rare outside of invertebrates. Overall, our results have implications for understanding how poeciliids perceive visual signals during mate choice and agonistic encounters. Summary: Anatomical and behavioural quantification of visual acuity (spatial resolving power) in green swordtails indicates that acuity was anatomically identical in both sexes, but behaviourally higher in females, with implications for signalling.
Collapse
Affiliation(s)
- Eleanor M Caves
- University of Exeter, Centre for Ecology and Conservation, Penryn, UK.,University of California Santa Barbara, Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA, USA
| | | | - Laura A Kelley
- University of Exeter, Centre for Ecology and Conservation, Penryn, UK
| |
Collapse
|
12
|
Trapp R, Fernandez-Juricic E. How visual system configuration can play a role in individual recognition: a visual modeling study. Anim Cogn 2021; 25:205-216. [PMID: 34383151 DOI: 10.1007/s10071-021-01548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
Many species rely on individual recognition (i.e., the use of individual signals to identify and remember a conspecific) to tune their social interactions. However, little is known about how the configuration of the sensory system may affect the perception of individual recognition signals over space. Utilizing a visual modeling approach, we quantified (1) the threshold distance between the receiver and the signaler at which individual recognition can no longer accurately occur, and (2) the regions of the head most likely to contain the individual recognition signals. We used chickens (Gallus gallus) as our study species, as they use visual individual recognition and additionally have a well-studied visual system. We took pictures of different individuals and followed a visual modeling approach considering color vision, visual acuity, and pattern processing of the receiver. We found that distance degrades the quality of information in potential individual recognition signals. We estimated that the neighbor distance at which a receiver may have difficulty recognizing a conspecific was between 0.25 and 0.30 m in chickens, which may be related to a decrease in available features of the potential signal. This signal perception threshold closely matches the recognition distance predicted by previous behavioral approaches. Additionally, we found that certain regions of the head (beak, cheek, comb, eye) may be good candidates for individual recognition signals. Overall, our findings support that recognition in chickens occurs at short distances due to constraints imposed by their visual system, which can affect the costs and benefits associated with social spacing in groups.
Collapse
Affiliation(s)
- Rebecca Trapp
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
13
|
Caves EM. The behavioural ecology of marine cleaning mutualisms. Biol Rev Camb Philos Soc 2021; 96:2584-2601. [PMID: 34165230 DOI: 10.1111/brv.12770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
Cleaning interactions, in which a small 'cleaner' organism removes and often consumes material from a larger 'client', are some of the most enigmatic and intriguing of interspecies interactions. Early research on cleaning interactions canonized the view that they are mutualistic, with clients benefiting from parasite removal and cleaners benefiting from a meal, but subsequent decades of research have revealed that the dynamics of these interactions can be highly complex. Despite decades of research on marine cleaning interactions (the best studied cleaning systems), key questions remain, including how the outcome of an individual cleaning interaction depends on ecological, behavioural, and social context, how such interactions arise, and how they remain stable over time. Recently, studies of marine parasites, long-term data from coral reef communities with and without cleaners, increased behavioural observations recorded using remote video, and a focus on a larger numbers of cleaning species have helped bring about key conceptual advances in our understanding of cleaning interactions. In particular, evidence now suggests that the ecological, behavioural, and social contexts of a given cleaning interaction can result in the outcome ranging from mutualistic to parasitic, and that cleaning interactions are mediated by signals that can also vary with context. Signals are an important means by which animals extract information about one another, and thus represent a mechanism by which interspecific partners can determine when, how, and with whom to interact. Here, I review our understanding of the behavioural ecology of marine cleaning interactions. In particular, I argue that signals provide a useful framework for advancing our understanding of several important outstanding questions. I discuss the costs and benefits of cleaning interactions, review how cleaners and clients recognize and assess one another using signals, and discuss how signal reliability, or 'honesty', may be maintained in cleaning systems. Lastly, I discuss the sensory ecology of both cleaners and clients to highlight what marine cleaning systems can tell us about signalling behaviour, signal form, and signal evolution in a system where signals are aimed at multiple receiver species. Overall, I argue that future research on cleaning interactions has much to gain by continuing to shift the research focus toward examining the variable outcomes of cleaning interactions in relation to the broader behavioural, social, and ecological contexts.
Collapse
Affiliation(s)
- Eleanor M Caves
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, U.K
| |
Collapse
|
14
|
Caves EM, Troscianko J, Kelley LA. A customizable, low‐cost optomotor apparatus: A powerful tool for behaviourally measuring visual capability. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eleanor M. Caves
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Jolyon Troscianko
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Laura A. Kelley
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| |
Collapse
|
15
|
Schweikert LE, Davis AL, Johnsen S, Bracken‐Grissom HD. Visual perception of light organ patterns in deep-sea shrimps and implications for conspecific recognition. Ecol Evol 2020; 10:9503-9513. [PMID: 32953078 PMCID: PMC7487218 DOI: 10.1002/ece3.6643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
Darkness and low biomass make it challenging for animals to find and identify one another in the deep sea. While spatiotemporal variation in bioluminescence is thought to underlie mate recognition for some species, its role in conspecific recognition remains unclear. The deep-sea shrimp genus, Sergestes sensu lato (s.l.), is one group that is characterized by species-specific variation in light organ arrangement, providing us the opportunity to test whether organ variation permits recognition to the species level. To test this, we analyzed the visual capabilities of three species of Sergestes s.l. in order to (a) test for sexual dimorphism in eye-to-body size scaling relationships, (b) model the visual ranges (i.e., sighting distances) over which these shrimps can detect intraspecific bioluminescence, and (c) assess the maximum possible spatial resolution of the eyes of these shrimps to estimate their capacity to distinguish the light organs of each species. Our results showed that relative eye size scaled negatively with body length across species and without sexual dimorphism. Though the three species appear capable of detecting one another's bioluminescence over distances ranging from < 1 to ~6 m, their limited spatial resolution suggests they cannot resolve light organ variation for the purpose of conspecific recognition. Our findings point to factors other than conspecific recognition (e.g., neutral drift, phenotypic constraint) that have led to the extensive diversification of light organs in Sergestes s.l and impart caution about interpreting ecological significance of visual characters based on the resolution of human vision. This work provides new insight into deep-sea animal interaction, supporting the idea that-at least for these mesopelagic shrimps-nonvisual signals may be required for conspecific recognition.
Collapse
Affiliation(s)
- Lorian E. Schweikert
- Department of Biological Sciences and Institute of EnvironmentFlorida International UniversityNorth MiamiFLUSA
| | | | | | - Heather D. Bracken‐Grissom
- Department of Biological Sciences and Institute of EnvironmentFlorida International UniversityNorth MiamiFLUSA
| |
Collapse
|
16
|
Kingston ACN, Chappell DR, Speiser DI. A snapping shrimp has the fastest vision of any aquatic animal. Biol Lett 2020; 16:20200298. [PMID: 32574534 DOI: 10.1098/rsbl.2020.0298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals use their sensory systems to sample information from their environments. The physiological properties of sensory systems differ, leading animals to perceive their environments in different ways. For example, eyes have different temporal sampling rates, with faster-sampling eyes able to resolve faster-moving scenes. Eyes can also have different dynamic ranges. For every eye, there is a light level below which vision is unreliable because of an insufficient signal-to-noise ratio and a light level above which the photoreceptors are saturated. Here, we report that the eyes of the snapping shrimp Alpheus heterochaelis have a temporal sampling rate of at least 160 Hz, making them the fastest-sampling eyes ever described in an aquatic animal. Fast-sampling eyes help flying animals detect objects moving across their retinas at high angular velocities. A. heterochaelis are fast-moving animals that live in turbid, structurally complex oyster reefs and their fast-sampling eyes, like those of flying animals, may help them detect objects moving rapidly across their retinas. We also report that the eyes of A. heterochaelis have a broad dynamic range that spans conditions from late twilight (approx. 1 lux) to direct sunlight (approx. 100 000 lux), a finding consistent with the circatidal activity patterns of this shallow-dwelling species.
Collapse
Affiliation(s)
- Alexandra C N Kingston
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daniel R Chappell
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
17
|
Caves EM, Nowicki S, Johnsen S. Von Uexküll Revisited: Addressing Human Biases in the Study of Animal Perception. Integr Comp Biol 2020; 59:1451-1462. [PMID: 31127268 DOI: 10.1093/icb/icz073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
More than 100 years ago, the biologist Jakob von Uexküll suggested that, because sensory systems are diverse, animals likely inhabit different sensory worlds (umwelten) than we do. Since von Uexküll, work across sensory modalities has confirmed that animals sometimes perceive sensory information that humans cannot, and it is now well-established that one must account for this fact when studying an animal's behavior. We are less adept, however, at recognizing cases in which non-human animals may not detect or perceive stimuli the same way we do, which is our focus here. In particular, we discuss three ways in which our own perception can result in misinformed hypotheses about the function of various stimuli. In particular, we may (1) make untested assumptions about how sensory information is perceived, based on how we perceive or measure it, (2) attribute undue significance to stimuli that we perceive as complex or striking, and (3) assume that animals divide the sensory world in the same way that we as scientists do. We discuss each of these biases and provide examples of cases where animals cannot perceive or are not attending to stimuli in the same way that we do, and how this may lead us to mistaken assumptions. Because what an animal perceives affects its behavior, we argue that these biases are especially important for researchers in sensory ecology, cognition, and animal behavior and communication to consider. We suggest that studying animal umwelten requires integrative approaches that combine knowledge of sensory physiology with behavioral assays.
Collapse
Affiliation(s)
| | | | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Song JA, Lee YS, Choi YU, Choi CY. Effects of light-emitting diodes on thermally-induced oxidative stress in the bay scallop Argopecten irradians. MOLLUSCAN RESEARCH 2020. [DOI: 10.1080/13235818.2020.1712040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jin Ah Song
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Young-Ung Choi
- Marine Ecosystem and Biological Research Center, KIOST, Busan, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Republic of Korea
| |
Collapse
|
19
|
van den Berg CP, Troscianko J, Endler JA, Marshall NJ, Cheney KL. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13328] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - John A. Endler
- School of Life & Environmental Sciences Deakin University Geelong Australia
| | - N. Justin Marshall
- Queensland Brain Institute The University of Queensland St Lucia QLD Australia
| | - Karen L. Cheney
- The School of Biological Sciences The University of Queensland St Lucia QLD Australia
- Queensland Brain Institute The University of Queensland St Lucia QLD Australia
| |
Collapse
|
20
|
Kingston ACN, Lucia RL, Havens LT, Cronin TW, Speiser DI. Vision in the snapping shrimp Alpheus heterochaelis. J Exp Biol 2019; 222:jeb.209015. [PMID: 31624099 DOI: 10.1242/jeb.209015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022]
Abstract
Snapping shrimp engage in heterospecific behavioral associations in which their partners, such as goby fish, help them avoid predators. It has been argued that snapping shrimp engage in these partnerships because their vision is impaired by their orbital hood, an extension of their carapace that covers their eyes. To examine this idea, we assessed the visual abilities of snapping shrimp. We found the big claw snapping shrimp, Alpheus heterochaelis, has spatial vision provided by compound eyes with reflecting superposition optics. These eyes view the world through an orbital hood that is 80-90% as transparent as seawater across visible wavelengths (400-700 nm). Through electroretinography and microspectrophotometry, we found the eyes of A. heterochaelis have a temporal sampling rate of >40 Hz and have at least two spectral classes of photoreceptors (λmax=500 and 519 nm). From the results of optomotor behavioral experiments, we estimate the eyes of A. heterochaelis provide spatial vision with an angular resolution of ∼8 deg. We conclude that snapping shrimp have competent visual systems, suggesting the function and evolution of their behavioral associations should be re-assessed and that these animals may communicate visually with conspecifics and heterospecific partners.
Collapse
Affiliation(s)
- Alexandra C N Kingston
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Rebecca L Lucia
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Luke T Havens
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
21
|
Caves EM, Chen C, Johnsen S. The cleaner shrimp Lysmata amboinensis adjusts its behaviour towards predatory versus non-predatory clients. Biol Lett 2019; 15:20190534. [PMID: 31530112 DOI: 10.1098/rsbl.2019.0534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In cleaning mutualisms, small cleaner organisms remove ectoparasites and dead skin from larger clients. Because cheating by predatory clients can result in cleaner death, cleaners should assess the potential risk of interacting with a given client and adjust their behaviour accordingly. Cleaner shrimp are small marine crustaceans that interact with numerous client fish species, many of which are potential predators. We use in situ observations of cleaner-client interactions to show that the cleaner shrimp Lysmata amboinensis adjusts several behaviours when interacting with predatory versus non-predatory clients. Predatory clients were cleaned in a significantly lower proportion of interactions than non-predatory clients, and cleaners also exhibited a leg rocking behaviour-potentially signalling their identity or intent to clean-almost exclusively toward predatory clients. Incidence of leg rocking was positively correlated with client size, and laboratory experiments showed that it can be elicited by dark visual stimuli and decreases in illumination level. Thus, cleaners clean less frequently when predation risk is higher, and may use leg rocking as a signal advertising cleaning services and directed specifically at predators.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Catherine Chen
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Santon M, Münch TA, Michiels NK. The contrast sensitivity function of a small cryptobenthic marine fish. J Vis 2019; 19:1. [PMID: 30707751 DOI: 10.1167/19.2.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spatial resolution is a key property of eyes when it comes to understanding how animals' visual signals are perceived. This property can be robustly estimated by measuring the contrast sensitivity as a function of different spatial frequencies, defined as the number of achromatic vertical bright and dark stripe pairs within one degree of visual angle. This contrast sensitivity function (CSF) has been estimated for different animal groups, but data on fish are limited to two free-swimming, freshwater species (i.e., goldfish and bluegill sunfish). In this study, we describe the CSF of a small marine cryptobenthic fish (Tripterygion delaisi) using an optokinetic reflex approach. Tripterygion delaisi features a contrast sensitivity that is as excellent as other fish species, up to 125 (reciprocal of Michelson contrast) at the optimal spatial frequency of 0.375 c/°. The maximum spatial resolution is instead relatively coarse, around 2.125 c/°. By comparing our results with acuity values derived from anatomical estimates of ganglion cells' density, we conclude that the optokinetic reflex seems to be adapted to process low spatial frequency information from stimuli in the peripheral visual field and show that small marine fish can feature excellent contrast sensitivity at optimal spatial frequency.
Collapse
Affiliation(s)
- Matteo Santon
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Thomas A Münch
- Retinal Circuits and Optogenetics, Institute for Ophthalmic Research, Department of Ophthalmology, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nico K Michiels
- Animal Evolutionary Ecology, Institute of Evolution and Ecology, Department of Biology, Faculty of Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Barnatan Y, Tomsic D, Sztarker J. Unidirectional Optomotor Responses and Eye Dominance in Two Species of Crabs. Front Physiol 2019; 10:586. [PMID: 31156462 PMCID: PMC6532708 DOI: 10.3389/fphys.2019.00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Animals, from invertebrates to humans, stabilize the panoramic optic flow through compensatory movements of the eyes, the head or the whole body, a behavior known as optomotor response (OR). The same optic flow moved clockwise or anticlockwise elicits equivalent compensatory right or left turning movements, respectively. However, if stimulated monocularly, many animals show a unique effective direction of motion, i.e., a unidirectional OR. This phenomenon has been reported in various species from mammals to birds, reptiles, and amphibious, but among invertebrates, it has only been tested in flies, where the directional sensitivity is opposite to that found in vertebrates. Although OR has been extensively investigated in crabs, directional sensitivity has never been analyzed. Here, we present results of behavioral experiments aimed at exploring the directional sensitivity of the OR in two crab species belonging to different families: the varunid mud crab Neohelice granulata and the ocypode fiddler crab Uca uruguayensis. By using different conditions of visual perception (binocular, left or right monocular) and direction of flow field motion (clockwise, anticlockwise), we found in both species that in monocular conditions, OR is effectively displayed only with progressive (front-to-back) motion stimulation. Binocularly elicited responses were directional insensitive and significantly weaker than monocular responses. These results are coincident with those described in flies and suggest a commonality in the circuit underlying this behavior among arthropods. Additionally, we found the existence of a remarkable eye dominance for the OR, which is associated to the size of the larger claw. This is more evident in the fiddler crab where the difference between the two claws is huge.
Collapse
Affiliation(s)
- Yair Barnatan
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Tomsic
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Sztarker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Ashur MM, Dixson DL. Multiple environmental cues impact habitat choice during nocturnal homing of specialized reef shrimp. Behav Ecol 2019; 30:348-355. [PMID: 30971859 PMCID: PMC6450203 DOI: 10.1093/beheco/ary171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Habitat selection is a critical process for animals throughout their life, and adult organisms that travel to forage or mate must reselect habitat frequently. On coral reefs, competition for space has led to a high proportion of habitat specialists. Habitat selection is especially vital for organisms that require specialized habitat; however, research has primarily focused on the initial habitat choice made during the larval/juvenile stage. Here, we analyze habitat selection in the adult sponge-dwelling reef shrimp, Lysmata pederseni. Using a mark-and-recapture technique, belt transects, patch reefs, and cue isolation experiments, this study reveals that adult L. pederseni diurnally reselect habitat and a natural preference exists for specific sponge species and shapes. This natural preference is a function of chemical and morphological cues as well as sponge distribution. As habitat specialists can drive biodiversity, understanding the mechanisms behind habitat selection can inform research and management practices.
Collapse
Affiliation(s)
- Molly M Ashur
- School of Marine Science and Policy, University of Delaware, Lewes, USA
| | - Danielle L Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, USA
| |
Collapse
|
25
|
Ogawa Y, Ryan LA, Palavalli-Nettimi R, Seeger O, Hart NS, Narendra A. Spatial Resolving Power and Contrast Sensitivity Are Adapted for Ambient Light Conditions in Australian Myrmecia Ants. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Titus BM, Daly M, Vondriska C, Hamilton I, Exton DA. Lack of strategic service provisioning by Pederson's cleaner shrimp (Ancylomenes pedersoni) highlights independent evolution of cleaning behaviors between ocean basins. Sci Rep 2019; 9:629. [PMID: 30679712 PMCID: PMC6345747 DOI: 10.1038/s41598-018-37418-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Marine cleaning interactions have been useful model systems for exploring evolutionary game theory and explaining the stability of mutualism. In the Indo-Pacific, cleaner organisms will occasionally "cheat" and remove live tissue, clients use partner control mechanisms to maintain cleaner honesty, and cleaners strategically increase service quality for predatory clients that can "punish" more severely. The extent to which reef communities in the Caribbean have evolved similar strategies for maintaining the stability of these symbioses is less clear. Here we study the strategic service provisioning in Pederson's cleaner shrimp (Ancylomenes pedersoni) on Caribbean coral reefs. In the Gulf of Honduras, we use video observations to analyze >1000 cleaning interactions and record >850 incidents of cheating. We demonstrate that A. pedersoni cheat frequently and do not vary their service quality based on client trophic position or cleaner shrimp group size. As a direct analog to the cleaner shrimp A. longicarpus in the Indo-Pacific, our study highlights that although cleaning interactions in both ocean basins are ecologically analogous and result in parasite removal, the strategic behaviors that mediate these interactions have evolved independently in cleaner shrimps.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, Ohio, 43210, USA. .,Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby, Lincolnshire, PE23 4EX, UK. .,Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY, 10024, USA.
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, Ohio, 43210, USA
| | - Clayton Vondriska
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, Ohio, 43210, USA.,Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby, Lincolnshire, PE23 4EX, UK.,Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 74267, USA
| | - Ian Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, Ohio, 43210, USA
| | - Dan A Exton
- Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby, Lincolnshire, PE23 4EX, UK
| |
Collapse
|
27
|
Choi JY, Choi YU, Kho J, Choi CY. Effects of various photoperiods and specific wavelengths on circadian rhythm in ornamental cleaner shrimp Lysmata amboinensis. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1502237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ji Yong Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Young-Ung Choi
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Jeongrack Kho
- Lotte World Aquarium, Songpa-gu, Seoul, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, Republic of Korea
| |
Collapse
|
28
|
Caves EM, Green PA, Johnsen S. Mutual visual signalling between the cleaner shrimp Ancylomenes pedersoni and its client fish. Proc Biol Sci 2018; 285:20180800. [PMID: 29925618 PMCID: PMC6030538 DOI: 10.1098/rspb.2018.0800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/29/2018] [Indexed: 11/12/2022] Open
Abstract
Cleaner shrimp and their reef fish clients are an interspecific mutualistic interaction that is thought to be mediated by signals, and a useful system for studying the dynamics of interspecific signalling. To demonstrate signalling, one must show that purported signals at minimum (a) result in a consistent state change in the receiver and (b) contain reliable information about the sender's intrinsic state or future behaviour. Additionally, signals must be perceptible by receivers. Here, we document fundamental attributes of the signalling system between the cleaner shrimp Ancylomenes pedersoni and its clients. First, we use sequential analysis of in situ behavioural interactions to show that cleaner antenna whipping reliably predicts subsequent cleaning. If shrimp do not signal via antenna whipping, clients triple their likelihood of being cleaned by adopting darker coloration over a matter of seconds, consistent with dark colour change signalling that clients want cleaning. Using experimental manipulations, we found that visual stimuli are sufficient to elicit antenna whipping, and that shrimp are more likely to 'clean' dark than light visual stimuli. Lastly, we show that antenna whipping and colour change are perceptible when accounting for the intended receiver's visual acuity and spectral sensitivity, which differ markedly between cleaners and clients. Our results show that signalling by both cleaners and clients can initiate and mediate their mutualistic interaction.
Collapse
Affiliation(s)
| | | | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
29
|
Visual Acuity and the Evolution of Signals. Trends Ecol Evol 2018; 33:358-372. [DOI: 10.1016/j.tree.2018.03.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
|
30
|
Caves EM, Johnsen S. AcuityView
:
An
r
package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Aben J, Pellikka P, Travis JMJ. A call for viewshed ecology: Advancing our understanding of the ecology of information through viewshed analysis. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12902] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Job Aben
- Institute of Biological and Environmental SciencesUniversity of Aberdeen Aberdeen UK
- Department of BiologyUniversity of Antwerp Wilrijk Belgium
| | - Petri Pellikka
- Department of Geosciences and GeographyUniversity of Helsinki Helsinki Finland
| | - Justin M. J. Travis
- Institute of Biological and Environmental SciencesUniversity of Aberdeen Aberdeen UK
| |
Collapse
|
32
|
Phillips GAC, How MJ, Lange JE, Marshall NJ, Cheney KL. Disruptive colouration in reef fish: does matching the background reduce predation risk? J Exp Biol 2017; 220:1962-1974. [DOI: 10.1242/jeb.151480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/13/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Animals use disruptive colouration to prevent detection or recognition by potential predators or prey. Highly contrasting elements within colour patterns, including vertical or horizontal bars, are thought to be effective at distracting attention away from body form and reducing detection likelihood. However, it is unclear whether such patterns need to be a good match to the spatial characteristics of the background to gain cryptic benefits. We tested this hypothesis using the iconic vertically barred humbug damselfish, Dascyllus aruanus (Linneaus 1758), a small reef fish that lives among the finger-like projections of branching coral colonies. Using behavioural experiments, we demonstrated that the spatial frequency of the humbug pattern does not need to exactly match the spatial frequency of the coral background to reduce the likelihood of being attacked by two typical reef fish predators: slingjaw wrasse, Epibulus insidiator (Pallas 1770), and coral trout, Plectropomus leopardus (Lacépède 1802). Indeed, backgrounds with a slightly higher spatial frequency than the humbug body pattern provided more protection from predation than well-matched backgrounds. These results were consistent for both predator species, despite differences in their mode of foraging and visual acuity, which was measured using anatomical techniques. We also showed that a slight mismatch in the orientation of the vertical bars did not increase the chances of detection. However, the likelihood of attack did increase significantly when the bars were perpendicular to the background. Our results provide evidence that fish camouflage is more complex than it initially appears, with likely many factors influencing the detection likelihood of prey by relevant predators.
Collapse
Affiliation(s)
| | - Martin J. How
- School of Biological Sciences, The University of Bristol, Bristol BS8 1TQ, UK
| | - Julia E. Lange
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
33
|
|
34
|
Caves EM, Sutton TT, Johnsen S. Visual acuity in ray-finned fishes correlates with eye size and habitat. ACTA ACUST UNITED AC 2017; 220:1586-1596. [PMID: 28183870 DOI: 10.1242/jeb.151183] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/05/2017] [Indexed: 11/20/2022]
Abstract
Visual acuity (the ability to resolve spatial detail) is highly variable across fishes. However, little is known about the evolutionary pressures underlying this variation. We reviewed published literature to create an acuity database for 159 species of ray-finned fishes (Actinopterygii). Within a subset of those species for which we had phylogenetic information and anatomically measured acuity data (n=81), we examined relationships between acuity and both morphological (eye size and body size) and ecological (light level, water turbidity, habitat spatial complexity and diet) variables. Acuity was significantly correlated with eye size (P<0.001); a weaker correlation with body size occurred via a correlation between eye and body size (P<0.001). Acuity decreased as light level decreased and turbidity increased; however, these decreases resulted from fishes in dark or murky environments having smaller eyes and bodies than those in bright or clear environments. We also found significantly lower acuity in horizon-dominated habitats than in featureless or complex habitats. Higher acuity in featureless habitats is likely due to species having absolutely larger eyes and bodies in that environment, though eye size relative to body size is not significantly different from that in complex environments. Controlling for relative eye size, we found that species in complex environments have even higher acuity than predicted. We found no relationship between visual acuity and diet. Our results show that eye size is a primary factor underlying variation in fish acuity. We additionally show that habitat type is an important ecological factor that correlates with acuity in certain species.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
| | - Tracey T Sutton
- Department of Marine and Environmental Sciences, Halmos College of Natural Sciences and Oceanography, 8000 N. Ocean Drive, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Sönke Johnsen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
| |
Collapse
|
35
|
|
36
|
Tedore C, Johnsen S. Disentangling the visual cues used by a jumping spider to locate its microhabitat. ACTA ACUST UNITED AC 2016; 219:2396-401. [PMID: 27259375 DOI: 10.1242/jeb.129122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/26/2016] [Indexed: 11/20/2022]
Abstract
Many arthropod species have evolved to thrive only on the leaves of a particular species of plant, which they must be capable of finding in order to survive accidental displacement, developmental transitions or the changing of the seasons. A number of studies have tested whether such species select leaves to land or oviposit on based on their color, shape or size. Unfortunately, many studies did not control for correlates of these characters, such as the brightness of different colors, the areas of different shapes, and the level of ambient illumination in the vicinity of different sizes of leaves. In the present study, we tested for leaf color, shape and size preferences in a leaf-dwelling jumping spider (Lyssomanes viridis) with known summer and winter host plants, while controlling for these correlates. First, color preferences were tested outdoors under the natural illumination of their forest habitat. Lyssomanes viridis did not prefer to perch on a green substrate compared with various shades of gray, but did prefer the second darkest shade of gray we presented them with. Of the green and gray substrates, this shade of gray's integrated photon flux (350-700 nm), viewed from below, i.e. the spider's perspective in the arena, was the most similar to that of real leaves. This relationship also held when we weighted the transmitted photon flux by the jumping spiders' green photopigment spectral sensitivity. Spiders did not prefer the star-like leaf shape of their summer host plant, Liquidambar styraciflua, to a green circle of the same area. When given a choice between a L. styraciflua leaf-shaped stimulus that was half the area of an otherwise identical alternative, spiders preferred the larger stimulus. However, placing a neutral density filter over the side of the experimental arena with the smaller stimulus abolished this preference, with spiders then being more likely to choose the side of the arena with the smaller stimulus. In conclusion, L. viridis appears to use ambient illumination and possibly perceived leaf brightness but not leaf shape or color to locate its microhabitat. This calls for a careful re-examination of which visual cues a variety of arthropods are actually attending to when they search for their preferred host species or microhabitat.
Collapse
Affiliation(s)
- Cynthia Tedore
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|