1
|
Wang Z, Gong L, Wu H, Feng J, Jiang T. Auditory sensitivity in the great evening bat (Ia io): Insights from auditory brainstem response. Hear Res 2025; 464:109310. [PMID: 40408799 DOI: 10.1016/j.heares.2025.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
The great evening bat (Ia io), a large frequency-modulating (FM) bat species in the Vespertilionidae family, may exhibit unique auditory adaptations that support its bird-predatory behavior. In this study, we employed auditory brainstem response (ABR) measurements to evaluate the auditory sensitivity of five adult male I. io across a 2 to 80 kHz frequency range. The results showed the most sensitive auditory threshold appears at 24-28 kHz (range 24 to 32 kHz for individual bats), aligning with the species' peak frequency of echolocation calls, enhancing large prey detection and localization. ABRs identify five distinct wave peaks (P1-P5) at high sound pressure levels, with the largest amplitude peak observed for P4. Furthermore, I. io has lower auditory thresholds across higher frequencies than most other FM bats. These findings suggest I. io has a broad auditory range that may facilitate adaptive flexibility in varied ecological settings.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China.
| | - Huan Wu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Vanderelst D, Peremans H. How swarming bats can use the collective soundscape for obstacle avoidance. PLoS Comput Biol 2025; 21:e1013013. [PMID: 40373075 DOI: 10.1371/journal.pcbi.1013013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/31/2025] [Indexed: 05/17/2025] Open
Abstract
Some echolocating bats, such as Tadarida brasiliensis, fly in groups when emerging from or entering caves. In large, dense swarms, distinguishing self-generated echoes from the multitude of calls and echoes produced by others presents a significant challenge - akin to a cocktail party nightmare. While spectral jamming responses have been proposed as a solution, this mechanism is unlikely to be effective in such conditions. Here, we propose an alternative hypothesis: rather than isolating their own echoes, bats might navigate by relying on the local amplitude gradient of the collective soundscape. To test this, we developed an agent-based simulation of bats flying through corridors, demonstrating that they can avoid obstacles, including other bats and corridor walls, without distinguishing individual echoes. Our findings suggest that in dense swarms, bats can exploit the emergent acoustic environment to maintain safe distances passively. The current paper also suggests shifting the perspective on jamming itself. Rather than framing overlapping signals solely as a source of interference, our findings highlight that these signals can also carry useful information, reframing the problem from conflict to cooperative signal processing.
Collapse
Affiliation(s)
- Dieter Vanderelst
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Goldshtein A, Mazar O, Harten L, Amichai E, Assa R, Levi A, Orchan Y, Toledo S, Nathan R, Yovel Y. Onboard recordings reveal how bats maneuver under severe acoustic interference. Proc Natl Acad Sci U S A 2025; 122:e2407810122. [PMID: 40163729 PMCID: PMC12002023 DOI: 10.1073/pnas.2407810122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/02/2025] [Indexed: 04/02/2025] Open
Abstract
Echolocating bats rely on active acoustic sensing to perceive their environment. When multiple bats fly together, echolocating simultaneously, the calls emitted by nearby conspecifics could interfere with and mask the echoes necessary for orientation. Nowhere is this impairment of sensing more dramatic than when thousands of bats emerge from a cave at the same time. Here, we tracked the movement of tens of greater mouse-tailed bats flying within a group of thousands. By mounting miniature microphones onboard some of the bats, we monitored the acoustic scene from the point of view of an individual bat within the echolocating collective. We found that bats experienced a very high level of conspecific acoustic masking when emerging from their cave, which dropped within seconds as the bats spread out in space. A comprehensive sensorimotor model, based on the unique data that we collected, revealed how bats content with this severe echo masking almost without collisions. Our results demonstrate that even under severe masking, bats are hardly impaired sensorially, and we suggest how they are able to maneuver smoothly and avoid collisions, even at high densities, without applying a jamming avoidance response.
Collapse
Affiliation(s)
- Aya Goldshtein
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz78464, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz78464, Germany
- Department of Biology, University of Konstanz, Konstanz78464, Germany
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Omer Mazar
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Lee Harten
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Eran Amichai
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Reut Assa
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
| | - Anat Levi
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Yotam Orchan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Sivan Toledo
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Faculty of Exact Sciences, Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv6997801, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Yossi Yovel
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel-Aviv6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv6997801, Israel
- Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel-Aviv6997801, Israel
| |
Collapse
|
4
|
Diebold CA, Lawlor J, Allen K, Capshaw G, Humphrey MG, Cintron-De Leon D, Kuchibhotla KV, Moss CF. Rapid sensorimotor adaptation to auditory midbrain silencing in free-flying bats. Curr Biol 2024; 34:5507-5517.e3. [PMID: 39549701 PMCID: PMC11614681 DOI: 10.1016/j.cub.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Echolocating bats rely on rapid processing of auditory information to guide moment-to-moment decisions related to echolocation call design and flight path selection. The fidelity of sonar echoes, however, can be disrupted in natural settings due to occlusions, noise, and conspecific jamming signals. Behavioral sensorimotor adaptation to external blocks of relevant cues has been studied extensively, but little is known about adaptations that mitigate internal sensory flow interruption. How do bats modify their sensory-guided behaviors in natural tasks when central auditory processing is interrupted? Here, we induced internal sensory interruptions by reversibly inactivating excitatory neurons in the inferior colliculus (IC) using ligand-activated inhibitory designer receptors exclusively activated by designer drugs (DREADDs). Bats were trained to navigate through one of three open windows in a curtain to obtain a food reward, while their echolocation and flight behaviors were quantified with synchronized ultrasound microphone and stereo video recordings. Under control conditions, bats reliably steered through the open window, only occasionally contacting the curtain edge. Suppressing IC excitatory activity elevated hearing thresholds, disrupted overall performance in the task, increased the frequency of curtain contact, and led to striking compensatory sensorimotor adjustments. DREADDs-treated bats modified flight trajectories to maximize returning echo information and adjusted sonar call design to boost detection of obstacles. Sensorimotor adaptations appeared immediately and did not change over successive trials, suggesting that these behavioral adaptations are mediated through existing neural circuitry. Our findings highlight the remarkable rapid adaptive strategies bats employ to compensate for internal sensory interruptions to effectively navigate their environments.
Collapse
Affiliation(s)
- Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Kathryne Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Megan G Humphrey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Diego Cintron-De Leon
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Boublil BL, Yu C, Shewmaker G, Sterbing S, Moss CF. Ventral wing hairs provide tactile feedback for aerial prey capture in the big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:761-770. [PMID: 38097720 DOI: 10.1007/s00359-023-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 09/10/2024]
Abstract
Bats rely on their hand-wings to execute agile flight maneuvers, to grasp objects, and cradle young. Embedded in the dorsal and ventral membranes of bat wings are microscopic hairs. Past research findings implicate dorsal wing hairs in airflow sensing for flight control, but the function of ventral wing hairs has not been previously investigated. Here, we test the hypothesis that ventral wing hairs carry mechanosensory signals for flight control, prey capture, and handling. To test this hypothesis, we used synchronized high-speed stereo video and audio recordings to quantify flight and echolocation behaviors of big brown bats (Eptesicus fuscus) engaged in an aerial insect capture task. We analyzed prey-capture strategy and performance, along with flight kinematics, before and after depilation of microscopic hairs from the bat's ventral wing and tail membranes. We found that ventral wing hair depilation significantly impaired the bat's prey-capture performance. Interestingly, ventral wing hair depilation also produced increases in the bat's flight speed, an effect previously attributed exclusively to airflow sensing along the dorsal wing surface. These findings demonstrate that microscopic hairs embedded in the ventral wing and tail membranes of insectivorous bats provide mechanosensory feedback for prey handling and flight control.
Collapse
Affiliation(s)
- Brittney L Boublil
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Ames 200B, Baltimore, MD, 21218, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92612, USA
| | - Chao Yu
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Ames 200B, Baltimore, MD, 21218, USA
- Nanjing Research Institute of Electronic Technology, Nanjing, Jiangsu, China
| | - Grant Shewmaker
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Ames 200B, Baltimore, MD, 21218, USA
| | - Susanne Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Ames 200B, Baltimore, MD, 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Ames 200B, Baltimore, MD, 21218, USA.
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Mechanical Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
6
|
Capshaw G, Diebold CA, Sterbing SJ, Lauer AM, Moss CF. Echolocating bats show species-specific variation in susceptibility to acoustic forward masking. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:511-523. [PMID: 39013168 PMCID: PMC11254387 DOI: 10.1121/10.0026624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
Echolocating bats rely on precise auditory temporal processing to detect echoes generated by calls that may be emitted at rates reaching 150-200 Hz. High call rates can introduce forward masking perceptual effects that interfere with echo detection; however, bats may have evolved specializations to prevent repetition suppression of auditory responses and facilitate detection of sounds separated by brief intervals. Recovery of the auditory brainstem response (ABR) was assessed in two species that differ in the temporal characteristics of their echolocation behaviors: Eptesicus fuscus, which uses high call rates to capture prey, and Carollia perspicillata, which uses lower call rates to avoid obstacles and forage for fruit. We observed significant species differences in the effects of forward masking on ABR wave 1, in which E. fuscus maintained comparable ABR wave 1 amplitudes when stimulated at intervals of <3 ms, whereas post-stimulus recovery in C. perspicillata required 12 ms. When the intensity of the second stimulus was reduced by 20-30 dB relative to the first, however, C. perspicillata showed greater recovery of wave 1 amplitudes. The results demonstrate that species differences in temporal resolution are established at early levels of the auditory pathway and that these differences reflect auditory processing requirements of species-specific echolocation behaviors.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Susanne J Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Feyten LEA, Ramnarine IW, Brown GE. Microhabitat conditions drive uncertainty of risk and shape neophobic responses in Trinidadian guppies, Poecilia reticulata. Ecol Evol 2023; 13:e10554. [PMID: 37753307 PMCID: PMC10518753 DOI: 10.1002/ece3.10554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
In response to uncertain risks, prey may rely on neophobic phenotypes to reduce the costs associated with the lack of information regarding local conditions. Neophobia has been shown to be driven by information reliability, ambient risk and predator diversity, all of which shape uncertainty of risk. We similarly expect environmental conditions to shape uncertainty by interfering with information availability. In order to test how environmental variables might shape neophobic responses in Trinidadian guppies (Poecilia reticulata), we conducted an in situ field experiment of two high-predation risk guppy populations designed to determine how the 'average' and 'variance' of several environmental factors might influence the neophobic response to novel predator models and/or novel foraging patches. Our results suggest neophobia is shaped by water velocity, microhabitat complexity, pool width and depth, as well as substrate diversity and heterogeneity. Moreover, we found differential effects of the 'average' and 'variance' environmental variables on food- and predator-related neophobia. Our study highlights that assessment of neophobic drivers should consider predation risk, various microhabitat conditions and neophobia being tested. Neophobic phenotypes are expected to increase the probability of prey survival and reproductive success (i.e. fitness), and are therefore likely linked to population health and species survival. Understanding the drivers and consequences of uncertainty of risk is an increasingly pressing issue, as ecological uncertainty increases with the combined effects of climate change, anthropogenic disturbances and invasive species.
Collapse
Affiliation(s)
| | - Indar W. Ramnarine
- Department of Life SciencesThe University of the West IndiesSt. AugustineTrinidad and Tobago
| | - Grant E. Brown
- Department of BiologyConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
9
|
Zou J, Jin B, Ao Y, Han Y, Huang B, Jia Y, Yang L, Jia Y, Chen Q, Fu Z. Spectrally non-overlapping background noise disturbs echolocation via acoustic masking in the CF-FM bat, Hipposideros pratti. CONSERVATION PHYSIOLOGY 2023; 11:coad017. [PMID: 37101704 PMCID: PMC10123856 DOI: 10.1093/conphys/coad017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/12/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The environment noise may disturb animal behavior and echolocation via three potential mechanisms: acoustic masking, reduced attention and noise avoidance. Compared with the mechanisms of reduced attention and noise avoidance, acoustic masking is thought to occur only when the signal and background noise overlap spectrally and temporally. In this study, we investigated the effects of spectrally non-overlapping noise on echolocation pulses and electrophysiological responses of a constant frequency-frequency modulation (CF-FM) bat, Hipposideros pratti. We found that H. pratti called at higher intensities while keeping the CFs of their echolocation pulses consistent. Electrophysiological tests indicated that the noise could decrease auditory sensitivity and sharp intensity tuning, suggesting that spectrally non-overlapping noise imparts an acoustic masking effect. Because anthropogenic noises are usually concentrated at low frequencies and are spectrally non-overlapping with the bat's echolocation pulses, our results provide further evidence of negative consequences of anthropogenic noise. On this basis, we sound a warning against noise in the foraging habitats of echolocating bats.
Collapse
Affiliation(s)
- Jianwen Zou
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Baoling Jin
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Yuqin Ao
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Yuqing Han
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Baohua Huang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Yuyang Jia
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Lijian Yang
- College of Physical Science and Technology, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Ya Jia
- College of Physical Science and Technology, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Qicai Chen
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China
| | - Ziying Fu
- Corresponding author: Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No.152 Luoyu Road, Wuhan City, Hubei Province, 430079, China.
| |
Collapse
|
10
|
Ayala-Berdon J, Martínez Gómez M, Ponce AR, Beamonte-Barrientos R, Vázquez J, Rodriguez-Peña ON. Weather, ultrasonic, cranial and body traits predict insect diet hardness in a Central Mexican bat community. MAMMAL RES 2023. [DOI: 10.1007/s13364-023-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractInsectivorous bats exhibit food preferences for specific attributes in their prey. Hardness has been defined as an important prey attribute, and in some cases a limiting factor in foraging decisions for smaller compared to larger bat species. The goal of this study was to identify which factors influence the selection of prey hardness in a vespertilionid bat community. We investigated food consumed by bats by analyzing fecal samples obtained from eight bat species coexisting in a mountain ecosystem of central Mexico and correlate non-phylogenetically and phylogenetically prey hardness to weather, bat´s body, cranial and ultrasonic call structure variables. Results showed that diet of vespertilionid bats was mainly represented by Diptera, Neuroptera, Lepidoptera and Coleoptera consumption. The qualitative prey hardness index (From soft 1 to hard 5) ranked bats as: Myotis melanorhinus, Corynorhinus mexicanus, Myotis volans, Myotis californicus (< 3); Myotis velifer (< 4); Eptesicus fuscus, Idionycteris phyllotis and Myotis thysanodes (> 4.2). Prey hardness was positively correlated to minimum and mean temperatures, bat´s body weight, total and forearm lengths, cranial variables as: zygomatic breadth, mandibular length, height of the coronoid process, lower molar width, C-M3 superior and inferior rows length and upper molar width; and negatively to ultrasonic variables as total slope, call duration, low and high frequencies, band width and frequency maximum power. Considering phylogenies, prey hardness positively correlated to mandibular length, C-M3 inferior and superior rows lengths (p < 0.05). Our results showed that environmental, morphological and echolocation variables can be used as predictors of preferred insect prey in a community of vespertilionid bats.
Collapse
|
11
|
Wohlgemuth M, Salles A, Moss C. Spatial attention in natural tasks [version 1; peer review: 2 approved with reservations]. MOLECULAR PSYCHOLOGY 2022; 1:4. [PMID: 37325441 PMCID: PMC10269881 DOI: 10.12688/molpsychol.17488.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Little is known about fine scale neural dynamics that accompany rapid shifts in spatial attention in freely behaving animals, primarily because reliable indicators of attention are lacking in standard model organisms engaged in natural tasks. The echolocating bat can serve to bridge this gap, as it exhibits robust dynamic behavioral indicators of overt spatial attention as it explores its environment. In particular, the bat actively shifts the aim of its sonar beam to inspect objects in different directions, akin to eye movements and foveation in humans and other visually dominant animals. Further, the bat adjusts the temporal features of sonar calls to attend to objects at different distances, yielding a metric of acoustic gaze along the range axis. Thus, an echolocating bat's call features not only convey the information it uses to probe its surroundings, but also provide fine scale metrics of auditory spatial attention in 3D natural tasks. These explicit metrics of overt spatial attention can be leveraged to uncover general principles of neural coding in the mammalian brain.
Collapse
Affiliation(s)
| | - Angeles Salles
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Cynthia Moss
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
12
|
Yantén AV, Cruz-Roa A, Sánchez FA. Traffic noise affects foraging behavior and echolocation in the Lesser Bulldog Bat, Noctilio albiventris (Chiroptera: Noctilionidae). Behav Processes 2022; 203:104775. [DOI: 10.1016/j.beproc.2022.104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/02/2022]
|
13
|
Perceptual hearing sensitivity during vocal production. iScience 2022; 25:105435. [PMID: 36388966 PMCID: PMC9650033 DOI: 10.1016/j.isci.2022.105435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Vocalization, such as speaking, inevitably generates sensory feedback that can cause self-generated masking. However, perceptual hearing sensitivity during vocal production is poorly understood. Using an adaptive psychophysical method, we measured the perceptual hearing sensitivity of an echolocating bat, Hipposideros pratti, in a passive listening (PL) task to detect pure tones, an active listening (AL) task to detect pure tones triggered by its vocalization, and a phantom echo task. We found that hanging H. pratti had the best hearing sensitivity of approximately 0 dB sound pressure level (SPL) in the PL task but much lower hearing sensitivity (nearly 40 dB worse) in the echo task. In the AL task, all bats gradually increased call frequency by 0.8–1.1 kHz, which improved their hearing sensitivity by 25–29 dB. This study underscores the need for studying the sensory capability of subjects engaged in active behaviors. Vocal production strongly affects the perceptual hearing sensitivity of bats Forward masking explains the reduced hearing sensitivity during vocalization Long-term vocal plasticity enables bats to overcome self-generated auditory masking
Collapse
|
14
|
Cognitive control of song production by humpback whales. Anim Cogn 2022; 25:1133-1149. [PMID: 36058997 DOI: 10.1007/s10071-022-01675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
Singing humpback whales are highly versatile vocalizers, producing complex sequences of sounds that they vary throughout adulthood. Past analyses of humpback whale song have emphasized yearly variations in structural features of songs made collectively by singers within a population with comparatively little attention given to the ways that individual singers vary consecutive songs. As a result, many researchers describe singing by humpback whales as a process in which singers produce sequences of repeating sound patterns. Here, we show that such characterizations misrepresent the degree to which humpback whales flexibly and dynamically control the production of sounds and sound patterns within song sessions. Singers recorded off the coast of Hawaii continuously morphed units along multiple acoustic dimensions, with the degree and direction of morphing varying across parallel streams of successive units. Individual singers also produced multiple phrase variants (structurally similar, but acoustically distinctive sequences) within song sessions. The precision with which individual singers maintained some acoustic properties of phrases and morphing trajectories while flexibly changing others suggests that singing humpback whales actively select and adjust acoustic elements of their songs in real time rather than simply repeating stereotyped sound patterns within song sessions.
Collapse
|
15
|
Starik N, Göttert T. Bats adjust echolocation and social call design as a response to urban environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.939408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Behavioral traits play a major role in the successful adaptation of wildlife to urban conditions. We investigated and compared the acoustic behavior of free ranging bats in rural (Havelland, Brandenburg) and urban (Berlin city center) green areas (n = 6 sites) to assess possible effects of urbanization on bat vocalizations using automated real-time recordings from May to October 2020 and 2021. We show that foraging and social call activity of commonly occurring bat species was lower in urban areas compared to rural areas. We present data on rural-urban variation in acoustic parameters of echolocation and Type D social calls (produced during flight) using the example of the common pipistrelle Pipistrellus pipistrellus. Calls from urban sites revealed significantly higher end and peak frequencies compared to rural site calls. In addition, urban social calls present a higher degree of complexity as they structurally differed from rural social calls with regard to assemblage and number of call components. Moreover, urban social calls were emitted in a presumably different context than rural calls: antagonistic social calls in urban areas were detected throughout the year and in the acoustic absence of conspecifics and heterospecifics. Our results provide evidence for the ability of P. pipistrellus to modulate temporal and spectral features of echolocation and social calls, as well as patterns of social call production, in order to compensate for constraints imposed by the urban acoustic environment. We suggest that this acoustic behavioral plasticity plays a major role in the degree of adaptation of insectivorous bats to urban habitats.
Collapse
|
16
|
Jansen W, Laurijssen D, Steckel J. Real-Time Sonar Fusion for Layered Navigation Controller. SENSORS 2022; 22:s22093109. [PMID: 35590798 PMCID: PMC9102793 DOI: 10.3390/s22093109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/10/2022]
Abstract
Navigation in varied and dynamic indoor environments remains a complex task for autonomous mobile platforms. Especially when conditions worsen, typical sensor modalities may fail to operate optimally and subsequently provide inapt input for safe navigation control. In this study, we present an approach for the navigation of a dynamic indoor environment with a mobile platform with a single or several sonar sensors using a layered control system. These sensors can operate in conditions such as rain, fog, dust, or dirt. The different control layers, such as collision avoidance and corridor following behavior, are activated based on acoustic flow queues in the fusion of the sonar images. The novelty of this work is allowing these sensors to be freely positioned on the mobile platform and providing the framework for designing the optimal navigational outcome based on a zoning system around the mobile platform. Presented in this paper is the acoustic flow model used, as well as the design of the layered controller. Next to validation in simulation, an implementation is presented and validated in a real office environment using a real mobile platform with one, two, or three sonar sensors in real time with 2D navigation. Multiple sensor layouts were validated in both the simulation and real experiments to demonstrate that the modular approach for the controller and sensor fusion works optimally. The results of this work show stable and safe navigation of indoor environments with dynamic objects.
Collapse
Affiliation(s)
- Wouter Jansen
- Cosys-Lab, Faculty of Applied Engineering, University of Antwerp, 2020 Antwerpen, Belgium; (D.L.); (J.S.)
- Flanders Make Strategic Research Centre, 3920 Lommel, Belgium
- Correspondence:
| | - Dennis Laurijssen
- Cosys-Lab, Faculty of Applied Engineering, University of Antwerp, 2020 Antwerpen, Belgium; (D.L.); (J.S.)
- Flanders Make Strategic Research Centre, 3920 Lommel, Belgium
| | - Jan Steckel
- Cosys-Lab, Faculty of Applied Engineering, University of Antwerp, 2020 Antwerpen, Belgium; (D.L.); (J.S.)
- Flanders Make Strategic Research Centre, 3920 Lommel, Belgium
| |
Collapse
|
17
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
18
|
de Sousa AA, Todorov OS, Proulx MJ. A natural history of vertebrate vision loss: Insight from mammalian vision for human visual function. Neurosci Biobehav Rev 2022; 134:104550. [PMID: 35074313 DOI: 10.1016/j.neubiorev.2022.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Research on the origin of vision and vision loss in naturally "blind" animal species can reveal the tasks that vision fulfills and the brain's role in visual experience. Models that incorporate evolutionary history, natural variation in visual ability, and experimental manipulations can help disentangle visual ability at a superficial level from behaviors linked to vision but not solely reliant upon it, and could assist the translation of ophthalmological research in animal models to human treatments. To unravel the similarities between blind individuals and blind species, we review concepts of 'blindness' and its behavioral correlates across a range of species. We explore the ancestral emergence of vision in vertebrates, and the loss of vision in blind species with reference to an evolution-based classification scheme. We applied phylogenetic comparative methods to a mammalian tree to explore the evolution of visual acuity using ancestral state estimations. Future research into the natural history of vision loss could help elucidate the function of vision and inspire innovations in how to address vision loss in humans.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, United Kingdom; UKRI Centre for Accessible, Responsible & Transparent Artificial Intelligence (ART:AI), University of Bath, United Kingdom.
| | - Orlin S Todorov
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael J Proulx
- UKRI Centre for Accessible, Responsible & Transparent Artificial Intelligence (ART:AI), University of Bath, United Kingdom; Department of Psychology, REVEAL Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
19
|
Sedlock JL, Gomes DGE, Rubin JJ, Woody S, Hadi BAR, Barber JR. A phantom ultrasonic insect chorus repels low‐flying bats, but most are undeterred. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dylan G. E. Gomes
- Department of Biological Sciences Boise State University Boise ID USA
- Cooperative Institute for Marine Resources Studies Hatfield Marine Science CenterOregon State University Newport OR USA
| | - Juliette J. Rubin
- Department of Biological Sciences Boise State University Boise ID USA
| | - Sarah Woody
- Biology Department Lawrence University Appleton WI USA
| | - Buyung A. R. Hadi
- Sustainable Impact Platform International Rice Research Institute Los Baños Philippines
| | - Jesse R. Barber
- Department of Biological Sciences Boise State University Boise ID USA
| |
Collapse
|
20
|
Silence and reduced echolocation during flight are associated with social behaviors in male hoary bats (Lasiurus cinereus). Sci Rep 2021; 11:18637. [PMID: 34545133 PMCID: PMC8452715 DOI: 10.1038/s41598-021-97628-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Bats are renowned for their sophisticated echolocation. However, recent research has indicated that bats may be less reliant on echolocation than has long been assumed. To test the hypothesis that bats reduce their use of echolocation to avoid eavesdropping by conspecifics, we deployed miniature tags that recorded ultrasound and accelerations on 10 wild hoary bats (Lasiurus cinereus) for one or two nights. This resulted in 997 10-s recordings. Bats switched between periods predominated by their typical high-intensity echolocation, or periods predominated by micro calls (unusually short, quiet calls), or no detectable calls (“silence”). Periods of high-intensity echolocation included high rates of feeding buzzes, whereas periods of micro calls and silence included high rates of social interactions with other bats. Bats switched back to high-intensity echolocation during actual social interactions. These data support the hypothesis that bats use reduced forms of echolocation and fly in silence to avoid eavesdropping from conspecifics, perhaps in the context of mating-related behavior. They also provide the strongest demonstration to date that bats fly for extended periods of time without the use of echolocation.
Collapse
|
21
|
Xiong Y, Li S, Gu C, Meng G, Peng Z. Millimeter-Wave Bat for Mapping and Quantifying Micromotions in Full Field of View. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9787484. [PMID: 34485917 PMCID: PMC8385533 DOI: 10.34133/2021/9787484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022]
Abstract
Echolocating bats possess remarkable capability of multitarget spatial localization and micromotion sensing in a full field of view (FFOV) even in cluttered environments. Artificial technologies with such capability are highly desirable for various fields. However, current techniques such as visual sensing and laser scanning suffer from numerous fundamental problems. Here, we develop a bioinspired concept of millimeter-wave (mmWave) full-field micromotion sensing, creating a unique mmWave Bat ("mmWBat"), which can map and quantify tiny motions spanning macroscopic to μm length scales of full-field targets simultaneously and accurately. In mmWBat, we show that the micromotions can be measured via the interferometric phase evolution tracking from range-angle joint dimension, integrating with full-field localization and tricky clutter elimination. With our approach, we demonstrate the capacity to solve challenges in three disparate applications: multiperson vital sign monitoring, full-field mechanical vibration measurement, and multiple sound source localization and reconstruction (radiofrequency microphone). Our work could potentially revolutionize full-field micromotion monitoring in a wide spectrum of applications, while may inspiring novel biomimetic wireless sensing systems.
Collapse
Affiliation(s)
- Yuyong Xiong
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songxu Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changzhan Gu
- MoE Key Lab of Design and Electromagnetic Compatibility of High Speed Electronic System, and MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Stidsholt L, Johnson M, Goerlitz HR, Madsen PT. Wild bats briefly decouple sound production from wingbeats to increase sensory flow during prey captures. iScience 2021; 24:102896. [PMID: 34401675 PMCID: PMC8355945 DOI: 10.1016/j.isci.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 10/28/2022] Open
Abstract
Active sensing animals such as echolocating bats produce the energy with which they probe their environment. The intense echolocation calls of bats are energetically expensive, but their cost can be reduced by synchronizing the exhalations needed to vocalize to wingbeats. Here, we use sound-and-movement recording tags to investigate how wild bats balance efficient sound production with information needs during foraging and navigation. We show that wild bats prioritize energy efficiency over sensory flow when periodic snapshots of the acoustic scene are sufficient during travel and search. Rapid calls during tracking and interception of close prey are decoupled from the wingbeat but are weaker and comprise <2% of all calls during a night of hunting. The limited use of fast sonar sampling provides bats with high information update rates during critical hunting moments but adds little to their overall costs of sound production despite the inefficiency of decoupling calls from wingbeats.
Collapse
Affiliation(s)
- Laura Stidsholt
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mark Johnson
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Holger R Goerlitz
- Acoustic and Functional Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Attwell JR, Ioannou CC, Reid CR, Herbert-Read JE. Fish Avoid Visually Noisy Environments Where Prey Targeting Is Reduced. Am Nat 2021; 198:421-432. [PMID: 34403312 DOI: 10.1086/715434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe environment contains different forms of ecological noise that can reduce the ability of animals to detect information. Here, we ask whether animals adapt their behavior to either exploit or avoid areas of their environment with increased dynamic visual noise. Three-spined sticklebacks (Gasterosteus aculeatus) were immersed in environments with a simulated form of naturally occurring visual noise-moving light bands that form on underwater substrates caused by the refraction of light through surface waves. We tested whether this form of visual noise affected fish's habitat selection, movements, and prey-targeting behavior. Fish avoided areas of the environment with increased visual noise and achieved this by increasing their activity as a function of the locally perceived noise level. Fish were less likely to respond to virtual prey in environments with increased visual noise, highlighting a potential impact that visual noise has on their perceptual abilities. Fish did not increase or decrease their refuge use in environments with increased visual noise, providing no evidence that visual noise increased either exploratory or risk-aversive behavior. Our results indicate that animals can use simple behavioral strategies to avoid visually noisy environments, thereby mitigating the impacts that these environments appear to have on their perceptual abilities.
Collapse
|
24
|
Dynamic visual noise promotes social attraction, but does not affect group size preference, in a shoaling fish. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zhang G, Cui Z, Wu J, Jin B, Zhou D, Liu L, Tang J, Chen Q, Fu Z. Constant Resting Frequency and Auditory Midbrain Neuronal Frequency Analysis of Hipposideros pratti in Background White Noise. Front Behav Neurosci 2021; 15:657155. [PMID: 34113242 PMCID: PMC8185161 DOI: 10.3389/fnbeh.2021.657155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
Acoustic communication signals are inevitably challenged by ambient noise. In response to noise, many animals adjust their calls to maintain signal detectability. However, the mechanisms by which the auditory system adapts to the adjusted pulses are unclear. Our previous study revealed that the echolocating bat, Hipposideros pratti, increased its pulse intensity in the presence of background white noise. In vivo single-neuron recording demonstrated that the auditory midbrain neurons tuned to the second harmonic (H2 neurons) increased their minimal threshold (MT) to a similar degree as the increment of pulse intensity in the presence of the background noise. Furthermore, the H2 neurons exhibited consistent spike rates at their best amplitudes and sharper intensity tuning with background white noise compared with silent conditions. The previous data indicated that sound intensity analysis by auditory midbrain neurons was adapted to the increased pulse intensity in the same noise condition. This study further examined the echolocation pulse frequency and frequency analysis of auditory midbrain neurons with noise conditions. The data revealed that H. pratti did not shift the resting frequency in the presence of background noise. The auditory midbrain neuronal frequency analysis highly linked to processing the resting frequency with the presence of noise by presenting the constant best frequency (BF), frequency sensitivity, and frequency selectivity. Thus, our results suggested that auditory midbrain neuronal responses in background white noise are adapted to process echolocation pulses in the noise conditions.
Collapse
Affiliation(s)
- Guimin Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jing Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Baoling Jin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Dandan Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Long Liu
- College of Science, National University of Defense Technology, Changsha, China
| | - Jia Tang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qicai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ziying Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
26
|
Wijesinghe LP, Wohlgemuth MJ, So RHY, Triesch J, Moss CF, Shi BE. Active head rolls enhance sonar-based auditory localization performance. PLoS Comput Biol 2021; 17:e1008973. [PMID: 33970912 PMCID: PMC8136848 DOI: 10.1371/journal.pcbi.1008973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/20/2021] [Accepted: 04/18/2021] [Indexed: 11/18/2022] Open
Abstract
Animals utilize a variety of active sensing mechanisms to perceive the world around them. Echolocating bats are an excellent model for the study of active auditory localization. The big brown bat (Eptesicus fuscus), for instance, employs active head roll movements during sonar prey tracking. The function of head rolls in sound source localization is not well understood. Here, we propose an echolocation model with multi-axis head rotation to investigate the effect of active head roll movements on sound localization performance. The model autonomously learns to align the bat's head direction towards the target. We show that a model with active head roll movements better localizes targets than a model without head rolls. Furthermore, we demonstrate that active head rolls also reduce the time required for localization in elevation. Finally, our model offers key insights to sound localization cues used by echolocating bats employing active head movements during echolocation.
Collapse
Affiliation(s)
- Lakshitha P. Wijesinghe
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong
- * E-mail:
| | | | - Richard H. Y. So
- Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Hong Kong
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Bertram E. Shi
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
27
|
Beetz MJ, Kössl M, Hechavarría JC. The frugivorous bat Carollia perspicillata dynamically changes echolocation parameters in response to acoustic playback. J Exp Biol 2021; 224:jeb.234245. [PMID: 33568443 DOI: 10.1242/jeb.234245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022]
Abstract
Animals extract behaviorally relevant signals from 'noisy' environments. Echolocation behavior provides a rich system testbed for investigating signal extraction. When echolocating in acoustically enriched environments, bats show many adaptations that are believed to facilitate signal extraction. Most studies to date focused on describing adaptations in insectivorous bats while frugivorous bats have rarely been tested. Here, we characterize how the frugivorous bat Carollia perspicillata adapts its echolocation behavior in response to acoustic playback. Since bats not only adapt their echolocation calls in response to acoustic interference but also with respect to target distances, we swung bats on a pendulum to control for distance-dependent call changes. Forward swings evoked consistent echolocation behavior similar to approach flights. By comparing the echolocation behavior recorded in the presence and absence of acoustic playback, we could precisely define the influence of the acoustic context on the bats' vocal behavior. Our results show that C. perspicillata decrease the terminal peak frequencies of their calls when echolocating in the presence of acoustic playback. When considering the results at an individual level, it became clear that each bat dynamically adjusts different echolocation parameters across and even within experimental days. Utilizing such dynamics, bats create unique echolocation streams that could facilitate signal extraction in noisy environments.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
28
|
The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise. Hear Res 2020; 400:108142. [PMID: 33310564 DOI: 10.1016/j.heares.2020.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Although acoustic communication is inevitably influenced by noise, behaviorally relevant sounds are perceived reliably. The noise-tolerant and -invariant responses of auditory neurons are thought to be the underlying mechanism. So, it is reasonable to speculate that neurons with best frequency tuned to behaviorally relevant sounds will play important role in noise-tolerant perception. Echolocating bats live in groups and emit multiple harmonic signals and analyze the returning echoes to extract information about the target features, making them prone to deal with noise in their natural habitat. The echolocation signal of Hipposideros pratti usually contains 3-4 harmonics (H1H4), the second harmonic has the highest amplitude and is thought to play an essential role during echolocation behavior. Therefore, it is reasonable to propose that neurons tuned to the H2, named the H2 neurons, can be more noise-tolerant to background noise. Taking advantage of bat's stereotypical echolocation signal and single-cell recording, our present study showed that the minimal threshold increases (12.2 dB) of H2 neurons in the auditory midbrain were comparable to increase in bat's call intensity (14.2 dB) observed in 70 dB SPL white noise condition, indicating that the H2 neurons could work as background noise monitor. The H2 neurons had higher minimal thresholds and sharper frequency tuning, which enabled them to be more tolerant to background noise. Furthermore, the H2 neurons had consistent best amplitude spikes and sharper intensity tuning in background white noise condition than in silence. Taken together, these results suggest that the H2 neurons might account for noise-tolerant perception of behaviorally relevant sounds.
Collapse
|
29
|
Kohles JE, Carter GG, Page RA, Dechmann DKN. Socially foraging bats discriminate between group members based on search-phase echolocation calls. Behav Ecol 2020. [DOI: 10.1093/beheco/araa056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Animals have evolved diverse strategies to use social information for increasing foraging success and efficiency. Echolocating bats, for example, can eavesdrop on bats foraging nearby because they shift from search-phase calls to feeding buzzes when they detect prey. Feeding buzzes can directly convey information about prey presence, but it is unknown whether search-phase calls also convey social information. Here, we investigated whether search-phase echolocation calls, distinct calls produced by some bat species to scan large open areas for prey, can additionally convey individual identity. We tested this in Molossus molossus, a neotropical insectivorous bat that forages with group members, presumably to find ephemeral insect swarms more efficiently. We caught M. molossus from six different social groups and recorded their search-phase calls during a standardized release procedure, then recaptured and tested 19 marked bats with habituation–dishabituation playback experiments. We showed that they can discriminate between group members based on search-phase calls, and our statistical analysis of call parameters supported the presence of individual signatures in search-phase calls. Individual discrimination is a prerequisite of individual recognition, which may allow M. molossus to maintain contact with group members while foraging without using specialized signals for communication.
Collapse
Affiliation(s)
- Jenna E Kohles
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
| | - Gerald G Carter
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Aronoff Laboratory, Columbus, OH , USA
| | - Rachel A Page
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg, Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
- Gamboa Laboratory, Smithsonian Tropical Research Institute, Ave. Luis F. Clement, Balboa, Ancón, Panamá, República de Panamá
| |
Collapse
|
30
|
Different as night and day: wild bats modify echolocation in complex environments when visual cues are present. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Liu T, Zhang K, Dai W, Jin L, Sun K, Feng J. Evolutionary insights into
Rhinolophus episcopus
(Chiroptera, Rhinolophidae) in China: Isolation by distance, environment, or sensory system? J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Kangkang Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
32
|
A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals. SENSORS 2020; 20:s20185042. [PMID: 32899869 PMCID: PMC7570980 DOI: 10.3390/s20185042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Low frequency ultrasounds in air are widely used for real-time applications in short-range communication systems and environmental monitoring, in both structured and unstructured environments. One of the parameters widely evaluated in pulse-echo ultrasonic measurements is the time of flight (TOF), which can be evaluated with an increased accuracy and complexity by using different techniques. Hereafter, a nonstandard cross-correlation method is investigated for TOF estimations. The procedure, based on the use of template signals, was implemented to improve the accuracy of recursive TOF evaluations. Tests have been carried out through a couple of 60 kHz custom-designed polyvinylidene fluoride (PVDF) hemicylindrical ultrasonic transducers. The experimental results were then compared with the standard threshold and cross-correlation techniques for method validation and characterization. An average improvement of 30% and 19%, in terms of standard error (SE), was observed. Moreover, the experimental results evidenced an enhancement in repeatability of about 10% in the use of a recursive positioning system.
Collapse
|
33
|
Miller SE, Sheehan MJ, Reeve HK. Coevolution of cognitive abilities and identity signals in individual recognition systems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190467. [PMID: 32420843 PMCID: PMC7331018 DOI: 10.1098/rstb.2019.0467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Social interactions are mediated by recognition systems, meaning that the cognitive abilities or phenotypic diversity that facilitate recognition may be common targets of social selection. Recognition occurs when a receiver compares the phenotypes produced by a sender with a template. Coevolution between sender and receiver traits has been empirically reported in multiple species and sensory modalities, though the dynamics and relative exaggeration of traits from senders versus receivers have received little attention. Here, we present a coevolutionary dynamic model that examines the conditions under which senders and receivers should invest effort in facilitating individual recognition. The model predicts coevolution of sender and receiver traits, with the equilibrium investment dependent on the relative costs of signal production versus cognition. In order for recognition to evolve, initial sender and receiver trait values must be above a threshold, suggesting that recognition requires some degree of pre-existing diversity and cognitive abilities. The analysis of selection gradients demonstrates that the strength of selection on sender signals and receiver cognition is strongest when the trait values are furthest from the optima. The model provides new insights into the expected strength and dynamics of selection during the origin and elaboration of individual recognition, an important feature of social cognition in many taxa. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - H. Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Diebold CA, Salles A, Moss CF. Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception. SENSORS 2020; 20:s20102958. [PMID: 32456142 PMCID: PMC7285367 DOI: 10.3390/s20102958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Target tracking and interception in a dynamic world proves to be a fundamental challenge faced by both animals and artificial systems. To track moving objects under natural conditions, agents must employ strategies to mitigate interference and conditions of uncertainty. Animal studies of prey tracking and capture reveal biological solutions, which can inspire new technologies, particularly for operations in complex and noisy environments. By reviewing research on target tracking and interception by echolocating bats, we aim to highlight biological solutions that could inform new approaches to artificial sonar tracking and navigation systems. Most bat species use wideband echolocation signals to navigate dense forests and hunt for evasive insects in the dark. Importantly, bats exhibit rapid adaptations in flight trajectory, sonar beam aim, and echolocation signal design, which appear to be key to the success of these animals in a variety of tasks. The rich suite of adaptive behaviors of echolocating bats could be leveraged in new sonar tracking technologies by implementing dynamic sensorimotor feedback control of wideband sonar signal design, head, and ear movements.
Collapse
|
35
|
Izadi MR, Stevenson R, Kloepper LN. Separation of overlapping sources in bioacoustic mixtures. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:1688. [PMID: 32237826 DOI: 10.1121/10.0000932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Source separation is an important step to study signals that are not easy or possible to record individually. Common methods such as deep clustering, however, cannot be applied to signals of an unknown number of sources and/or signals that overlap in time and/or frequency-a common problem in bioacoustic recordings. This work presents an approach, using a supervised learning framework, to parse individual sources from a spectrogram of a mixture that contains a variable number of overlapping sources. This method isolates individual sources in the time-frequency domain using only one function but in two separate steps, one for the detection of the number of sources and corresponding bounding boxes, and a second step for the segmentation in which masks of individual sounds are extracted. This approach handles the full separation of overlapping sources in both time and frequency using deep neural networks in an applicable manner to other tasks such as bird audio detection. This paper presents method and reports on its performance to parse individual bat signals from recordings containing hundreds of overlapping bat echolocation signals. This method can be extended to other bioacoustic recordings with a variable number of sources and signals that overlap in time and/or frequency.
Collapse
Affiliation(s)
- Mohammad Rasool Izadi
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Robert Stevenson
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Laura N Kloepper
- Department of Biology, Saint Mary's College, Notre Dame, Indiana 46556, USA
| |
Collapse
|
36
|
Mercado E. Comment on "A standardized method of classifying pulsed sounds and its application to pulse rate measurement of blue whale southeast Pacific song units" [J. Acoust. Soc. Am. 146, 2145-2154 (2019)]. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:1227. [PMID: 32113305 DOI: 10.1121/10.0000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Patris, Malige, Glotin, Asch, and Buchan [(2019). Acoust. Soc. Am. 146, 2145-2154] proposed a technique for classifying and describing pulsed sounds produced by whales that can improve the precision and objectivity of acoustic measurements from song units. Their analyses revealed that blue whales produce units at precise pulse rates. The structure and precision of the song phrase they describe is remarkably similar to what is seen in song production by chickadees. In both species, precise control of shifts in pulse rate may produce reverberation-related cues that enable listeners to localize singers. The techniques developed by Patris and colleagues thus can provide more accurate measures as well as insights into how animals produce and use songs.
Collapse
Affiliation(s)
- Eduardo Mercado
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
37
|
Modeling active sensing reveals echo detection even in large groups of bats. Proc Natl Acad Sci U S A 2019; 116:26662-26668. [PMID: 31822613 DOI: 10.1073/pnas.1821722116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Active sensing animals perceive their surroundings by emitting probes of energy and analyzing how the environment modulates these probes. However, the probes of conspecifics can jam active sensing, which should cause problems for groups of active sensing animals. This problem was termed the cocktail party nightmare for echolocating bats: as bats listen for the faint returning echoes of their loud calls, these echoes will be masked by the loud calls of other close-by bats. Despite this problem, many bats echolocate in groups and roost socially. Here, we present a biologically parametrized framework to quantify echo detection in groups. Incorporating properties of echolocation, psychoacoustics, acoustics, and group flight, we quantify how well bats flying in groups can detect each other despite jamming. A focal bat in the center of a group can detect neighbors in group sizes of up to 100 bats. With increasing group size, fewer and only the closest and frontal neighbors are detected. Neighbor detection is improved by longer call intervals, shorter call durations, denser groups, and more variable flight and sonar beam directions. Our results provide a quantification of the sensory input of echolocating bats in collective group flight, such as mating swarms or emergences. Our results further generate predictions on the sensory strategies bats may use to reduce jamming in the cocktail party nightmare. Lastly, we suggest that the spatially limited sensory field of echolocators leads to limited interactions within a group, so that collective behavior is achieved by following only nearest neighbors.
Collapse
|
38
|
Lee JH, Kang M, Park S, Perez-Flores MC, Zhang XD, Wang W, Gratton MA, Chiamvimonvat N, Yamoah EN. The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging (Albany NY) 2019; 11:11541-11564. [PMID: 31812952 PMCID: PMC6932877 DOI: 10.18632/aging.102553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Local and privileged expression of dendritic proteins allows segregation of distinct functions in a single neuron but may represent one of the underlying mechanisms for early and insidious presentation of sensory neuropathy. Tangible characteristics of early hearing loss (HL) are defined in correlation with nascent hidden hearing loss (HHL) in humans and animal models. Despite the plethora of causes of HL, only two prevailing mechanisms for HHL have been identified, and in both cases, common structural deficits are implicated in inner hair cell synapses, and demyelination of the auditory nerve (AN). We uncovered that Na+-activated K+ (KNa) mRNA and channel proteins are distinctly and locally expressed in dendritic projections of primary ANs and genetic deletion of KNa channels (Kcnt1 and Kcnt2) results in the loss of proper AN synaptic function, characterized as HHL, without structural synaptic alterations. We further demonstrate that the local functional synaptic alterations transition from HHL to increased hearing-threshold, which entails changes in global Ca2+ homeostasis, activation of caspases 3/9, impaired regulation of inositol triphosphate receptor 1 (IP3R1), and apoptosis-mediated neurodegeneration. Thus, the present study demonstrates how local synaptic dysfunction results in an apparent latent pathological phenotype (HHL) and, if undetected, can lead to overt HL. It also highlights, for the first time, that HHL can precede structural synaptic dysfunction and AN demyelination. The stepwise cellular mechanisms from HHL to canonical HL are revealed, providing a platform for intervention to prevent lasting and irreversible age-related hearing loss (ARHL).
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Wenying Wang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Head and Neck Surgery, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
39
|
López-Jury L, Mannel A, García-Rosales F, Hechavarria JC. Modified synaptic dynamics predict neural activity patterns in an auditory field within the frontal cortex. Eur J Neurosci 2019; 51:1011-1025. [PMID: 31630441 DOI: 10.1111/ejn.14600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
Abstract
Frontal areas of the mammalian cortex are thought to be important for cognitive control and complex behaviour. These areas have been studied mostly in humans, non-human primates and rodents. In this article, we present a quantitative characterization of response properties of a frontal auditory area responsive to sound in the brain of Carollia perspicillata, the frontal auditory field (FAF). Bats are highly vocal animals, and they constitute an important experimental model for studying the auditory system. We combined electrophysiology experiments and computational simulations to compare the response properties of auditory neurons found in the bat FAF and auditory cortex (AC) to simple sounds (pure tones). Anatomical studies have shown that the latter provides feedforward inputs to the former. Our results show that bat FAF neurons are responsive to sounds, and however, when compared to AC neurons, they presented sparser, less precise spiking and longer-lasting responses. Based on the results of an integrate-and-fire neuronal model, we suggest that slow, subthreshold, synaptic dynamics can account for the activity pattern of neurons in the FAF. These properties reflect the general function of the frontal cortex and likely result from its connections with multiple brain regions, including cortico-cortical projections from the AC to the FAF.
Collapse
Affiliation(s)
- Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/Main, Germany
| | - Adrian Mannel
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/Main, Germany
| | | | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/Main, Germany
| |
Collapse
|
40
|
Zhang S, Liu Y, Tang J, Ying L, Müller R. Dynamic relationship between noseleaf and pinnae in echolocating hipposiderid bats. ACTA ACUST UNITED AC 2019; 222:jeb.210252. [PMID: 31511347 DOI: 10.1242/jeb.210252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022]
Abstract
Old World leaf-nosed bats (family Hipposideridae) can deform the shapes of their 'noseleaves' (i.e. ultrasonic emission baffles) and outer ears during echolocation behaviors. Prior work has shown that deformations on the emission as well as on the reception side can have an impact on the properties of the emitted/received sonar signals. The occurrence of the deformations on the emission and reception sides raises the question of whether the bats coordinate these two dynamic biosonar features to achieve synergistic effects. To address this question, simultaneous three-dimensional reconstructions of the trajectories of landmarks on the dynamic noseleaf and pinna geometries have been obtained in great roundleaf bats (Hipposideros pratti). These joint kinematics data on the noseleaf and pinnae have shown both qualitative and quantitative relationships between the noseleaf and pinna motions: large noseleaf deformations (opening or closing) tended to be associated with non-rigid pinna motions. Furthermore, closing deformations of the noseleaves tended to co-occur with closing motions of the pinna. Finally, a canonical correlation analysis of the motion trajectories has revealed a tight correlation between the motions of the landmarks on the noseleaf and both pinnae. These results demonstrate that the biosonar system of hipposiderid bats includes coordinated emission and reception dynamics.
Collapse
Affiliation(s)
- Shuxin Zhang
- Shandong University-Virginia Tech International Laboratory, School of Physics, Shandong University, Jinan 250100, China.,Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yanming Liu
- Shandong University-Virginia Tech International Laboratory, School of Physics, Shandong University, Jinan 250100, China.,School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Joanne Tang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Luoxiao Ying
- School of Electrical Engineering, Shandong University, Jinan 250002, China
| | - Rolf Müller
- Shandong University-Virginia Tech International Laboratory, School of Physics, Shandong University, Jinan 250100, China .,Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
41
|
Adams AM, Patricio A, Manohar R, Smotherman M. Influence of signal direction on sonar interference. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
The Cognitive Ecology of Stimulus Ambiguity: A Predator-Prey Perspective. Trends Ecol Evol 2019; 34:1048-1060. [PMID: 31416642 DOI: 10.1016/j.tree.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Organisms face the cognitive challenge of making decisions based on imperfect information. Predators and prey, in particular, are confronted with ambiguous stimuli when foraging and avoiding attacks. These challenges are accentuated by variation imposed by environmental, physiological, and cognitive factors. While the cognitive factors influencing perceived ambiguity are often assumed to be fixed, contemporary findings reveal that perceived ambiguity is instead the dynamic outcome of interactive cognitive processes. Here, we present a framework that integrates recent advances in neurophysiology and sensory ecology with a classic decision-making model, signal detection theory (SDT), to understand the cognitive mechanisms that shape perceived stimulus ambiguity in predators and prey. Since stimulus ambiguity is pervasive, the framework discussed here provides insights that extend into nonforaging contexts.
Collapse
|
43
|
Abstract
Many animals have evolved adept sensory systems that enable dexterous mobility in complex environments. Echolocating bats hunting in dense vegetation represent an extreme case of this, where all necessary information about the environment must pass through a parsimonious channel of pulsed, 1D echo signals. We have investigated whether certain bats (rhinolophids and hipposiderids) actively create Doppler shifts with their pinnae to encode additional sensory information. Our results show that the bats' active pinna motions are a source of Doppler shifts that have all attributes required for a functional relevance: (i) the Doppler shifts produced were several times larger than the reported perception threshold; (ii) the motions of the fastest moving pinna portions were oriented to maximize the Doppler shifts for echoes returning from the emission direction, indicating a possible evolutionary optimization; (iii) pinna motions coincided with echo reception; (iv) Doppler-shifted signals from the fast-moving pinna portion entered the ear canal of a biomimetic pinna model; and (v) the time-frequency Doppler shift signatures were found to encode target direction in an orderly fashion. These results indicate that instead of avoiding or suppressing all self-produced Doppler shifts, rhinolophid and hipposiderid bats actively create Doppler shifts with their own pinnae. These bats could hence make use of a previously unknown nonlinear mechanism for the encoding of sensory information, based on Doppler signatures. Such a mechanism could be a source for the discovery of sensing principles not only in sensory physiology but also in the engineering of sensory systems.
Collapse
|
44
|
Corcoran AJ, Weller TJ. Inconspicuous echolocation in hoary bats ( Lasiurus cinereus). Proc Biol Sci 2019; 285:rspb.2018.0441. [PMID: 29720417 DOI: 10.1098/rspb.2018.0441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Echolocation allows bats to occupy diverse nocturnal niches. Bats almost always use echolocation, even when other sensory stimuli are available to guide navigation. Here, using arrays of calibrated infrared cameras and ultrasonic microphones, we demonstrate that hoary bats (Lasiurus cinereus) use previously unknown echolocation behaviours that challenge our current understanding of echolocation. We describe a novel call type ('micro' calls) that has three orders of magnitude less sound energy than other bat calls used in open habitats. We also document bats flying close to microphones (less than 3 m) without producing detectable echolocation calls. Acoustic modelling indicates that bats are not producing calls that exceed 70-75 dB at 0.1 m, a level that would have little or no known use for a bat flying in the open at speeds exceeding 7 m s-1 This indicates that hoary bats sometimes fly without echolocation. We speculate that bats reduce echolocation output to avoid eavesdropping by conspecifics during the mating season. These findings might partly explain why tens of thousands of hoary bats are killed by wind turbines each year. They also challenge the long-standing assumption that bats-model organisms for sensory specialization-are reliant on sonar for nocturnal navigation.
Collapse
Affiliation(s)
- Aaron J Corcoran
- Department of Biology, Wake Forest University, PO Box 7325, Reynolda Station, Winston-Salem, NC 27109, USA
| | - Theodore J Weller
- USDA Forest Service, Pacific Southwest Research Station, Arcata, CA 95521, USA
| |
Collapse
|
45
|
Fu Z, Xu N, Zhang G, Zhou D, Liu L, Tang J, Jen PHS, Chen Q. Evoked potential study of the inferior collicular response to constant frequency-frequency modulation (CF-FM) sounds in FM and CF-FM bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:239-252. [DOI: 10.1007/s00359-019-01326-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
|
46
|
Greif S, Yovel Y. Using on-board sound recordings to infer behaviour of free-moving wild animals. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb184689. [PMID: 30728226 DOI: 10.1242/jeb.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Technological advances in the last 20 years have enabled researchers to develop increasingly sophisticated miniature devices (tags) that record an animal's behaviour not from an observational, external viewpoint, but directly on the animals themselves. So far, behavioural research with these tags has mostly been conducted using movement or acceleration data. But on-board audio recordings have become more and more common following pioneering work in marine mammal research. The first questions that come to mind when recording sound on-board animals concern their vocal behaviour. When are they calling? How do they adjust their behaviour? What acoustic parameters do they change and how? However, other topics like foraging behaviour, social interactions or environmental acoustics can now be addressed as well and offer detailed insight into the animals' daily life. In this Review, we discuss the possibilities, advantages and limitations of on-board acoustic recordings. We focus primarily on bats as their active-sensing, echolocating lifestyle allows many approaches to a multi-faceted acoustic assessment of their behaviour. The general ideas and concepts, however, are applicable to many animals and hopefully will demonstrate the versatility of on-board acoustic recordings and stimulate new research.
Collapse
Affiliation(s)
- Stefan Greif
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
47
|
Fu Z, Zhang G, Shi Q, Zhou D, Tang J, Liu L, Chen Q. Behaviorally relevant frequency selectivity in single- and double-on neurons in the inferior colliculus of the Pratt's roundleaf bat, Hipposideros pratti. PLoS One 2019; 14:e0209446. [PMID: 30601861 PMCID: PMC6314609 DOI: 10.1371/journal.pone.0209446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
Frequency analysis is a fundamental function of the auditory system, and it is essential to study the auditory response properties using behavior-related sounds. Our previous study has shown that the inferior collicular (IC) neurons of CF-FM (constant frequency-frequency modulation) bats could be classified into single-on (SO) and double-on (DO) neurons under CF-FM stimulation. Here, we employed Pratt's roundleaf bats, Hipposideros pratti, to investigate the frequency selectivity of SO and DO neurons in response to CF and behavior-related CF-FM sounds using in vivo extracellular recordings. The results demonstrated that the bandwidths (BWs) of iso-frequency tuning curves had no significant differences between the SO and the DO neurons when stimulated by CF sounds. However, the SO neurons had significant narrower BWs than DO neurons when stimulated with CF-FM sounds. In vivo intracellular recordings showed that both SO and DO neurons had significantly shorter post-spike hyperpolarization latency and excitatory duration in response to CF-FM in comparison to CF stimuli, suggesting that the FM component had an inhibitory effect on the responses to the CF component. These results suggested that SO neurons had higher frequency selectivity than DO neurons under behavior-related CF-FM stimulation, making them suitable for detecting frequency changes during echolocation.
Collapse
Affiliation(s)
- Ziying Fu
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Guimin Zhang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Qing Shi
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Dandan Zhou
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jia Tang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Long Liu
- College of science, National University of Defense Technology, Changsha, China
| | - Qicai Chen
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
48
|
Jones TK, Wohlgemuth MJ, Conner WE. Active acoustic interference elicits echolocation changes in heterospecific bats. ACTA ACUST UNITED AC 2018; 221:jeb.176511. [PMID: 29950451 DOI: 10.1242/jeb.176511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Echolocating bats often forage in the presence of both conspecific and heterospecific individuals, which have the potential to produce acoustic interference. Recent studies have shown that at least one bat species, the Brazilian free-tailed bat (Tadarida brasiliensis), produces specialized social signals that disrupt the sonar of conspecific competitors. We herein discuss the differences between passive and active jamming signals and test whether heterospecific jamming occurs in species overlapping spatiotemporally, as well as whether such interference elicits a jamming avoidance response. We compare the capture rates of tethered moths and the echolocation parameters of big brown bats (Eptesicus fuscus) challenged with the playback of the jamming signal normally produced by Brazilian free-tailed bats and playback of deconstructed versions of this signal. There were no differences in the capture rates of targets with and without the jamming signal, although significant changes in both spectral and temporal features of the bats' echolocation were observed. These changes are consistent with improvements of the signal-to-noise ratio in the presence of acoustic interference. Accordingly, we propose to expand the traditional definition of the jamming avoidance response, stating that echolocation changes in response to interference should decrease similarity between the two signals, to include any change that increases the ability to separate returning echoes from active jamming stimuli originating from conspecific and heterospecific organisms. Flexibility in echolocation is an important characteristic for overcoming various forms of acoustic interference and may serve a purpose in interspecific interactions as well as intraspecific ones.
Collapse
Affiliation(s)
- Te K Jones
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Melville J Wohlgemuth
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William E Conner
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
49
|
Beetz MJ, García-Rosales F, Kössl M, Hechavarría JC. Robustness of cortical and subcortical processing in the presence of natural masking sounds. Sci Rep 2018; 8:6863. [PMID: 29717258 PMCID: PMC5931562 DOI: 10.1038/s41598-018-25241-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Processing of ethologically relevant stimuli could be interfered by non-relevant stimuli. Animals have behavioral adaptations to reduce signal interference. It is largely unexplored whether the behavioral adaptations facilitate neuronal processing of relevant stimuli. Here, we characterize behavioral adaptations in the presence of biotic noise in the echolocating bat Carollia perspicillata and we show that the behavioral adaptations could facilitate neuronal processing of biosonar information. According to the echolocation behavior, bats need to extract their own signals in the presence of vocalizations from conspecifics. With playback experiments, we demonstrate that C. perspicillata increases the sensory acquisition rate by emitting groups of echolocation calls when flying in noisy environments. Our neurophysiological results from the auditory midbrain and cortex show that the high sensory acquisition rate does not vastly increase neuronal suppression and that the response to an echolocation sequence is partially preserved in the presence of biosonar signals from conspecifics.
Collapse
Affiliation(s)
- M Jerome Beetz
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany. .,Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe-University, 60438, Frankfurt/M., Germany
| |
Collapse
|