1
|
Weber AV, Craig PM. Characterization of darter ( Etheostoma spp.) interspecific energetic responses to acute temperature elevations. CONSERVATION PHYSIOLOGY 2025; 13:coaf027. [PMID: 40235653 PMCID: PMC11998911 DOI: 10.1093/conphys/coaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Understanding metabolic responses to temperature elevations is critical for determining how fish populations will be impacted by the increased occurrence of extreme heat events. Here, we characterized the thermal tolerance limits and metabolic functions of three closely related darter species native to the Grand River of Southern Ontario: Fantail darter (Etheostoma flabellare; FTD), Rainbow darter (Etheostoma caeruleum; RBD) and Johnny darter (Etheostoma nigrum; JD). Brain and heart activity of enzymes associated with cellular respiration were analysed for each species at 15°C baseline and following a Critical Thermal Maximum (CTmax) test. Additionally, aerobic scope (AS) was determined for each species while exposed to four heat ramps designed to mimic previously recorded heatwaves. CTmax significantly differed between species with FTD displaying the highest at 33.3°C, JD second at 31.8°C and RBD the lowest at 30.7°C. In darters not exposed to heat stress, FTD possessed higher brain enzymatic activity rates, specifically in pyruvate kinase (PK), citrate synthase (CS) and malate dehydrogenase (MDH). These patterns shifted slightly after exposure to CTmax, with JD displaying a substantial elevation in PK, lactate dehydrogenase, CS and MDH activity, suggesting they had greater enzymatic capacity at temperature extremes. Within heart tissue, we observed no interspecific differences at baseline temperatures; however, RBD had lower enzyme activity than FTD or JD in all enzymes but cytochrome c oxidase following CTmax. Metabolically, FTD exhibited the highest AS following exposure to 10 and 15°C temperature elevations. Our findings demonstrate that FTD may be the best equipped to respond to temperature-induced increases in metabolic demand due to their elevated baseline enzymatic activity and broader AS. These insights may contribute to future darter conservation efforts by informing predictions on species population shifts, particularly in the context of climate change.
Collapse
Key Words
- Aerobic scope
- Ctmaxenzymatic activity
- climate change
- heatwaves
- metabolism
- small-bodied fishes Abbreviations: FTD, fantail darter; RBD, rainbow darter; JD, Johnny darter; PK, pyruvate kinase; LDH, lactate dehydrogenase; MDH, malate dehydrogenase; CS, citrate synthase; COX, cytochrome c oxidase; AS, aerobic scope; CTmax, critical thermal maximum; LOE, loss of equilibrium
Collapse
Affiliation(s)
- Allison V Weber
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
White J, Schell ER, Dawson NJ, McCracken KG. Comparative mechanisms for O 2 storage and metabolism in two Florida diving birds: the anhinga (Anhinga anhinga) and the double-crested cormorant (Nannopterum auritum). J Comp Physiol B 2025; 195:191-208. [PMID: 39704814 PMCID: PMC12069429 DOI: 10.1007/s00360-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 12/21/2024]
Abstract
Air-breathing vertebrates face many physiological challenges while breath-hold diving. In particular, they must endure intermittent periods of declining oxygen (O2) stores, as well as the need to rapidly replenish depleted O2 at the surface prior to their next dive. While many species show adaptive increases in the O2 storage capacity of the blood or muscles, others increase the oxidative capacity of the muscles through changes in mitochondrial arrangement, abundance, or remodeling of key metabolic pathways. Here, we assess the diving phenotypes of two sympatric diving birds: the anhinga (Anhinga anhinga) and the double-crested cormorant (Nannopterum auritum). In each, we measured blood- and muscle-O2 storage capacity, as well as phenotypic characteristics such as muscle fiber composition, capillarity, and mitochondrial arrangement and abundance in the primary flight (pectoralis) and swimming (gastrocnemius) muscles. Finally, we compared the maximal activities of 10 key enzymes in the pectoralis, gastrocnemius, and left ventricle of the heart to assess tissue level oxidative capacity and fuel use. Our results indicate that both species utilize enhanced muscle-O2 stores over blood-O2. This is most apparent in the large difference in available myoglobin in the gastrocnemius between the two species. Oxidative capacity varied significantly between the flight and swimming muscles and between the two species. However, both species showed lower oxidative capacity than expected compared to other diving birds. In particular, the anhinga exhibits a unique diving phenotype with a slightly higher reliance on glycolysis and lower aerobic ATP generation than double-crested cormorants.
Collapse
Affiliation(s)
- Jeff White
- Department of Biology, University of Miami, Coral Gables, FL, USA.
- Department of Public and Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| | | | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Kevin G McCracken
- Department of Biology, University of Miami, Coral Gables, FL, USA
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Borowiec BG, Robichaud KB, Craig PM. Interactive effects of elevated temperature and venlafaxine on mitochondrial respiration and enzymatic capacity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:737-750. [PMID: 39903854 DOI: 10.1093/etojnl/vgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Warming events are becoming more frequent and extreme in aquatic environments worldwide. Concurrently, many environments are polluted with biologically active compounds such as pharmaceuticals. Understanding how these challenges interact is critical for understanding the climate crisis, as contaminants may modulate how ectotherms respond to heat stress or vice versa. One potential site for these heat × contaminant interactions is the mitochondrion, which is central to metabolism, implicated in thermal tolerance, and evolutionarily conserved. Using high-resolution respirometry, we investigated how acute warming (to 35 °C, 40 °C, or 45 °C from 25 °C) impacted the respiration, coupling, and metabolic capacity of liver mitochondria isolated from Nile tilapia, and how exposure to environmentally relevant levels of the ubiquitous antidepressant venlafaxine modulated those effects. Mitochondria exposed to hotter temperatures had higher respiration rates and decreased respiratory control ratio compared to mitochondria exposed to cooler temperatures. The depressive effects of venlafaxine on respiration rates through complex I and II or complex II only (State 3 and State 4), as well as complex IV-linked respiration, were mild except in mitochondria exposed to high temperatures, suggesting an interactive effect of warming and contaminant exposure. Finally, we found that the maximal enzyme activity of intact mitochondria (represented by mitochondrial respiration) showed a different pattern of response to warming and venlafaxine compared to its underlying components (as reflected by the activity of succinate dehydrogenase [complex II] and cytochrome c oxidase [complex IV]), demonstrating the value of incorporating both interactive and reductive approaches in understanding how mitochondria cope with anthropogenic changes in the environment.
Collapse
Affiliation(s)
| | - Karyn B Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Garrett EJ, Prasad SK, Schweizer RM, McClelland GB, Scott GR. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2024; 326:R297-R310. [PMID: 38372126 PMCID: PMC11283899 DOI: 10.1152/ajpregu.00206.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), β-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.
Collapse
Affiliation(s)
- Emily J Garrett
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Srikripa K Prasad
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States
- United States Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, Utah, United States
| | | | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Metcalfe NB, Bellman J, Bize P, Blier PU, Crespel A, Dawson NJ, Dunn RE, Halsey LG, Hood WR, Hopkins M, Killen SS, McLennan D, Nadler LE, Nati JJH, Noakes MJ, Norin T, Ozanne SE, Peaker M, Pettersen AK, Przybylska-Piech A, Rathery A, Récapet C, Rodríguez E, Salin K, Stier A, Thoral E, Westerterp KR, Westerterp-Plantenga MS, Wojciechowski MS, Monaghan P. Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species. Bioessays 2023; 45:e2300026. [PMID: 37042115 DOI: 10.1002/bies.202300026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Collapse
Affiliation(s)
- Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Pierre U Blier
- Département de Biologie, Université de Québec à Rimouski, Rimouski, Canada
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Mark Hopkins
- School of Food Science and Nutrition, Leeds University, Leeds, UK
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Lauren E Nadler
- Ocean and Earth Science, NOC, University of Southampton, Southampton, UK
| | - Julie J H Nati
- Ocean Sciences Center, Memorial University of Newfoundland, St John's, Canada
| | - Matthew J Noakes
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Amanda K Pettersen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life & Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Przybylska-Piech
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Alann Rathery
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Charlotte Récapet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-, Nivelle, France
| | - Enrique Rodríguez
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Karine Salin
- IFREMER, Univ Brest, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, France
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
| | - Klaas R Westerterp
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Michał S Wojciechowski
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Pat Monaghan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Nord A, Chamkha I, Elmér E. A whole blood approach improves speed and accuracy when measuring mitochondrial respiration in intact avian blood cells. FASEB J 2023; 37:e22766. [PMID: 36734850 DOI: 10.1096/fj.202201749r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023]
Abstract
Understanding mitochondrial biology and pathology is key to understanding the evolution of animal form and function. However, mitochondrial measurement often involves invasive, or even terminal, sampling, which can be difficult to reconcile in wild models or longitudinal studies. Non-mammal vertebrates contain mitochondria in their red blood cells, which can be exploited for minimally invasive mitochondrial measurement. Several recent bird studies have measured mitochondrial function using isolated blood cells. Isolation adds time in the laboratory and might be associated with physiological complications. We developed and validated a protocol to measure mitochondrial respiration in bird whole blood. Endogenous respiration was comparable between isolated blood cells and whole blood. However, respiration towards oxidative phosphorylation was higher in whole blood, and whole blood mitochondria were better coupled and had higher maximum working capacity. Whole blood measurement was also more reproducible than measurement on isolated cells for all traits considered. Measurements were feasible over a 10-fold range of sample volumes, although both small and large volumes were associated with changes to respiratory traits. The protocol was compatible with long-term storage: after 24 h at 5°C without agitation, all respiration traits but maximum working capacity remained unchanged, the latter decreasing by 14%. Our study suggests that whole blood measurement provides faster, more reproducible, and more biologically and physiologically relevant (mitochondrial integrity) assessment of mitochondrial respiration. We recommend future studies to take a whole blood approach unless specific circumstances require the use of isolated blood cells.
Collapse
Affiliation(s)
- Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Imen Chamkha
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden
| | - Eskil Elmér
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Huynh KW, Pamenter ME. Lactate inhibits naked mole-rat cardiac mitochondrial respiration. J Comp Physiol B 2022; 192:501-511. [PMID: 35181821 DOI: 10.1007/s00360-022-01430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 12/25/2022]
Abstract
In aerobic conditions, the proton-motive force drives oxidative phosphorylation (OXPHOS) and the conversion of ADP to ATP. In hypoxic environments, OXPHOS is impaired, resulting in energy shortfalls and the accumulation of protons and lactate. This results in cellular acidification, which may impact the activity and/or integrity of mitochondrial enzymes and in turn negatively impact mitochondrial respiration and thus aerobic ATP production. Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and putatively experience intermittent hypoxia in their underground burrows. However, if and how NMR cardiac mitochondria are impacted by lactate accumulation in hypoxia is unknown. We predicted that lactate alters mitochondrial respiration in NMR cardiac muscle. To test this, we used high-resolution respirometry to measure mitochondrial respiration in permeabilized cardiac muscle fibres from NMRs exposed to 4 h of in vivo normoxia (21% O2) or hypoxia (7% O2). We found that: (1) cardiac mitochondria cannot directly oxidize lactate, but surprisingly, (2) lactate inhibits mitochondrial respiration, and (3) decreases complex IV maximum respiratory capacity. Finally, (4) in vivo hypoxic exposure decreases the magnitude of lactate-mediated inhibition of mitochondrial respiration. Taken together, our results suggest that lactate may retard electron transport system function in NMR cardiac mitochondria, particularly in normoxia, and that NMR hearts may be primed for anaerobic metabolism.
Collapse
Affiliation(s)
- Kenny W Huynh
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, K1N 6N5, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Nord A, Metcalfe NB, Page JL, Huxtable A, McCafferty DJ, Dawson NJ. Avian red blood cell mitochondria produce more heat in winter than in autumn. FASEB J 2021; 35:e21490. [PMID: 33829547 DOI: 10.1096/fj.202100107r] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Endotherms in cold regions improve heat-producing capacity when preparing for winter. We know comparatively little about how this change is fueled by seasonal adaptation in cellular respiration. Thus, we studied the changes of mitochondrial function in red blood cells in sympatric Coal (Periparus ater), Blue (Cyanistes caeruleus), and Great (Parus major) tits between autumn and winter. These species differ more than twofold in body mass and in several aspects of their foraging ecology and social dominance, which could require differential seasonal adaptation of energy expenditure. Coal and Great tits in particular upregulated the mitochondrial respiration rate and mitochondrial volume in winter. This was not directed toward ATP synthesis, instead reflecting increased uncoupling of electron transport from ATP production. Because uncoupling is exothermic, this increased heat-producing capacity at the sub-cellular level in winter. This previously unexplored the route of thermogenesis in birds should be addressed in future work.
Collapse
Affiliation(s)
- Andreas Nord
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden.,Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Neil B Metcalfe
- Institute for Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, UK
| | - Jennifer L Page
- Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Anna Huxtable
- Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Dominic J McCafferty
- Institute of Biodiversity, Animal Health and Comparative Medicine, Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, UK
| | - Neal J Dawson
- Institute for Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Flight muscle and heart phenotypes in the high-flying ruddy shelduck. J Comp Physiol B 2021; 191:563-573. [PMID: 33591404 DOI: 10.1007/s00360-020-01326-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 01/21/2023]
Abstract
Ruddy shelduck migrate from wintering grounds in lowland India and Myanmar to breeding grounds in central China and Mongolia, sustaining flight over the Himalayas, where oxygen availability is greatly reduced. We compared phenotypes of the pectoralis muscle and the ventricle of the heart from ruddy shelduck and common shelduck (a closely related low-altitude congener) that were raised in common conditions at sea level, predicting that oxidative capacity would be greater in ruddy shelduck to support high-altitude migration. Fibre-type composition of the pectoralis and the maximal activity of eight enzymes involved in mitochondrial energy metabolism in the pectoralis and heart, were compared between species. Few differences distinguished ruddy shelduck from common shelduck in the flight muscle, with the exception that ruddy shelduck had higher activities of complex II and higher ratios of complex IV (cytochrome c oxidase) and complex II when expressed relative to citrate synthase activity. There were no species differences in fibre-type composition, so these changes in enzyme activity may reflect an evolved modification in the functional properties of muscle mitochondria, potentially influencing mitochondrial respiratory capacity and/or oxygen affinity. Ruddy shelduck also had higher lactate dehydrogenase activity concurrent with lower pyruvate kinase and hexokinase activity in the left ventricle, which likely reflects an increased capacity for lactate oxidation by the heart. We conclude that changes in pathways of mitochondrial energy metabolism in the muscle and heart may contribute to the ability of ruddy shelduck to fly at high altitude.
Collapse
|
10
|
Dawson NJ, Alza L, Nandal G, Scott GR, McCracken KG. Convergent changes in muscle metabolism depend on duration of high-altitude ancestry across Andean waterfowl. eLife 2020; 9:e56259. [PMID: 32729830 PMCID: PMC7494360 DOI: 10.7554/elife.56259] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
High-altitude environments require that animals meet the metabolic O2 demands for locomotion and thermogenesis in O2-thin air, but the degree to which convergent metabolic changes have arisen across independent high-altitude lineages or the speed at which such changes arise is unclear. We examined seven high-altitude waterfowl that have inhabited the Andes (3812-4806 m elevation) over varying evolutionary time scales, to elucidate changes in biochemical pathways of energy metabolism in flight muscle relative to low-altitude sister taxa. Convergent changes across high-altitude taxa included increased hydroxyacyl-coA dehydrogenase and succinate dehydrogenase activities, decreased lactate dehydrogenase, pyruvate kinase, creatine kinase, and cytochrome c oxidase activities, and increased myoglobin content. ATP synthase activity increased in only the longest established high-altitude taxa, whereas hexokinase activity increased in only newly established taxa. Therefore, changes in pathways of lipid oxidation, glycolysis, and mitochondrial oxidative phosphorylation are common strategies to cope with high-altitude hypoxia, but some changes require longer evolutionary time to arise.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology, McMaster UniversityHamiltonCanada
- Department of Biology University of MiamiCoral GablesUnited States
| | - Luis Alza
- Department of Biology University of MiamiCoral GablesUnited States
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
- Centro de Ornitología y Biodiversidad - CORBIDILimaPeru
| | | | - Graham R Scott
- Department of Biology, McMaster UniversityHamiltonCanada
| | - Kevin G McCracken
- Department of Biology University of MiamiCoral GablesUnited States
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska FairbanksFairbanksUnited States
- Centro de Ornitología y Biodiversidad - CORBIDILimaPeru
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of MiamiMiamiUnited States
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| |
Collapse
|
11
|
Dawson N, Salmón P. Age-related increase in mitochondrial quantity may mitigate a decline in mitochondrial quality in red blood cells from zebra finches (Taeniopygia guttata). Exp Gerontol 2020; 133:110883. [DOI: 10.1016/j.exger.2020.110883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
|
12
|
Parr N, Wilkes M, Hawkes LA. Natural Climbers: Insights from Avian Physiology at High Altitude. High Alt Med Biol 2019; 20:427-437. [DOI: 10.1089/ham.2019.0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nicole Parr
- College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Matt Wilkes
- Centre for Altitude Space and Extreme Environment Medicine, Institute of Sport, Exercise and Health, London, United Kingdom
| | - Lucy Alice Hawkes
- Hatherly Laboratories, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Storz JF, Scott GR. Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019; 50:503-526. [PMID: 33033467 DOI: 10.1146/annurev-ecolsys-110218-025014] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To cope with the reduced availability of O2 at high altitude, air-breathing vertebrates have evolved myriad adjustments in the cardiorespiratory system to match tissue O2 delivery with metabolic O2 demand. We explain how changes at interacting steps of the O2 transport pathway contribute to plastic and evolved changes in whole-animal aerobic performance under hypoxia. In vertebrates native to high altitude, enhancements of aerobic performance under hypoxia are attributable to a combination of environmentally induced and evolved changes in multiple steps of the pathway. Additionally, evidence suggests that many high-altitude natives have evolved mechanisms for attenuating maladaptive acclimatization responses to hypoxia, resulting in counter-gradient patterns of altitudinal variation for key physiological phenotypes. For traits that exhibit counteracting environmental and genetic effects, evolved changes in phenotype may be cryptic under field conditions and can only be revealed by rearing representatives of high-and low-altitude populations under standardized environmental conditions to control for plasticity.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
14
|
Alza L, Lavretsky P, Peters JL, Cerón G, Smith M, Kopuchian C, Astie A, McCracken KG. Old divergence and restricted gene flow between torrent duck ( Merganetta armata) subspecies in the Central and Southern Andes. Ecol Evol 2019; 9:9961-9976. [PMID: 31534707 PMCID: PMC6745679 DOI: 10.1002/ece3.5538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/03/2022] Open
Abstract
AIM To investigate the structure and rate of gene flow among populations of habitat-specialized species to understand the ecological and evolutionary processes underpinning their population dynamics and historical demography, including speciation and extinction. LOCATION Peruvian and Argentine Andes. TAXON Two subspecies of torrent duck (Merganetta armata). METHODS We sampled 156 individuals in Peru (M. a. leucogenis; Chillón River, n = 57 and Pachachaca River, n = 49) and Argentina (M. a. armata; Arroyo Grande River, n = 33 and Malargüe River, n = 17), and sequenced the mitochondrial DNA (mtDNA) control region to conduct coarse and fine-scale demographic analyses of population structure. Additionally, to test for differences between subspecies, and across genetic markers with distinct inheritance patterns, a subset of individuals (Peru, n = 10 and Argentina, n = 9) was subjected to partial genome resequencing, obtaining 4,027 autosomal and 189 Z-linked double-digest restriction-associated DNA sequences. RESULTS Haplotype and nucleotide diversities were higher in Peru than Argentina across all markers. Peruvian and Argentine subspecies showed concordant species-level differences (ΦST mtDNA = 0.82; ΦST autosomal = 0.30; ΦST Z chromosome = 0.45), including no shared mtDNA haplotypes. Demographic parameters estimated for mtDNA using IM and IMa2 analyses, and for autosomal markers using ∂a∂i (isolation-with-migration model), supported an old divergence (mtDNA = 600,000 years before present (ybp), 95% HPD range = 1.2 Mya to 200,000 ybp; and autosomal ∂a∂i = 782,490 ybp), between the two subspecies, characteristic of deeply diverged lineages. The populations were well-differentiated in Argentina but moderately differentiated in Peru, with low unidirectional gene flow in each country. MAIN CONCLUSIONS We suggest that the South American Arid Diagonal was preexisting and remains a current phylogeographic barrier between the ranges of the two torrent duck subspecies, and the adult territoriality and breeding site fidelity to the rivers define their population structure.
Collapse
Affiliation(s)
- Luis Alza
- Department of BiologyUniversity of MiamiCoral GablesFLUSA
- División de OrnitologíaCORBIDILimaPeru
- Institute of Arctic BiologyDepartment of Biology and WildlifeUniversity of Alaska FairbanksAKUSA
| | - Philip Lavretsky
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTXUSA
| | | | - Gerardo Cerón
- Laboratorio de Zoología‐CRUBUniversidad Nacional del ComahueBarilocheArgentina
| | - Matthew Smith
- Institute of Arctic BiologyDepartment of Biology and WildlifeUniversity of Alaska FairbanksAKUSA
| | - Cecilia Kopuchian
- Centro de Ecología Aplicada del Litoral (CECOAL‐CONICET)CorrientesArgentina
- División OrnitologíaMuseo Argentino de Ciencias Naturales (MACN‐CONICET)Buenos AiresArgentina
| | - Andrea Astie
- Instituto Argentino de Investigaciones de las Zonas Áridas (CCT Mendoza‐CONICET)MendozaArgentina
| | - Kevin G. McCracken
- Department of BiologyUniversity of MiamiCoral GablesFLUSA
- División de OrnitologíaCORBIDILimaPeru
- Institute of Arctic BiologyDepartment of Biology and WildlifeUniversity of Alaska FairbanksAKUSA
- Rosenstiel School of Marine and Atmospheric SciencesUniversity of MiamiCoral GablesFLUSA
- University of Alaska MuseumUniversity of Alaska FairbanksFairbanksAKUSA
| |
Collapse
|
15
|
Dawson NJ, Lyons SA, Henry DA, Scott GR. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude. Acta Physiol (Oxf) 2018; 223:e13030. [PMID: 29316265 DOI: 10.1111/apha.13030] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/08/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022]
Abstract
AIM We examined the effects of chronic hypoxia on diaphragm function in high- and low-altitude populations of Peromyscus mice. METHODS Deer mice (P. maniculatus) native to high altitude and congeneric mice native to low altitude (P. leucopus) were born and raised in captivity to adulthood and were acclimated to normoxia or hypobaric hypoxia (12 or 9 kPa, simulating hypoxia at 4300 and 7000 m) for 6-8 weeks. We then measured indices of mitochondrial respiration capacity, force production, and fatigue resistance in the diaphragm. RESULTS Mitochondrial respiratory capacities (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), citrate synthase activity (a marker of mitochondrial volume), twitch force production, and muscle fatigue resistance increased after exposure to chronic hypoxia in both populations. These changes were not well explained by variation in the fibre-type composition of the muscle. However, there were several differences in diaphragm function in high-altitude mice compared to low-altitude mice. Exposure to a deeper level of hypoxia (9 kPa vs 12 kPa) was needed to elicit increases in mitochondrial respiration rates in highlanders. Chronic hypoxia did not increase the emission of reactive oxygen species from permeabilized fibres in highlanders, in contrast to the pronounced increases that occurred in lowlanders. In general, the diaphragm of high-altitude mice had greater capillary length densities, produced less force in response to stimulation and had shorter relaxation times. The latter was associated with higher activity of sarcoplasmic reticulum Ca2+ -ATPase (SERCA) activity in the diaphragm of high-altitude mice. CONCLUSION Overall, our work suggests that exposure to chronic hypoxia increases the capacities for mitochondrial respiration, force production and fatigue resistance of the diaphragm. However, many of these effects are opposed by evolved changes in diaphragm function in high-altitude natives, such that highlanders in chronic hypoxia maintain similar diaphragm function to lowlanders in sea level conditions.
Collapse
Affiliation(s)
- N. J. Dawson
- Department of Biology; McMaster University; Hamilton ON Canada
| | - S. A. Lyons
- Department of Biology; McMaster University; Hamilton ON Canada
| | - D. A. Henry
- Department of Biology; McMaster University; Hamilton ON Canada
| | - G. R. Scott
- Department of Biology; McMaster University; Hamilton ON Canada
| |
Collapse
|
16
|
Pamenter ME, Lau GY, Richards JG, Milsom WK. Naked mole rat brain mitochondria electron transport system flux and H + leak are reduced during acute hypoxia. ACTA ACUST UNITED AC 2018; 221:jeb.171397. [PMID: 29361591 DOI: 10.1242/jeb.171397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Mitochondrial respiration and ATP production are compromised by hypoxia. Naked mole rats (NMRs) are among the most hypoxia-tolerant mammals and reduce metabolic rate in hypoxic environments; however, little is known regarding mitochondrial function during in vivo hypoxia exposure in this species. To address this knowledge gap, we asked whether the function of NMR brain mitochondria exhibits metabolic plasticity during acute hypoxia. Respirometry was utilized to assess whole-animal oxygen consumption rates and high-resolution respirometry was utilized to assess electron transport system (ETS) function in saponin-permeabilized NMR brain. We found that NMR whole-animal oxygen consumption rate reversibly decreased by ∼85% in acute hypoxia (4 h at 3% O2). Similarly, relative to untreated controls, permeabilized brain respiratory flux through the ETS was decreased by ∼90% in acutely hypoxic animals. Relative to carbonyl cyanide p-trifluoro-methoxyphenylhydrazone-uncoupled total ETS flux, this functional decrease was observed equally across all components of the ETS except for complex IV (cytochrome c oxidase), at which flux was further reduced, supporting a regulatory role for this enzyme during acute hypoxia. The maximum enzymatic capacities of ETS complexes I-V were not altered by acute hypoxia; however, the mitochondrial H+ gradient decreased in step with the decrease in ETS respiration. Taken together, our results indicate that NMR brain ETS flux and H+ leak are reduced in a balanced and regulated fashion during acute hypoxia. Changes in NMR mitochondrial metabolic plasticity mirror whole-animal metabolic responses to hypoxia.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 .,Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Gigi Y Lau
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Jeffrey G Richards
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
17
|
Tate KB, Ivy CM, Velotta JP, Storz JF, McClelland GB, Cheviron ZA, Scott GR. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. ACTA ACUST UNITED AC 2017; 220:3616-3620. [PMID: 28839010 DOI: 10.1242/jeb.164491] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/18/2017] [Indexed: 01/08/2023]
Abstract
We examined the circulatory mechanisms underlying adaptive increases in thermogenic capacity in deer mice (Peromyscus maniculatus) native to the cold hypoxic environment at high altitudes. Deer mice from high- and low-altitude populations were born and raised in captivity to adulthood, and then acclimated to normoxia or hypobaric hypoxia (simulating hypoxia at ∼4300 m). Thermogenic capacity [maximal O2 consumption (V̇O2,max), during cold exposure] was measured in hypoxia, along with arterial O2 saturation (SaO2 ) and heart rate (fH). Hypoxia acclimation increased V̇O2,max by a greater magnitude in highlanders than in lowlanders. Highlanders also had higher SaO2 and extracted more O2 from the blood per heartbeat (O2 pulse=V̇O2,max/fH). Hypoxia acclimation increased fH, O2 pulse and capillary density in the left ventricle of the heart. Our results suggest that adaptive increases in thermogenic capacity involve integrated functional changes across the O2 cascade that augment O2 circulation and extraction from the blood.
Collapse
Affiliation(s)
- Kevin B Tate
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jonathan P Velotta
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|