1
|
Scheun J, Venter L, Ganswindt A. A frog in hot water: the effect of temperature elevation on the adrenal stress response of an African amphibian. PeerJ 2024; 12:e17847. [PMID: 39157773 PMCID: PMC11328835 DOI: 10.7717/peerj.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Amphibians, with their unique physiology and habitat requirements, are especially vulnerable to changes in environmental temperatures. While the activation of the physiological stress response can help to mitigate the impact of such habitat alteration, chronic production of elevated glucocorticoid levels can be deleterious in nature. There is no empirical evidence indicating the physiological response of African amphibians to temperature changes, where individuals are unable to emigrate away from potential stressors. To rectify this, we used the edible bullfrog (Pyxicephalus edulis) as a model species to determine the effect of elevated temperature on the adrenocortical response of the species using a recently established matrix. While a control group was kept at a constant temperature (25 °C) throughout the study period, an experimental group was exposed to control (25 °C) and elevated temperatures (30 °C). Mucous swabs were collected throughout the study period to determine dermal glucocorticoid (dGC) concentrations, as a proxy for physiological stress. In addition to this, individual body mass measurements were collected. The results showed that individuals within the experimental group who experienced increased temperatures had significantly elevated dGC levels compared to the control animals. Furthermore, there was a significant difference in the percentage mass change between experimental and control animals . These findings indicate the physiological sensitivity of the edible bullfrog to a thermal stressor in captivity. While this study shows the importance of proper amphibian management within the captive environment, it also highlights the coming danger of global climate change to this and similar amphibian species.
Collapse
Affiliation(s)
- Juan Scheun
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Leanne Venter
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
2
|
Assis VR, Robert J, Titon SCM. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220117. [PMID: 37305915 PMCID: PMC10258669 DOI: 10.1098/rstb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
- College of Public Health, University of South Florida, Tampa, FL 33612-9415, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
3
|
Venesky MD, DeMarchi J, Hickerson C, Anthony CD. Does the thermal mismatch hypothesis predict disease outcomes in different morphs of a terrestrial salamander? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:467-476. [PMID: 35167180 DOI: 10.1002/jez.2581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Many aspects of ectotherm physiology are temperature-dependent. The immune system of temperate-dwelling ectothermic host species is no exception and their immune function is often downregulated in cold temperatures. Likewise, species of ectothermic pathogens experience temperature-mediated effects on rates of transmission and/or virulence. Although seemingly straightforward, predicting the outcomes of ectothermic host-pathogen interactions is quite challenging. A recent hypothesis termed the thermal mismatch hypothesis posits that cool-adapted host species should be most susceptible to pathogen infection during warm temperature periods whereas warm-adapted host species should be most susceptible to pathogens during periods of cool temperatures. We explore this hypothesis using two ecologically and physiologically differentiated color morphs of the Eastern Red-backed Salamander (Plethodon cinereus) and a pathogenic chytrid fungus (Batrachochytrium dendrobatidis; hereafter "Bd") using a fully factorial laboratory experiment. At cool temperatures, unstriped salamanders (i.e., those that are tolerant of warm temperatures) had a significantly higher probability of Bd infection compared with cool-tolerant striped salamanders, consistent with the thermal mismatch hypothesis. However, we found no support for this hypothesis when salamanders were exposed to Bd at warm temperatures: the probability of Bd infection in the cool-tolerant striped salamanders was nearly identical in both cool and warm temperatures, opposite the predictions of the thermal mismatch hypothesis. Our results are most consistent with the fact that Bd grows poorly at warm temperatures. Alternatively, our data could indicate that the two color morphs do not differ in their tolerance to warm temperatures but that striped salamanders are more tolerant to cool temperatures than unstriped salamanders.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Joseph DeMarchi
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Cari Hickerson
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Carl D Anthony
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| |
Collapse
|
4
|
Earhart ML, Blanchard TS, Strowbridge N, Bugg WS, Schulte PM. Gene expression and latitudinal variation in the stress response in Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111188. [PMID: 35304270 DOI: 10.1016/j.cbpa.2022.111188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Atlantic killifish, Fundulus heteroclitus, are intertidal marsh fish found along the east coast of North America. Associated with the thermal gradient along this coast, northern and southern killifish populations are known to differ in morphology, behavior, and physiology, including in their cortisol stress response. Our goal was to explore population differences in the stress response and identify underlying molecular mechanisms. We measured responses to both acute and repeated stress in plasma cortisol, stress axis mRNA expression, and body condition in northern and southern killifish. Following an acute stressor, the southern population had higher cortisol levels than the northern population but there was no difference between populations following repeated stress. In the brain, both corticotropin releasing factor and its binding protein had higher expression in the southern than the northern population, but the northern population showed more changes in mRNA levels following a stressor. In the head kidney, Melanocortin 2 Receptor and steroidogenic acute regulatory protein mRNA levels were higher in the southern population suggesting a larger capacity for cortisol synthesis than in the northern fish. Lastly, the glucocorticoid receptor GR1 mRNA levels were greater in the liver of southern fish, suggesting a greater capacity to respond to cortisol, and GR2 had differential expression in the head kidney, suggesting an interpopulation difference in stress axis negative feedback loops. Southern, but not northern, fish were able to maintain body condition following stress, suggesting that these differences in the stress response may be important for adaptation across latitudes.
Collapse
Affiliation(s)
- Madison L Earhart
- Department of Zoology, University of British Columba, Vancouver, Canada.
| | - Tessa S Blanchard
- Department of Zoology, University of British Columba, Vancouver, Canada
| | - Nicholas Strowbridge
- Department of Zoology, University of British Columba, Vancouver, Canada; Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasglow, Glasglow, UK
| | - William S Bugg
- Department of Zoology, University of British Columba, Vancouver, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
5
|
Deluen M, Blanchet S, Aubret F, Trochet A, Gangloff EJ, Guillaume O, Le Chevalier H, Calvez O, Carle C, Genty L, Arrondeau G, Cazale L, Kouyoumdjian L, Ribéron A, Bertrand R. Impacts of temperature on O 2 consumption of the Pyrenean brook newt (Calotriton asper) from populations along an elevational gradient. J Therm Biol 2022; 103:103166. [PMID: 35027206 DOI: 10.1016/j.jtherbio.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/28/2022]
Abstract
Global warming impacts biodiversity worldwide, leading to species' adaptation, migration, or extinction. The population's persistence depends on the maintenance of essential activities, which is notably driven by phenotypic adaptation to local environments. Metabolic rate - that increases with temperature in ectotherms - is a key physiological proxy for the energy available to fuel individuals' activities. Cold-adapted ectotherms can exhibit a higher resting metabolism than warm-adapted ones to maintain functionality at higher elevations or latitudes, known as the metabolic cold-adaptation hypothesis. How climate change will affect metabolism in species inhabiting contrasting climates (cold or warm) is still a debate. Therefore, it is of high interest to assess the pace of metabolic responses to global warming among populations adapted to highly different baseline climatic conditions. Here, we conducted a physiological experiment in the endemic Pyrenean brook newt (Calotriton asper). We measured a proxy of standard metabolic rate (SMR) along a temperature gradient in individuals sampled among 6 populations located from 550 to 2189 m a.s.l. We demonstrated that SMR increased with temperature, but significantly diverged depending on populations' origins. The baseline and the slope of the relationship between SMR and temperature were both higher for high-elevation populations than for low-elevation populations. We discussed the stronger metabolic response observed in high-elevation populations suggesting a drop of performance in essential life activities for these individuals under current climate change. With the increase of metabolism as the climate warms, the metabolic-cold adaptation strategy selected in the past could compromise the sustainability of cold-adapted populations if short-term evolutionary responses do not allow to offset this evolutionary legacy.
Collapse
Affiliation(s)
- Marine Deluen
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France.
| | - Simon Blanchet
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, CP41, 57 rue Cuvier, 75005, Paris
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Clémentine Carle
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Léa Genty
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Gaëtan Arrondeau
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Lucas Cazale
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale, CNRS, UPR2001, 09200 Moulis, France
| | - Alexandre Ribéron
- Laboratoire Évolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| |
Collapse
|
6
|
Muñoz D, Miller D, Schilder R, Campbell Grant EH. Geographic variation and thermal plasticity shape salamander metabolic rates under current and future climates. Ecol Evol 2022; 12:e8433. [PMID: 35136543 PMCID: PMC8809431 DOI: 10.1002/ece3.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Predicted changes in global temperature are expected to increase extinction risk for ectotherms, primarily through increased metabolic rates. Higher metabolic rates generate increased maintenance energy costs which are a major component of energy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) mechanisms to optimize metabolic rate with respect to their environment. We examined relationships between temperature and standard metabolic rate across four populations of a widespread amphibian species to determine if populations vary in metabolic response and if their metabolic rates are plastic to seasonal thermal cues. Populations from warmer climates lowered metabolic rates when acclimating to summer temperatures as compared to spring temperatures. This may act as an energy saving mechanism during the warmest time of the year. No such plasticity was evident in populations from cooler climates. Both juvenile and adult salamanders exhibited metabolic plasticity. Although some populations responded to historic climate thermal cues, no populations showed plastic metabolic rate responses to future climate temperatures, indicating there are constraints on plastic responses. We postulate that impacts of warming will likely impact the energy budgets of salamanders, potentially affecting key demographic rates, such as individual growth and investment in reproduction.
Collapse
Affiliation(s)
- David Muñoz
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - David Miller
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rudolf Schilder
- Department of EntomologyDepartment of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Evan H. Campbell Grant
- US Geological SurveyPatuxent Wildlife Research CenterSO Conte Anadromous Fish Research LabTurners FallsMassachusettsUSA
| |
Collapse
|
7
|
Charles van Zanten T, Craig Simpson S. Managing the Health of Captive Groups of Reptiles and Amphibians. Vet Clin North Am Exot Anim Pract 2021; 24:609-645. [PMID: 34366012 DOI: 10.1016/j.cvex.2021.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Managing the health of reptile and amphibian collections is centered on providing appropriate environmental parameters, husbandry conditions, and nutrition as well as maintaining good welfare and careful collection planning. Disease transmission is reduced through quarantine, appropriate diagnostic testing, and annual veterinary health assessment."
Collapse
Affiliation(s)
- Trent Charles van Zanten
- Conservation, Research and Veterinary Services, Wildlife Reserves Singapore, Jurong Bird Park, 2 Jurong Hill, Singapore 628925.
| | - Shane Craig Simpson
- The Unusual Pet Vets, 210 Karingal Drive, Frankston, Victoria 3199, Australia
| |
Collapse
|
8
|
Combined Effects of Experimentally Elevated CORT and Predation Threat on Exploratory and Foraging Behavior of Desmognathus ochrophaeus. J HERPETOL 2021. [DOI: 10.1670/20-077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Venesky MD, Laskey CA. Infection with Batrachochytrium dendrobatidis reduces salamander capacity to mount a cell-mediated immune response. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:273-281. [PMID: 34102032 DOI: 10.1002/jez.2497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
The vertebrate immune system is a costly defense system that is responsible for preventing and eliminating parasites and pathogens. Theory predicts that hosts experience tradeoffs associated with immune deployment and other physiological functions. Although empirical evidence for immune-physiology tradeoffs are well documented in the literature, fewer studies have examined tradeoffs within the immune system in wild vertebrates. We explored the topic of concomitant immune challenges in amphibians by exposing salamanders (Plethodon cinereus) to a fungal pathogen Batrachochytrium dendrobatidis (hereafter "Bd") and then to phytohemagglutinin (hereafter "PHA"). We measured Bd infection using quantitative PCR and used measurements of the tail thickness at the PHA injection site as an estimate of skin swelling. We tested whether Bd reduced the salamander's capacity to mount an immune response towards PHA or whether Bd would stimulate immune activity and thereby increase the response towards PHA. Salamanders that were infected with Bd had a reduced skin-swelling when injected with PHA compared to noninfected salamanders, a result that is consistent with the hypothesis that Bd-infected salamanders have lower immunocompetence than noninfected salamanders. We also found that PHA-induced swelling response was negatively associated with Bd infection abundance (i.e., the infection burden of all exposed salamanders, including those that were exposed but not infected), indicating that salamanders with a higher infection abundance had the lowest swelling response to PHA. Our results suggest that individuals of P. cinereus might experience an energetic tradeoff between successfully fighting off Bd and mounting an immune response towards PHA.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Corey A Laskey
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| |
Collapse
|
10
|
Cox CL, Tribble HO, Richardson S, Chung AK, Curlis JD, Logan ML. Thermal ecology and physiology of an elongate and semi-fossorial arthropod, the bark centipede. J Therm Biol 2020; 94:102755. [DOI: 10.1016/j.jtherbio.2020.102755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 02/08/2023]
|
11
|
Bioaccumulation of the pesticide imidacloprid in stream organisms and sublethal effects on salamanders. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Gade MR, Connette GM, Crawford JA, Hocking DJ, Maerz JC, Milanovich JR, Peterman WE. Predicted alteration of surface activity as a consequence of climate change. Ecology 2020; 101:e03154. [PMID: 32740923 DOI: 10.1002/ecy.3154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Wildlife are faced with numerous threats to survival, none more pressing than that of climate change. Understanding how species will respond behaviorally, physiologically, and demographically to a changing climate is a cornerstone of many contemporary ecological studies, especially for organisms, such as amphibians, whose persistence is closely tied to abiotic conditions. Activity is a useful parameter for understanding the effects of climate change because activity is directly linked to fitness as it dictates foraging times, energy budgets, and mating opportunities. However, activity can be challenging to measure directly, especially for secretive organisms like plethodontid salamanders, which only become surface active when conditions are cool and moist because of their anatomical and physiological restrictions. We estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani complex. Five independent data sets collected from 2004 to 2017 were used to determine the parameters driving salamander surface activity in the present day, which were then used to predict potential activity changes over the next 80 yrs. Average active seasonal temperature and vapor pressure deficit were the strongest predictors of salamander surface activity and, without physiological or behavioral modifications, salamanders were predicted to exhibit a higher probability of surface activity during peak active season under future climate conditions. Temperatures during the active season likely do not exceed salamander thermal maxima to cause activity suppression and, until physiological limits are reached, future conditions may continue to increase activity. Our model is the first comprehensive field-based study to assess current and future surface activity probability. Our study provides insights into how a key behavior driving fitness may be affected by climate change.
Collapse
Affiliation(s)
- Meaghan R Gade
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| | - Grant M Connette
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - John A Crawford
- National Great Rivers Research and Education Center, One Confluence Way, East Alton, Illinois, 62024, USA
| | - Daniel J Hocking
- Department of Biology, Frostburg State University, 101 Braddock Rd, Frostburg, Maryland, 21532, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, Georgia, 30602, USA
| | - Joseph R Milanovich
- Department of Biology, Loyola University Chicago, 1032 Sheridan Rd, Chicago, Illinois, 60660, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| |
Collapse
|
13
|
Goff CB, Walls SC, Rodriguez D, Gabor CR. Changes in physiology and microbial diversity in larval ornate chorus frogs are associated with habitat quality. CONSERVATION PHYSIOLOGY 2020; 8:coaa047. [PMID: 32577287 PMCID: PMC7294888 DOI: 10.1093/conphys/coaa047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Environmental change associated with anthropogenic disturbance can lower habitat quality, especially for sensitive species such as many amphibians. Variation in environmental quality may affect an organism's physiological health and, ultimately, survival and fitness. Using multiple health measures can aid in identifying populations at increased risk of declines. Our objective was to measure environmental variables at multiple spatial scales and their effect on three indicators of health in ornate chorus frog (Pseudacris ornata) tadpoles to identify potential correlates of population declines. To accomplish this, we measured a glucocorticoid hormone (corticosterone; CORT) profile associated with the stress response, as well as the skin mucosal immune function (combined function of skin secretions and skin bacterial community) and bacterial communities of tadpoles from multiple ponds. We found that water quality characteristics associated with environmental variation, including higher water temperature, conductivity and total dissolved solids, as well as percent developed land nearby, were associated with elevated CORT release rates. However, mucosal immune function, although highly variable, was not significantly associated with water quality or environmental factors. Finally, we examined skin bacterial diversity as it aids in immunity and is affected by environmental variation. We found that skin bacterial diversity differed between ponds and was affected by land cover type, canopy cover and pond proximity. Our results indicate that both local water quality and land cover characteristics are important determinants of population health for ornate chorus frogs. Moreover, using these proactive measures of health over time may aid in early identification of at-risk populations that could prevent further declines and aid in management decisions.
Collapse
Affiliation(s)
- Cory B Goff
- Department of Biology, Texas State University, 601 University Dr.
San Marcos, TX 78666, USA
- Department of Biology and Chemistry, Liberty University, 1971
University Blvd. Lynchburg, VA 24515, USA
| | - Susan C Walls
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920
NW 71st St. Gainesville, FL 32653, USA
| | - David Rodriguez
- Department of Biology, Texas State University, 601 University Dr.
San Marcos, TX 78666, USA
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Dr.
San Marcos, TX 78666, USA
| |
Collapse
|
14
|
Lewis JL, Sullivan AM. Salamander stress and duress: the relationship between CORT, autotomy and regeneration, and exploratory behaviour. ZOOLOGY 2020; 139:125751. [PMID: 32070799 DOI: 10.1016/j.zool.2020.125751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
Abstract
Responses to stress are generally mediated through the production of glucocorticoids by the hypothalamic-pituitary-adrenal (or -interrenal) axis. The prolonged production of stress hormones can contribute to delayed wound healing and growth, but little is known about their influence on regeneration following tail autotomy, or exploratory behaviour in autotomized individuals. Here we examined the relationship between stress, regeneration, and exploratory behaviour in Allegheny Mountain dusky salamanders (Desmognathus ochrophaeus) by manipulating corticosterone (CORT) levels via cutaneous patch. First, we measured tail regeneration in salamanders with elevated CORT for 13 weeks after the induction of tail autotomy. Test subjects received a weekly patch to wear for one hour that was saturated with either a low CORT (0.25 mg/ml) or high CORT (0.50 mg/ml) solution. Individuals receiving CORT patches regenerated significantly less of their tail length and volume (versus control), but without exhibiting dose-dependent effects. Second, we used a factorial design to evaluate the effects of autotomy and elevated CORT on exploration within a test arena consisting of low barriers arrayed in concentric rings. Individuals experiencing tail autotomy exhibited significantly less exploratory behaviour indicated by an increased latency to cross first barrier and a decreased number of barriers crossed. Neither elevated CORT (0.50 mg/ml), nor the interaction between elevated CORT and tail autotomy significantly affected salamander activity within the array. Although CORT did not have a direct effect on explorative behaviour, a delay in regeneration attributed to CORT could lead to changes in patterns of movement in autotomized individuals.
Collapse
Affiliation(s)
- Jacquelyn L Lewis
- Department of Biology, Houghton College, Houghton, NY 14744, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Aaron M Sullivan
- Department of Biology, Houghton College, Houghton, NY 14744, USA
| |
Collapse
|
15
|
Narayan EJ, Forsburg ZR, Davis DR, Gabor CR. Non-invasive Methods for Measuring and Monitoring Stress Physiology in Imperiled Amphibians. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Walls SC, Gabor CR. Integrating Behavior and Physiology Into Strategies for Amphibian Conservation. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Walls SC, Barichivich WJ, Chandler J, Meade AM, Milinichik M, O'Donnell KM, Owens ME, Peacock T, Reinman J, Watling RC, Wetsch OE. Seeking shelter from the storm: Conservation and management of imperiled species in a changing climate. Ecol Evol 2019; 9:7122-7133. [PMID: 31380037 PMCID: PMC6662284 DOI: 10.1002/ece3.5277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change is anticipated to exacerbate the extinction risk of species whose persistence is already compromised by habitat loss, invasive species, disease, or other stressors. In coastal areas of the southeastern United States (USA), many imperiled vertebrates are vulnerable to hurricanes, which climate models predict to become more severe in the 21st century. Despite this escalating threat, explicit adaptation strategies that address hurricane threats, in particular, and climate change more generally, are largely underrepresented in recovery planning and implementation. We provide a basis for stronger emphasis on strategic planning for imperiled species facing the increasing threat of catastrophic hurricanes. Our reasoning comes from observations of short-term environmental and biological impacts of Hurricane Michael, which impacted the Gulf Coast of the southeastern USA in October 2018. During this storm, St. Marks National Wildlife Refuge, located along the northern Gulf of Mexico's coast in the panhandle region of Florida, received storm surge that was 3.0-3.6 m (NAVD88) above sea level. Storm surge pushed sea water into some ephemeral freshwater ponds used for breeding by the federally threatened frosted flatwoods salamander (Ambystoma cingulatum). After the storm, specific conductance across all ponds measured varied from 80 to 23,100 µS/cm, compared to 75 to 445 µS/cm in spring 2018. For 17 overwashed wetlands that were measured in both spring and fall 2018, posthurricane conductance observations were, on average, more than 90 times higher than in the previous spring, setting the stage for varying population responses across this coastal landscape. Importantly, we found live individual flatwoods salamanders at both overwashed and non-overwashed sites, although we cannot yet assess the demographic consequences of this storm. We outline actions that could be incorporated into climate adaptation strategies and recovery planning for imperiled species, like A. cingulatum, that are associated with freshwater coastal wetlands in hurricane-prone regions.
Collapse
Affiliation(s)
- Susan C Walls
- Wetland and Aquatic Research Center U.S. Geological Survey Gainesville Florida
| | | | - Jonathan Chandler
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Ashley M Meade
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Marysa Milinichik
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | | | - Megan E Owens
- Wetland and Aquatic Research Center U.S. Geological Survey Gainesville Florida
- Environmental Stewards Program Conservation Legacy Durango Colorado
| | - Terry Peacock
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Joseph Reinman
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| | - Rebecca C Watling
- Wetland and Aquatic Research Center U.S. Geological Survey Gainesville Florida
- Environmental Stewards Program Conservation Legacy Durango Colorado
| | - Olivia E Wetsch
- St. Marks National Wildlife Refuge U.S. Fish and Wildlife Service St. Marks Florida
| |
Collapse
|
18
|
Hernández-Pacheco R, Sutherland C, Thompson LM, Grayson KL. Unexpected spatial population ecology of a widespread terrestrial salamander near its southern range edge. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182192. [PMID: 31312480 PMCID: PMC6599808 DOI: 10.1098/rsos.182192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/21/2019] [Indexed: 05/16/2023]
Abstract
Under the current amphibian biodiversity crisis, common species provide an opportunity to measure population dynamics across a wide range of environmental conditions while examining the processes that determine abundance and structure geographical ranges. Studying species at their range limits also provides a window for understanding the dynamics expected in future environments under increasing climate change and human modification. We quantified patterns of seasonal activity, density and space use in the eastern red-backed salamander (Plethodon cinereus) near its southern range edge and compare the spatial ecology of this population to previous findings from the core of their range. This southern population shows the expected phenology of surface activity based on temperature limitations in warmer climates, yet maintains unexpectedly high densities and large home ranges during the active season. Our study suggests that ecological factors known to strongly affect amphibian populations (e.g. warm temperature and forest fragmentation) do not necessarily constrain this southern population. Our study highlights the utility of studying a common amphibian as a model system for investigating population processes in environments under strong selective pressure.
Collapse
Affiliation(s)
| | - Chris Sutherland
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Lily M. Thompson
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | |
Collapse
|
19
|
McEntire KD, Maerz JC. Integrating Ecophysiological and Agent-Based Models to Simulate How Behavior Moderates Salamander Sensitivity to Climate. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|