1
|
Cerutti-Pereyra F, Drenkard EJ, Espinoza M, Finucci B, Galván-Magaña F, Hacohen-Domené A, Hearn A, Hoyos-Padilla ME, Ketchum JT, Mejía-Falla PA, Moya-Serrano AV, Navia AF, Pazmiño DA, Ramírez-Macías D, Rummer JL, Salinas-de-León P, Sosa-Nishizaki O, Stock C, Chin A. Vulnerability of Eastern Tropical Pacific chondrichthyan fish to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17373. [PMID: 38967106 DOI: 10.1111/gcb.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.
Collapse
Affiliation(s)
| | | | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San José, Costa Rica
- MigraMar, Olema, California, USA
| | - Brittany Finucci
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | | | - Alexander Hearn
- MigraMar, Olema, California, USA
- Universidad San Francisco de Quito, Galápagos, Ecuador
| | | | - James T Ketchum
- MigraMar, Olema, California, USA
- Pelagios-Kakunjá A.C., La Paz, Baja California Sur, Mexico
| | - Paola A Mejía-Falla
- Wildlife Conservation Society-WCS Colombia, Cali, Colombia
- Fundación colombiana para la investigación y conservación de tiburones y rayas-SQUALUS, Cali, Colombia
| | | | - Andres F Navia
- Fundación colombiana para la investigación y conservación de tiburones y rayas-SQUALUS, Cali, Colombia
| | - Diana A Pazmiño
- MigraMar, Olema, California, USA
- Universidad San Francisco de Quito, Galápagos, Ecuador
| | - Deni Ramírez-Macías
- Conexiones Terramar A.C. Whale Shark Mexico, La Paz, Baja California Sur, Mexico
| | - Jodie L Rummer
- James Cook University, Townsville, Queensland, Australia
| | - Pelayo Salinas-de-León
- Charles Darwin Foundation, Galápagos, Ecuador
- Save Our Seas Foundation Shark Research Center and Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, Florida, USA
| | - Oscar Sosa-Nishizaki
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Carretera Ensenada-Tijuana, Ensenada, Baja California, Mexico
| | | | - Andrew Chin
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Gómez-Martínez D, Londoño-Cruz E, Mejía-Falla PA. Upper thermal tolerance and population implications for the Magdalena River stingray Potamotrygon magdalenae. JOURNAL OF FISH BIOLOGY 2024; 104:1698-1708. [PMID: 38420688 DOI: 10.1111/jfb.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
Knowledge of thermal tolerance limits provides important clues to the capacity of a species to withstand acute and chronic thermal changes. Climate models predict the increase and intensification of events such as heat waves, therefore understanding the upper thermal limits that a species can tolerate has become of utmost importance. We measured the upper thermal tolerance of the endemic Magdalena river stingray Potamotrygon magdalenae acclimated to experimental conditions, and then used critical thermal methodology to find the temperature at which an organism reaches a critical endpoint where locomotory activity becomes disorganized and the animal loses its ability to escape from conditions that will promptly lead to its death. We also describe the behavioral response of individuals to acute thermal stress and infer the possible consequences of temperature increases in the habitats of P. magdalenae populations. There were no significant differences between sexes in temperature tolerance or behavior. The critical thermal maximum (39°C) was 5.9°C above the maximum recorded temperature for the study area. Although P. magdalenae was tolerant to high temperature and currently is not living at its upper thermal limit, its survival in Guarinocito Pond will be threatened if temperatures continue to increase, considering the warming scenarios predicted for tropical regions due to climate change, even including short-term climate phenomena such as El Niño.
Collapse
Affiliation(s)
- Daniela Gómez-Martínez
- Fundación colombiana para la investigación y conservación de tiburones y rayas, SQUALUS, Cali, Colombia
| | - Edgardo Londoño-Cruz
- Grupo de Investigación en Ecosistemas Rocosos Intermareales y Submareales Someros-LITHOS, Sección de Biología Marina, Departamento de Biología, Universidad del Valle, Cali, Colombia
| | - Paola Andrea Mejía-Falla
- Fundación colombiana para la investigación y conservación de tiburones y rayas, SQUALUS, Cali, Colombia
- Grupo de Investigación en Ecología Animal, Sección de Zoología, Departamento de Biología, Universidad del Valle, Cali, Colombia
- Wildlife Conservation Society, WCS Colombia, Cali, Colombia
| |
Collapse
|
3
|
Coulon N, Pilet S, Lizé A, Lacoue-Labarthe T, Sturbois A, Toussaint A, Feunteun E, Carpentier A. Shark critical life stage vulnerability to monthly temperature variations under climate change. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106531. [PMID: 38696933 DOI: 10.1016/j.marenvres.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
In a 10-month experimental study, we assessed the combined impact of warming and acidification on critical life stages of small-spotted catshark (Scyliorhinus canicula). Using recently developed frameworks, we disentangled individual and group responses to two climate scenarios projected for 2100 (SSP2-4.5: Middle of the road and SSP5-8.5: Fossil-fueled Development). Seasonal temperature fluctuations revealed the acute vulnerability of embryos to summer temperatures, with hatching success ranging from 82% for the control and SSP2-4.5 treatments to only 11% for the SSP5-8.5 treatment. The death of embryos was preceded by distinct individual growth trajectories between the treatments, and also revealed inter-individual variations within treatments. Embryos with the lowest hatching success had lower yolk consumption rates, and growth rates associated with a lower energy assimilation, and almost all of them failed to transition to internal gills. Within 6 months after hatching, no additional mortality was observed due to cooler temperatures.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France.
| | - Stanislas Pilet
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France
| | - Anne Lizé
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas Lacoue-Labarthe
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Anthony Sturbois
- VivArmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Laboratoire des Sciences de l'environnement Marin (LEMAR), UMR 6539, France
| | - Aurèle Toussaint
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 - UPS-CNRS-IRD-INP, Université Paul-Sabatier - Toulouse 3, Toulouse, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; Centre de GéoEcologie Littorale (CGEL, EPHE-PSL), Dinard, France
| | - Alexandre Carpentier
- Université de Rennes, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Rennes, France
| |
Collapse
|
4
|
Thomas P, Peele EE, Yopak KE, Sulikowski JA, Kinsey ST. Lectin binding to pectoral fin of neonate little skates reared under ambient and projected-end-of-century temperature regimes. J Morphol 2024; 285:e21698. [PMID: 38669130 PMCID: PMC11064730 DOI: 10.1002/jmor.21698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The glycosylation of macromolecules can vary both among tissue structural components and by adverse conditions, potentially providing an alternative marker of stress in organisms. Lectins are proteins that bind carbohydrate moieties and lectin histochemistry is a common method to visualize microstructures in biological specimens and diagnose pathophysiological states in human tissues known to alter glycan profiles. However, this technique is not commonly used to assess broad-spectrum changes in cellular glycosylation in response to environmental stressors. In addition, the binding of various lectins has not been studied in elasmobranchs (sharks, skates, and rays). We surveyed the binding tissue structure specificity of 14 plant-derived lectins, using both immunoblotting and immunofluorescence, in the pectoral fins of neonate little skates (Leucoraja erinacea). Skates were reared under present-day or elevated (+5°C above ambient) temperature regimes and evaluated for lectin binding as an indicator of changing cellular glycosylation and tissue structure. Lectin labeling was highly tissue and microstructure specific. Dot blots revealed no significant changes in lectin binding between temperature regimes. In addition, lectins only detected in the elevated temperature treatment were Canavalia ensiformis lectin (Concanavalin A) in spindle cells of muscle and Ricinus communis agglutinin in muscle capillaries. These results provide a reference for lectin labeling in elasmobranch tissue that may aid future investigations.
Collapse
Affiliation(s)
- Peyton Thomas
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Emily E. Peele
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Kara E. Yopak
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - James A. Sulikowski
- 2030 SE Marine Science Drive, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97365, USA
| | - Stephen T. Kinsey
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| |
Collapse
|
5
|
Walker NS, Nestor V, Golbuu Y, Palumbi SR. Coral bleaching resistance variation is linked to differential mortality and skeletal growth during recovery. Evol Appl 2023; 16:504-517. [PMID: 36793702 PMCID: PMC9923480 DOI: 10.1111/eva.13500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of global coral bleaching has focused much attention on the possibility of interventions to increase heat resistance. However, if high heat resistance is linked to fitness tradeoffs that may disadvantage corals in other areas, then a more holistic view of heat resilience may be beneficial. In particular, overall resilience of a species to heat stress is likely to be the product of both resistance to heat and recovery from heat stress. Here, we investigate heat resistance and recovery among individual Acropora hyacinthus colonies in Palau. We divided corals into low, moderate, and high heat resistance categories based on the number of days (4-9) needed to reach significant pigmentation loss due to experimental heat stress. Afterward, we deployed corals back onto a reef in a common garden 6-month recovery experiment that monitored chlorophyll a, mortality, and skeletal growth. Heat resistance was negatively correlated with mortality during early recovery (0-1 month) but not late recovery (4-6 months), and chlorophyll a concentration recovered in heat-stressed corals by 1-month postbleaching. However, moderate-resistance corals had significantly greater skeletal growth than high-resistance corals by 4 months of recovery. High- and low-resistance corals on average did not exhibit skeletal growth within the observed recovery period. These data suggest complex tradeoffs may exist between coral heat resistance and recovery and highlight the importance of incorporating multiple aspects of resilience into future reef management programs.
Collapse
Affiliation(s)
- Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawai‘i at MānoaKāneʻoheHawaiiUSA
| | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
6
|
Leung JYS, Nagelkerken I, Pistevos JCA, Xie Z, Zhang S, Connell SD. Shark teeth can resist ocean acidification. GLOBAL CHANGE BIOLOGY 2022; 28:2286-2295. [PMID: 35023266 DOI: 10.1111/gcb.16052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023]
Abstract
Ocean acidification can cause dissolution of calcium carbonate minerals in biological structures of many marine organisms, which can be exacerbated by warming. However, it is still unclear whether this also affects organisms that have body parts made of calcium phosphate minerals (e.g. shark teeth), which may also be impacted by the 'corrosive' effect of acidified seawater. Thus, we examined the effect of ocean acidification and warming on the mechanical properties of shark teeth (Port Jackson shark, Heterodontus portusjacksoni), and assessed whether their mineralogical properties can be modified in response to predicted near-future seawater pH (-0.3 units) and temperature (+3°C) changes. We found that warming resulted in the production of more brittle teeth (higher elastic modulus and lower mechanical resilience) that were more vulnerable to physical damage. Yet, when combined with ocean acidification, the durability of teeth increased (i.e. less prone to physical damage due to the production of more elastic teeth) so that they did not differ from those raised under ambient conditions. The teeth were chiefly made of fluorapatite (Ca5 (PO4 )3 F), with increased fluoride content under ocean acidification that was associated with increased crystallinity. The increased precipitation of this highly insoluble mineral under ocean acidification suggests that the sharks could modulate and enhance biomineralization to produce teeth which are more resistant to corrosion. This adaptive mineralogical adjustment could allow some shark species to maintain durability and functionality of their teeth, which underpins a fundamental component of predation and sustenance of the trophic dynamics of future oceans.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Jennifer C A Pistevos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
- PSL Research University EPHE-UPVD-CNRS, USR 3278 CRIOBE, Moorea, French Polynesia
| | - Zonghan Xie
- School of Mechanical Engineering, The University of Adelaide, South Australia, Australia
| | - Sam Zhang
- Centre for Advanced Thin Films and Devices, School of Materials and Energy, Southwest University, Chongqing, PR China
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
7
|
A Systematic Review of the Behavioural Changes and Physiological Adjustments of Elasmobranchs and Teleost’s to Ocean Acidification with a Focus on Sharks. FISHES 2022. [DOI: 10.3390/fishes7020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, much attention has been focused on the impact of climate change, particularly via ocean acidification (OA), on marine organisms. Studying the impact of OA on long-living organisms, such as sharks, is especially challenging. When the ocean waters absorb anthropogenic carbon dioxide (CO2), slow-growing shark species with long generation times may be subjected to stress, leading to a decrease in functionality. Our goal was to examine the behavioral and physiological responses of sharks to OA and the possible impacts on their fitness and resilience. We conducted a systematic review in line with PRISMA-Analyses, of previously reported scientific experiments. We found that most studies used CO2 partial pressures (pCO2) that reflect representative concentration pathways for the year 2100 (e.g., pH ~7.8, pCO2 ~1000 μatm). Since there is a considerable knowledge gap on the effect of OA on sharks, we utilized existing data on bony fish to synthesize the available knowledge. Given the similarities between the behaviors and physiology of these two superclasses’ to changes in CO2 and pH levels, there is merit in including the available information on bony fish as well. Several studies indicated a decrease in shark fitness in relation to increased OA and CO2 levels. However, the decrease was species-specific and influenced by the intensity of the change in atmospheric CO2 concentration and other anthropogenic and environmental factors (e.g., fishing, temperature). Most studies involved only limited exposure to future environmental conditions and were conducted on benthic shark species studied in the laboratory rather than on apex predator species. While knowledge gaps exist, and more research is required, we conclude that anthropogenic factors are likely contributing to shark species’ vulnerability worldwide. However, the impact of OA on the long-term stability of shark populations is not unequivocal.
Collapse
|
8
|
Biological and Ecological Aspects of the Blackmouth Catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Data on the biology and ecology of Galeus melastomus are old/absent for the Southern Tyrrhenian Sea, despite there being numerous studies in the wider area. A total of 127 specimens of G. melastomus from the southern Tyrrhenian Sea, collected in 2018–2019 using trawling nets, were analyzed to investigate size at sexual maturity, sex ratio, length–weight relationships, and feeding habits. To our best knowledge, this is the first time in which all these features were investigated in the Southern Tyrrhenian Sea for G. melastomus. The stomach content analysis showed that G. melastomus had intermediate feeding habits, preying on a great variety of species, especially Cephalopoda, Osteichthyes, and Crustacea. The Levin’s index value (Bi) was 0.53. Sex ratio was 0.92:1, with females slightly more abundant and bigger than males. The results also showed a decrease (33.7 cm for females, 31.1 cm for males) in length at 50% maturity (L50). This could be a result of anthropogenic stressors, such as overfishing and/or and environmental changes, which can induce physiological responses in several species. Our results highlighted the differences related to sexual maturity, growth, and feeding habits of the blackmouth catshark in the studied area, providing reference data to allow comparison with future studies on this species adaptations to this and other deep-sea areas in the Mediterranean Sea.
Collapse
|
9
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
10
|
Wang HY, Shen SF, Chen YS, Kiang YK, Heino M. Life histories determine divergent population trends for fishes under climate warming. Nat Commun 2020; 11:4088. [PMID: 32796849 PMCID: PMC7428017 DOI: 10.1038/s41467-020-17937-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 07/22/2020] [Indexed: 11/29/2022] Open
Abstract
Most marine fish species express life-history changes across temperature gradients, such as faster growth, earlier maturation, and higher mortality at higher temperature. However, such climate-driven effects on life histories and population dynamics remain unassessed for most fishes. For 332 Indo-Pacific fishes, we show positive effects of temperature on body growth (but with decreasing asymptotic length), reproductive rates (including earlier age-at-maturation), and natural mortality for all species, with the effect strength varying among habitat-related species groups. Reef and demersal fishes are more sensitive to temperature changes than pelagic and bathydemersal fishes. Using a life table, we show that the combined changes of life histories upon increasing temperature tend to facilitate population growth for slow life-history populations, but reduce it for fast life-history ones. Within our data, lower proportions (25-30%) of slow life-history fishes but greater proportions of fast life-history fishes (42-60%) show declined population growth rates under 1 °C warming. Together, these findings suggest prioritizing sustainable management for fast life-history species.
Collapse
Affiliation(s)
- Hui-Yu Wang
- Institute of Oceanography, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan.
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang District, Taipei, 11529, Taiwan
| | - Ying-Shiuan Chen
- Institute of Oceanography, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yun-Kae Kiang
- Institute of Oceanography, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Mikko Heino
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817, Bergen, Norway
- International Institute for Applied Systems Analysis, A-2361, Laxenburg, Austria
| |
Collapse
|
11
|
Bouyoucos IA, Morrison PR, Weideli OC, Jacquesson E, Planes S, Simpfendorfer CA, Brauner CJ, Rummer JL. Thermal tolerance and hypoxia tolerance are associated in blacktip reef shark (Carcharhinus melanopterus) neonates. J Exp Biol 2020; 223:223/14/jeb221937. [DOI: 10.1242/jeb.221937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Thermal dependence of growth and metabolism can influence thermal preference and tolerance in marine ectotherms, including threatened and data-deficient species. Here, we quantified the thermal dependence of physiological performance in neonates of a tropical shark species (blacktip reef shark, Carcharhinus melanopterus) from shallow, nearshore habitats. We measured minimum and maximum oxygen uptake rates (ṀO2), calculated aerobic scope, excess post-exercise oxygen consumption and recovery from exercise, and measured critical thermal maxima (CTmax), thermal safety margins, hypoxia tolerance, specific growth rates, body condition and food conversion efficiencies at two ecologically relevant acclimation temperatures (28 and 31°C). Owing to high post-exercise mortality, a third acclimation temperature (33°C) was not investigated further. Acclimation temperature did not affect ṀO2 or growth, but CTmax and hypoxia tolerance were greatest at 31°C and positively associated. We also quantified in vitro temperature (25, 30 and 35°C) and pH effects on haemoglobin–oxygen (Hb–O2) affinity of wild-caught, non-acclimated sharks. As expected, Hb–O2 affinity decreased with increasing temperatures, but pH effects observed at 30°C were absent at 25 and 35°C. Finally, we logged body temperatures of free-ranging sharks and determined that C. melanopterus neonates avoided 31°C in situ. We conclude that C. melanopterus neonates demonstrate minimal thermal dependence of whole-organism physiological performance across a seasonal temperature range and may use behaviour to avoid unfavourable environmental temperatures. The association between thermal tolerance and hypoxia tolerance suggests a common mechanism warranting further investigation. Future research should explore the consequences of ocean warming, especially in nearshore, tropical species.
Collapse
Affiliation(s)
- Ian A. Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Phillip R. Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ornella C. Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Eva Jacquesson
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d'Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
12
|
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
13
|
Crear DP, Brill RW, Averilla LML, Meakem SC, Weng KC. In the face of climate change and exhaustive exercise: the physiological response of an important recreational fish species. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200049. [PMID: 32269821 PMCID: PMC7137940 DOI: 10.1098/rsos.200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/24/2020] [Indexed: 05/08/2023]
Abstract
Cobia (Rachycentron canadum) support recreational fisheries along the US mid- and south-Atlantic states and have been recently subjected to increased fishing effort, primarily during their spawning season in coastal habitats where increasing temperatures and expanding hypoxic zones are occurring due to climate change. We therefore undertook a study to quantify the physiological abilities of cobia to withstand increases in temperature and hypoxia, including their ability to recover from exhaustive exercise. Respirometry was conducted on cobia from Chesapeake Bay to determine aerobic scope, critical oxygen saturation, ventilation volume and the time to recover from exhaustive exercise under temperature and oxygen conditions projected to be more common in inshore areas by the middle and end of this century. Cobia physiologically tolerated predicted mid- and end-of-century temperatures (28-32°C) and oxygen concentrations as low as 1.7-2.4 mg l-1. Our results indicated cobia can withstand environmental fluctuations that occur in coastal habitats and the broad environmental conditions their prey items can tolerate. However, at these high temperatures, some cobia did suffer post-exercise mortality. It appears cobia will be able to withstand near-future climate impacts in coastal habitats like Chesapeake Bay, but as conditions worsen, catch-and-release fishing may result in higher mortality than under present conditions.
Collapse
Affiliation(s)
- Daniel P. Crear
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Rich W. Brill
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | | | | | - Kevin C. Weng
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
14
|
Di Santo V. Ocean acidification and warming affect skeletal mineralization in a marine fish. Proc Biol Sci 2020; 286:20182187. [PMID: 30963862 DOI: 10.1098/rspb.2018.2187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification and warming are known to alter, and in many cases decrease, calcification rates of shell and reef building marine invertebrates. However, to date, there are no datasets on the combined effect of ocean pH and temperature on skeletal mineralization of marine vertebrates, such as fishes. Here, the embryos of an oviparous marine fish, the little skate ( Leucoraja erinacea), were developmentally acclimatized to current and increased temperature and CO2 conditions as expected by the year 2100 (15 and 20°C, approx. 400 and 1100 µatm, respectively), in a fully crossed experimental design. Using micro-computed tomography, hydroxyapatite density was estimated in the mineralized portion of the cartilage in jaws, crura, vertebrae, denticles and pectoral fins of juvenile skates. Mineralization increased as a consequence of high CO2 in the cartilage of crura and jaws, while temperature decreased mineralization in the pectoral fins. Mineralization affects stiffness and strength of skeletal elements linearly, with implications for feeding and locomotion performance and efficiency. This study is, to my knowledge, the first to quantify a significant change in mineralization in the skeleton of a fish and shows that changes in temperature and pH of the oceans have complex effects on fish skeletal morphology.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University , 26 Oxford Street, Cambridge, MA , USA
| |
Collapse
|
15
|
Schwieterman GD, Crear DP, Anderson BN, Lavoie DR, Sulikowski JA, Bushnell PG, Brill RW. Combined Effects of Acute Temperature Change and Elevated pCO 2 on the Metabolic Rates and Hypoxia Tolerances of Clearnose Skate ( Rostaraja eglanteria), Summer Flounder ( Paralichthys dentatus), and Thorny Skate ( Amblyraja radiata). BIOLOGY 2019; 8:biology8030056. [PMID: 31357558 PMCID: PMC6783964 DOI: 10.3390/biology8030056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population's habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44-105%; p < 0.05) and decreases in hypoxia tolerance (60-84% increases in critical oxygen pressure; p < 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA.
| | - Daniel P Crear
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| | - Brooke N Anderson
- Marine Sciences Department, University of New England, Biddeford, ME 04005, USA
| | - Danielle R Lavoie
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - James A Sulikowski
- School of Mathematical & Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Peter G Bushnell
- Department of Biological Sciences, Indiana University South Bend, South Bend, IN, 46615, USA
| | - Richard W Brill
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
16
|
Crear DP, Brill RW, Bushnell PG, Latour RJ, Schwieterman GD, Steffen RM, Weng KC. The impacts of warming and hypoxia on the performance of an obligate ram ventilator. CONSERVATION PHYSIOLOGY 2019; 7:coz026. [PMID: 31384467 PMCID: PMC6656321 DOI: 10.1093/conphys/coz026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 05/24/2023]
Abstract
Climate change is causing the warming and deoxygenation of coastal habitats like Chesapeake Bay that serve as important nursery habitats for many marine fish species. As conditions continue to change, it is important to understand how these changes impact individual species' behavioral and metabolic performance. The sandbar shark (Carcharhinus plumbeus) is an obligate ram-ventilating apex predator whose juveniles use Chesapeake Bay as a nursery ground up to 10 years of age. The objective of this study was to measure juvenile sandbar shark metabolic and behavioral performance as a proxy for overall performance (i.e. fitness or success) when exposed to warm and hypoxic water. Juvenile sandbar sharks (79.5-113.5 cm total length) were collected from an estuary along the eastern shore of Virginia and returned to lab where they were fitted with an accelerometer, placed in a respirometer and exposed to varying temperatures and oxygen levels. Juvenile sandbar shark overall performance declined substantially at 32°C or when dissolved oxygen concentration was reduced below 3.5 mg l-1 (51% oxygen saturation between 24-32°C). As the extent of warm hypoxic water increases in Chesapeake Bay, we expect that the available sandbar shark nursery habitat will be reduced, which may negatively impact the population of sandbar sharks in the western Atlantic as well as the overall health of the ecosystem within Chesapeake Bay.
Collapse
Affiliation(s)
- Daniel P Crear
- Fisheries Science Department, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Rich W Brill
- Fisheries Science Department, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Peter G Bushnell
- Department of Biological Sciences, Indiana University South Bend, South Bend, IN, USA
| | - Robert J Latour
- Fisheries Science Department, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Gail D Schwieterman
- Fisheries Science Department, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Rachel M Steffen
- Biology Department, Washington & Lee University, Lexington, VA, USA
| | - Kevin C Weng
- Fisheries Science Department, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| |
Collapse
|
17
|
Quantity discrimination in Port Jackson sharks incubated under elevated temperatures. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2706-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
O'Connell KA, Santo VD, Maldonado J, Molina E, Fujita MK. A Tale of Two Skates: Comparative Phylogeography of North American Skate Species with Implications for Conservation. COPEIA 2019. [DOI: 10.1643/cg-18-114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kyle A. O'Connell
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
| | - Jose Maldonado
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Erika Molina
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Matthew K. Fujita
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| |
Collapse
|
19
|
Lyons K, Bigman JS, Kacev D, Mull CG, Carlisle AB, Imhoff JL, Anderson JM, Weng KC, Galloway AS, Cave E, Gunn TR, Lowe CG, Brill RW, Bedore CN. Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology. CONSERVATION PHYSIOLOGY 2019; 7:coz011. [PMID: 31110763 PMCID: PMC6519003 DOI: 10.1093/conphys/coz011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/02/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
A strength of physiological ecology is its incorporation of aspects of both species' ecology and physiology; this holistic approach is needed to address current and future anthropogenic stressors affecting elasmobranch fishes that range from overexploitation to the effects of climate change. For example, physiology is one of several key determinants of an organism's ecological niche (along with evolutionary constraints and ecological interactions). The fundamental role of physiology in niche determination led to the development of the field of physiological ecology. This approach considers physiological mechanisms in the context of the environment to understand mechanistic variations that beget ecological trends. Physiological ecology, as an integrative discipline, has recently experienced a resurgence with respect to conservation applications, largely in conjunction with technological advances that extended physiological work from the lab into the natural world. This is of critical importance for species such as elasmobranchs (sharks, skates and rays), which are an especially understudied and threatened group of vertebrates. In 2017, at the American Elasmobranch Society meeting in Austin, Texas, the symposium entitled `Applications of Physiological Ecology in Elasmobranch Research' provided a platform for researchers to showcase work in which ecological questions were examined through a physiological lens. Here, we highlight the research presented at this symposium, which emphasized the strength of linking physiological tools with ecological questions. We also demonstrate the applicability of using physiological ecology research as a method to approach conservation issues, and advocate for a more available framework whereby results are more easily accessible for their implementation into management practices.
Collapse
Affiliation(s)
- K Lyons
- Georgia Aquarium, Atlanta, GA, USA
| | - J S Bigman
- Simon Fraser University, Burnaby, Canada
| | - D Kacev
- Southwest Fisheries Science Center, La Jolla, CA, USA
| | - C G Mull
- Simon Fraser University, Burnaby, Canada
| | | | - J L Imhoff
- Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA
| | - J M Anderson
- University of Hawai`i at Mānoa, Honolulu, HI, USA
| | - K C Weng
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - A S Galloway
- South Carolina Department of Natural Resources, SC, USA
| | - E Cave
- Florida Atlantic University, Boca Raton, FL, USA
| | - T R Gunn
- Georgia Southern University, Statesboro, GA USA
| | - C G Lowe
- California State University Long Beach, Long Beach, CA, USA
| | - R W Brill
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - C N Bedore
- Georgia Southern University, Statesboro, GA USA
| |
Collapse
|
20
|
Lefevre S. Effects of high CO2 on oxygen consumption rates, aerobic scope and swimming performance. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
21
|
Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. FISH PHYSIOLOGY 2019. [DOI: 10.1016/bs.fp.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Whitlow KR, Santini F, Oufiero CE. Convergent evolution of locomotor morphology but not performance in gymnotiform swimmers. J Evol Biol 2018; 32:76-88. [DOI: 10.1111/jeb.13399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
|
23
|
Bouyoucos IA, Weideli OC, Planes S, Simpfendorfer CA, Rummer JL. Dead tired: evaluating the physiological status and survival of neonatal reef sharks under stress. CONSERVATION PHYSIOLOGY 2018; 6:coy053. [PMID: 30254751 PMCID: PMC6142904 DOI: 10.1093/conphys/coy053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 05/30/2023]
Abstract
Marine protected areas (MPAs) can protect shark populations from targeted fisheries, but resident shark populations may remain exposed to stressors like capture as bycatch and environmental change. Populations of young sharks that rely on shallow coastal habitats, e.g. as nursery areas, may be at risk of experiencing these stressors. The purpose of this study was to characterize various components of the physiological stress response of neonatal reef sharks following exposure to an exhaustive challenge under relevant environmental conditions. To accomplish this, we monitored markers of the secondary stress response and measured oxygen uptake rates ( M˙O2 ) to compare to laboratory-derived baseline values in neonatal blacktip reef (Carcharhinus melanopterus) and sicklefin lemon sharks (Negaprion acutidens). Measurements occurred over three hours following exposure to an exhaustive challenge (gill-net capture with air exposure). Blood lactate concentrations and pH deviated from baseline values at the 3-h sample, indicating that both species were still stressed 3 h after capture. Evidence of a temperature effect on physiological status of either species was equivocal over 28-31°C. However, aspects of the physiological response were species-specific; N. acutidens exhibited a larger difference in blood pH relative to baseline values than C. melanopterus, possibly owing to higher minimum M˙O2 . Neither species experienced immediate mortality during the exhaustive challenge; although, single instances of delayed mortality were documented for each species. Energetic costs and recovery times could be extrapolated for C. melanopterus via respirometry; sharks were estimated to expend 9.9 kJ kg-1 (15% of energy expended on daily swimming) for a single challenge and could require 8.4 h to recover. These data suggest that neonatal C. melanopterus and N. acutidens are resilient to brief gill-net capture durations, but this was under a narrow temperature range. Defining species' vulnerability to stressors is important for understanding the efficacy of shark conservation tools, including MPAs.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
- Laboratoire d’Excellence “CORAIL”, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
24
|
Di Santo V, Jordan HL, Cooper B, Currie RJ, Beitinger TL, Bennett WA. Thermal tolerance of the invasive red-bellied pacu and the risk of establishment in the United States. J Therm Biol 2018; 74:110-115. [PMID: 29801615 DOI: 10.1016/j.jtherbio.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 11/18/2022]
Abstract
Indigenous red-bellied pacu, Piaractus brachypomus, populations are in decline due to overfishing. Once ignored by aquaculturists because of their perceived low economic value, renewed aquaculture efforts in Central and South America aim to relieve fishing pressures on natural pacu populations. In the southern United States pacu aquaculture for the aquarium trade has raised concerns that accidental release could lead to establishment of overwintering populations outside captivity-a threat accentuated by the average 6 °C increase in shallow-water temperatures predicted by the end of the century. In the present study, Critical and Chronic Thermal Methodology was used to quantify red-bellied pacu thermal tolerance niche requirements. The data suggest that red-belllied pacu are a thermophilic species capable of tolerating low and high chronic temperatures of 16.5 °C and 35 °C, respectively. Critical thermal minimum and maximum temperatures of fish acclimated near their chronic limits are 10.3 and 44.4 °C. Red-bellied pacu aquaculture in the United States is concentrated in subtropical Florida regions that encourage rapid growth and reproduction, but carry an increased risk of establishing reproducing populations in local freshwater systems. The thermal niche data show that the risk of bioinvasion can be reduced or eliminated by adopting an approach whereby aquaculture potential is integrated with environmental temperature constraints.
Collapse
Affiliation(s)
- Valentina Di Santo
- Harvard University, Museum of Comparative Zoology, Cambridge, MA 02138, USA.
| | - Heidi L Jordan
- Wright State University, Department of Neuroscience, Cell Biology and Physiology, Dayton, OH 45435, USA
| | - Bruce Cooper
- University of West Florida, Department of Biology, Pensacola, FL 32514, USA
| | | | - Thomas L Beitinger
- University of North Texas, Department of Biological Sciences, Denton, TX 76203, USA
| | - Wayne A Bennett
- University of West Florida, Department of Biology, Pensacola, FL 32514, USA
| |
Collapse
|
25
|
Hannan KD, Rummer JL. Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions. J Exp Biol 2018. [DOI: 10.1242/jeb.154559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Aquatic acidification, caused by elevating levels of atmospheric carbon dioxide (CO2), is increasing in both freshwater and marine ecosystems worldwide. However, few studies have examined how acidification will affect oxygen (O2) transport and, therefore, performance in fishes. Although data are generally lacking, the majority of fishes investigated in this meta-analysis exhibited no effect of elevated CO2 at the level of O2 uptake, suggesting that they are able to maintain metabolic performance during a period of acidosis. Notably, the mechanisms that fish employ to maintain performance and O2 uptake have yet to be verified. Here, we summarize current data related to one recently proposed mechanism underpinning the maintenance of O2 uptake during exposure to aquatic acidification, and reveal knowledge gaps that could be targeted for future research. Most studies have examined O2 uptake rates while fishes were resting and did not calculate aerobic scope, even though aerobic scope can aid in predicting changes to whole-animal metabolic performance. Furthermore, research is lacking on different age classes, freshwater species and elasmobranchs, all of which might be impacted by future acidification conditions. Finally, this Review further seeks to emphasize the importance of developing collaborative efforts between molecular, physiological and ecological approaches in order to provide more comprehensive predictions as to how future fish populations will be affected by climate change.
Collapse
Affiliation(s)
- Kelly D. Hannan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Jodie L. Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
26
|
Di Santo V, Kenaley CP, Lauder GV. High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes. Proc Natl Acad Sci U S A 2017; 114:13048-13053. [PMID: 29158392 PMCID: PMC5724281 DOI: 10.1073/pnas.1715141114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swimming performance is considered a key trait determining the ability of fish to survive. Hydrodynamic theory predicts that the energetic costs required for fishes to swim should vary with speed according to a U-shaped curve, with an expected energetic minimum at intermediate cruising speeds and increasing expenditure at low and high speeds. However, to date no complete datasets have shown an energetic minimum for swimming fish at intermediate speeds rather than low speeds. To address this knowledge gap, we used a negatively buoyant fish, the clearnose skate Raja eglanteria, and took two approaches: a classic critical swimming speed protocol and a single-speed exercise and recovery procedure. We found an anaerobic component at each velocity tested. The two approaches showed U-shaped, though significantly different, speed-metabolic relationships. These results suggest that (i) postural costs, especially at low speeds, may result in J- or U-shaped metabolism-speed curves; (ii) anaerobic metabolism is involved at all swimming speeds in the clearnose skate; and (iii) critical swimming protocols might misrepresent the true costs of locomotion across speeds, at least in negatively buoyant fish.
Collapse
Affiliation(s)
| | | | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
27
|
Giacomin M, Schulte PM, Wood CM. Differential Effects of Temperature on Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the Dogfish Shark (Squalus acanthias suckleyi). Physiol Biochem Zool 2017; 90:627-637. [DOI: 10.1086/694296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Esbaugh AJ. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B 2017; 188:1-13. [PMID: 28547292 DOI: 10.1007/s00360-017-1105-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
Ocean acidification (OA) is an impending environmental stress facing all marine life, and as such has been a topic of intense research interest in recent years. Numerous detrimental effects have been documented in marine fish, ranging from reduced mortality to neurosensory impairment, and the prevailing opinions state that these effects are largely the downstream consequences of altered blood carbon dioxide chemistry caused by respiratory acid-base disturbances. While the respiratory acid-base disturbances are consistent responses to OA across tested fish species, it is becoming increasingly clear that there is wide variability in the degree of downstream impairments between species. This can also be extended to intraspecies variability, whereby some individuals have tolerant physiological traits, while others succumb to the effects of OA. This review will synthesize relevant literature on marine fish to highlight consistent trends of impairment, as well as observed interspecies variability in the responses to OA, and the potential routes of physiological acclimation. In all cases, whole animal responses are linked to demonstrated or proposed physiological impairments. Major topics of focus include: (1) respiratory acid-base disturbances; (2) early life survival and growth; (3) the implications for metabolic performance, activity, and reproduction; and (4) emerging physiological theories pertaining to neurosensory impairment and the role of GABAA receptors. Particular emphasis is placed on the importance of understanding the underlying physiological traits that confer inter- and intraspecies tolerance, as the abundance of these traits will decide the long-term outlook of marine fish.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| |
Collapse
|
29
|
Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, Lind JU, Campbell PH, Dauth S, Capulli AK, Pasqualini FS, Ahn S, Cho A, Yuan H, Maoz BM, Vijaykumar R, Choi JW, Deisseroth K, Lauder GV, Mahadevan L, Parker KK. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016; 353:158-62. [PMID: 27387948 DOI: 10.1126/science.aaf4292] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022]
Abstract
Inspired by the relatively simple morphological blueprint provided by batoid fish such as stingrays and skates, we created a biohybrid system that enables an artificial animal--a tissue-engineered ray--to swim and phototactically follow a light cue. By patterning dissociated rat cardiomyocytes on an elastomeric body enclosing a microfabricated gold skeleton, we replicated fish morphology at 1/10 scale and captured basic fin deflection patterns of batoid fish. Optogenetics allows for phototactic guidance, steering, and turning maneuvers. Optical stimulation induced sequential muscle activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming. The speed and direction of the ray was controlled by modulating light frequency and by independently eliciting right and left fins, allowing the biohybrid machine to maneuver through an obstacle course.
Collapse
Affiliation(s)
- Sung-Jin Park
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mattia Gazzola
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Kyung Soo Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea
| | - Shirley Park
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Erin L Blevins
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Johan U Lind
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Stephanie Dauth
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Andrew K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Francesco S Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Cho
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Hongyan Yuan
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ben M Maoz
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ragu Vijaykumar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Psychiatry and Behavioral Sciences and the Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - George V Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Department of Organismic and Evolutionary Biology, Department of Physics, Wyss Institute for Biologically Inspired Engineering, Kavli Institute for Nanobio Science and Technology, Harvard University, Cambridge, MA 02138S, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Sogang-Harvard Research Center for Disease Biophysics, Sogang University, Seoul 121-742, Korea.
| |
Collapse
|
30
|
Di Santo V, Kenaley CP. Skating by: low energetic costs of swimming in a batoid fish. ACTA ACUST UNITED AC 2016; 219:1804-7. [PMID: 27080535 DOI: 10.1242/jeb.136358] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/06/2016] [Indexed: 11/20/2022]
Abstract
We quantify the oxygen consumption rates and cost of transport (COT) of a benthic batoid fish, the little skate, Leucoraja erinacea, at three swimming speeds. We report that this species has the lowest mass-adjusted swimming metabolic rate measured for any elasmobranch; however, this species incurs a much higher COT at approximately five times the lowest values recorded for some teleosts. In addition, because skates lack a propulsive caudal fin and could not sustain steady swimming beyond a relatively low optimum speed of 1.25 body lengths s(-1), we propose that the locomotor efficiency of benthic rajiform fishes is limited to the descending portion of a single COT-speed relationship. This renders these species poorly suited for long-distance translocation and, therefore, especially vulnerable to regional-scale environmental disturbances.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher P Kenaley
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
31
|
Di Santo V, Blevins EL, Lauder GV. Batoid fish locomotion: effects of speed on pectoral fin deformation in the little skate Leucoraja erinacea. J Exp Biol 2016; 220:705-712. [DOI: 10.1242/jeb.148767] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/04/2016] [Indexed: 01/25/2023]
Abstract
Most batoid fishes have a unique swimming mode in which thrust is generated by either oscillating or undulating expanded pectoral fins that form a disc. Only one previous study of the freshwater stingray has quantified three-dimensional motions of the wing, and no comparable data are available for marine batoid species that may differ considerably in their mode of locomotion. Here we investigate three-dimensional kinematics of the pectoral wing of the little skate, Leucoraja erinacea, swimming steadily at two speeds (1 and 2 body lengths per second, BL×s−1). We measured the motion of nine points in three dimensions during wing oscillation and determined that there are significant differences in movement amplitude among wing locations, as well as significant differences as speed increases in body angle, wing beat frequency, and speed of the traveling wave on the wing. In addition, we analyzed differences in wing curvature with swimming speed. At 1 BL×s−1, the pectoral wing is convex in shape during the downstroke along the medio-lateral fin midline, but at 2 BL×s−1 the pectoral fin at this location cups into the flow indicating active curvature control and fin stiffening. Wing kinematics of the little skate differed considerably from previous work on the freshwater stingray, which does not show active cupping of the whole fin on the downstroke.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Erin L. Blevins
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- The Winsor School, Boston, MA, 02215, USA
| | - George V. Lauder
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|