1
|
Young MW, Dickinson E, Gustafson JA, Granatosky MC. Center of mass position does not drive energetic costs during climbing. J Exp Biol 2024; 227:jeb246943. [PMID: 38511508 DOI: 10.1242/jeb.246943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Climbing animals theoretically should optimize the energetic costs of vertical climbing while also maintaining stability. Many modifications to climbing behaviors have been proposed as methods of satisfying these criteria, focusing on controlling the center of mass (COM) during ascent. However, the link between COM movements and metabolic energy costs has yet to be evaluated empirically. In this study, we manipulated climbing conditions across three experimental setups to elicit changes in COM position, and measured the impact of these changes upon metabolic costs across a sample of 14 humans. Metabolic energy was assessed via open flow respirometry, while COM movements were tracked both automatically and manually. Our findings demonstrate that, despite inducing variation in COM position, the energetic costs of climbing remained consistent across all three setups. Differences in energetic costs were similarly not affected by body mass; however, velocity had a significant impact upon both cost of transport and cost of locomotion, but such a relationship disappeared when accounting for metabolic costs per stride. These findings suggest that climbing has inescapable metabolic demands driven by gaining height, and that attempts to mitigate such a cost, with perhaps the exception of increasing speed, have only minimal impacts. We also demonstrate that metabolic and mechanical energy costs are largely uncorrelated. Collectively, we argue that these data refute the idea that efficient locomotion is the primary aim during climbing. Instead, adaptations towards effective climbing should focus on stability and reducing the risk of falling, as opposed to enhancing the metabolic efficiency of locomotion.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jon A Gustafson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
2
|
Young MW, English HM, Dickinson E, Kantounis SJ, Chernik ND, Cannata MJ, Lynch SK, Jacobson RN, Virga JQ, Lopez A, Granatosky MC. Comparative kinetics of humans and non-human primates during vertical climbing. J Exp Biol 2024; 227:jeb247012. [PMID: 38426398 DOI: 10.1242/jeb.247012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Climbing represents a critical behavior in the context of primate evolution. However, anatomically modern human populations are considered ill-suited for climbing. This adaptation can be attributed to the evolution of striding bipedalism, redirecting anatomical traits away from efficient climbing. Although prior studies have speculated on the kinetic consequences of this anatomical reorganization, there is a lack of data on the force profiles of human climbers. This study utilized high-speed videography and force plate analysis to assess single limb forces during climbing from 44 human participants of varying climbing experience and compared these data with climbing data from eight species of non-human primates (anthropoids and strepsirrhines). Contrary to expectations, experience level had no significant effect on the magnitude of single limb forces in humans. Experienced climbers did, however, demonstrate a predictable relationship between center of mass position and peak normal forces, suggesting a better ability to modulate forces during climbing. Humans exhibited significantly higher peak propulsive forces in the hindlimb compared with the forelimb and greater hindlimb dominance overall compared with non-human primates. All species sampled demonstrated exclusively tensile forelimbs and predominantly compressive hindlimbs. Strepsirrhines exhibited a pull-push transition in normal forces, while anthropoid primates, including humans, did not. Climbing force profiles are remarkably stereotyped across humans, reflecting the universal mechanical demands of this form of locomotion. Extreme functional differentiation between forelimbs and hindlimbs in humans may help to explain the evolution of bipedalism in ancestrally climbing hominoids.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Hannah M English
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Stratos J Kantounis
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Noah D Chernik
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Matthew J Cannata
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Samantha K Lynch
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Reuben N Jacobson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - James Q Virga
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Alexander Lopez
- School of Health Professions, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Inclusive Sports and Fitness, Holbrook, NY 11741, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Young MW, Webster C, Tanis D, Schurr AF, Hanna CS, Lynch SK, Ratkiewicz AS, Dickinson E, Kong FH, Granatosky MC. What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:19-33. [PMID: 37140643 DOI: 10.1007/s00359-023-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly "climbing" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Clyde Webster
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Daniel Tanis
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alissa F Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Christopher S Hanna
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Samantha K Lynch
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksandra S Ratkiewicz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Felix H Kong
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
4
|
Kim CJ, Singh C, Kaczmarek M, O'Donnell M, Lee C, DiMagno K, Young MW, Letsou W, Ramos RL, Granatosky MC, Hadjiargyrou M. Mustn1 ablation in skeletal muscle results in functional alterations. FASEB Bioadv 2023; 5:541-557. [PMID: 38094159 PMCID: PMC10714068 DOI: 10.1096/fba.2023-00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/01/2024] Open
Abstract
Mustn1, a gene expressed exclusively in the musculoskeletal system, was shown in previous in vitro studies to be a key regulator of myogenic differentiation and myofusion. Other studies also showed Mustn1 expression associated with skeletal muscle development and hypertrophy. However, its specific role in skeletal muscle function remains unclear. This study sought to investigate the effects of Mustn1 in a conditional knockout (KO) mouse model in Pax7 positive skeletal muscle satellite cells. Specifically, we investigated the potential effects of Mustn1 on myogenic gene expression, grip strength, alterations in gait, ex vivo investigations of isolated skeletal muscle isometric contractions, and potential changes in the composition of muscle fiber types. Results indicate that Mustn1 KO mice did not present any substantial phenotypic changes or significant variations in genes related to myogenic differentiation and fusion. However, an approximately 10% decrease in overall grip strength was observed in the 2-month-old KO mice in comparison to the control wild type (WT), but this decrease was not significant when normalized by weight. KO mice also generated approximately 8% higher vertical force than WT at 4 months in the hindlimb. Ex vivo experiments revealed decreases in about 20 to 50% in skeletal muscle contractions and about 10%-20% fatigue in soleus of both 2- and 4-month-old KO mice, respectively. Lastly, immunofluorescent analyses showed a persistent increase of Type IIb fibers up to 15-fold in the KO mice while Type I fibers decreased about 20% and 30% at both 2 and 4 months, respectively. These findings suggest a potential adaptive or compensatory mechanism following Mustn1 loss, as well as hinting at an association between Mustn1 and muscle fiber typing. Collectively, Mustn1's complex roles in skeletal muscle physiology requires further research, particularly in terms of understanding the potential role of Mustn1 in muscle repair and regeneration, as well as with influence of exercise. Collectively, these will offer valuable insights into Mustn1's key biological functions and regulatory pathways.
Collapse
Affiliation(s)
- Charles J. Kim
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Chanpreet Singh
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Marina Kaczmarek
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Madison O'Donnell
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Christine Lee
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Kevin DiMagno
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Melody W. Young
- Department of Anatomy, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - William Letsou
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Raddy L. Ramos
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Michael C. Granatosky
- Department of Anatomy, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Center for Biomedical InnovationNew York Institute of TechnologyOld WestburyNew YorkUSA
| | - Michael Hadjiargyrou
- College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew YorkUSA
- Department of Biological and Chemical SciencesNew York Institute of TechnologyOld WestburyNew YorkUSA
| |
Collapse
|
5
|
Plocek MR, Dunham NT. Spatiotemporal walking gait kinematics of semi-arboreal red pandas (Ailurus fulgens). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:755-766. [PMID: 37395486 DOI: 10.1002/jez.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Semi-arboreal mammals must routinely cope with the differing biomechanical challenges of terrestrial versus arboreal locomotion; however, it is not clear to what extent semi-arboreal mammals adjust footfall patterns when moving on different substrates. We opportunistically filmed quadrupedal locomotion (n = 132 walking strides) of semi-arboreal red pandas (Ailurus fulgens; n = 3) housed at Cleveland Metroparks Zoo and examined the effects of substrate type on spatiotemporal gait kinematic variables using linear mixed models. We further investigated the effects of substrate diameter and orientation on arboreal gait kinematics. Red pandas exclusively used lateral sequence (LS) gaits and most frequently utilized LS lateral couplet gaits across terrestrial and arboreal substrates. Red pandas moved significantly slower (p < 0.001), and controlling for speed, had significantly greater relative stride length (p < 0.001), mean stride duration (p = 0.002), mean duty factor (p < 0.001), and mean number of supporting limbs (p < 0.001) during arboreal locomotion. Arboreal strides on inclined substrates were characterized by significantly faster relative speeds and increased limb phase values compared with those horizontal and declined substrates. These kinematics adjustments help to reduce substrate oscillations thereby promoting stability on potentially precarious arboreal substrates. Red panda limb phase values are similar to those of (primarily terrestrial) Carnivora examined to date. Despite the similarity in footfall patterns during arboreal and terrestrial locomotion, flexibility in other kinematic variables is important for semi-arboreal red pandas that must navigate disparate biomechanical challenges inherent to arboreal versus terrestrial locomotion.
Collapse
Affiliation(s)
- Maura R Plocek
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
| | - Noah T Dunham
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Ekhator C, Varshney A, Young MW, Tanis D, Granatosky MC, Diaz RE, Molnar JL. Locomotor characteristics of the ground-walking chameleon Brookesia superciliaris. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:602-614. [PMID: 37260090 DOI: 10.1002/jez.2703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/02/2023]
Abstract
Understanding the locomotor characteristics of early diverging ground-walking chameleons (members of the genera Brookesia, Rhampholeon, Palleon, and Rieppeleon) can help to explain how their unique morphology is adapted to fit their environment and mode of life. However, nearly all quantitative studies of chameleon locomotion thus far have focused on the larger "true arboreal" chameleons. We investigated kinematics and spatiotemporal gait characteristics of the Brown Leaf Chameleon (Brookesia superciliaris) on different substrates and compared them with true arboreal chameleons, nonchameleon lizards, and other small arboreal animals. Brookesia exhibits a combination of locomotor traits, some of which are traditionally arboreal, others more terrestrial, and a few that are very unusual. Like other chameleons, Brookesia moved more slowly on narrow dowels than on broad planks (simulating arboreal and terrestrial substrates, respectively), and its speed was primarily regulated by stride frequency rather than stride length. While Brookesia exhibits the traditionally arboreal trait of a high degree of humeral protraction at the beginning of stance, unlike most arboreal tetrapods, it uses smaller shoulder and hip excursions on narrower substrates, possibly reflecting its more terrestrial habits. When moving at very slow speeds, Brookesia often adopts an unusual footfall pattern, lateral-sequence lateral-couplets. Because Brookesia is a member of one of the earliest-diverging groups of chameleons, its locomotion may provide a good model for an intermediate stage in the evolution of arboreal chameleons. Thus, the transition to a fully arboreal way of life in "true arboreal" chameleons may have involved changes in spatiotemporal and kinematic characteristics as well as morphology.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | | | - Melody W Young
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Daniel Tanis
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
- Center for Biomedical Innovation College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Julia L Molnar
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
7
|
Goto R, Kinoshita Y, Shitara T, Hirasaki E. Diagonal-couplet gaits on discontinuous supports in Japanese macaques and implications for the adaptive significance of the diagonal-sequence, diagonal-couplet gait of primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37209057 DOI: 10.1002/ajpa.24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Diagonal-sequence, diagonal-couplet (DSDC) gaits have been proposed as an adaptation to travel on discontinuously arranged arboreal branches. Only a few studies have examined primate gait adjustment to support discontinuity. We analyzed the gaits of Japanese macaques walking on the "ground" and two discontinuous conditions, "circle" and "point," to better understand the advantages of DSDC gaits on discontinuous supports. MATERIALS AND METHODS Seventy-eight vertical posts, each with a circular upper surface, were arranged in four rows at a spacing of 200 mm. The diameter of the circular upper surface was 150 mm ("circle condition") or 50 mm ("point condition"). We calculated the limb phase, duty factor, and time interval from hindlimb touchdown to ipsilateral forelimb liftoff. The supports the fore- and hindlimbs landed on during walking were identified in the circle and point condition. RESULTS The macaques predominantly used DSDC gaits in the ground and circle conditions and lateral-sequence, diagonal-couplet (LSDC) gaits in the point condition. The macaques usually placed their hindlimbs on the same supports as their ipsilateral forelimbs during the gait cycle. DISCUSSION Japanese macaques overlapped the ipsilateral fore- and hindlimb stance phase in all DSDC and some LSDC gaits to proximate the ipsilateral limbs on the discontinuous support, allowing the forelimb to guide the hindlimb placement to the support. The overlap duration of the ipsilateral limb stance phases may be extended by DSDC gaits longer than by LSDC gaits, allowing for a direct pass of the support being held by the prehensile hand to the prehensile foot.
Collapse
Affiliation(s)
- Ryosuke Goto
- Faculty of Rehabilitation, Gunma Paz University, Takasaki, Japan
| | - Yuki Kinoshita
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Tetsuya Shitara
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Eishi Hirasaki
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| |
Collapse
|
8
|
Young MW, McKamy AJ, Dickinson E, Yarbro J, Ragupathi A, Guru N, Avey-Arroyo JA, Butcher MT, Granatosky MC. Three toes and three modes: Dynamics of terrestrial, suspensory, and vertical locomotion in brown-throated three-toed sloths (Bradypodidae, Xenarthra). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:383-397. [PMID: 36747379 DOI: 10.1002/jez.2684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023]
Abstract
Living sloths exhibit numerous anatomical specializations towards inverted quadrupedalism, however, previous studies have noted a more varied locomotor repertoire than previously anticipated. In this study, we present spatiotemporal gait characteristics and triaxial kinetic data from the brown-throated three-toed sloth (Bradypus variegatus) across three locomotor modes: terrestrial quadrupedal "crawling", suspensory walking, and vertical climbing. Compared to quadrupedal crawling and suspensory walking, B. variegatus adopted longer contact times and stride durations, larger duty factors, and greater speed during vertical climbing. Net fore-aft impulses were significantly greater during vertical climbing in both limb pairs than in quadrupedal crawling and suspensory walking. Functionally, during quadrupedal crawling and vertical climbing, both limb pairs served propulsive roles, while differentiation between a propulsive forelimb and braking hindlimb was observed during suspension. Net tangential forces differentiated vertical climbing kinetics from the other modes of locomotion, with the introduction of bidirectional pulling and pushing forces in the forelimb and hindlimb, respectively. The net mediolateral impulses were similar in vertical climbing and quadrupedal crawling as both limb pairs directed forces in one direction, whereas during suspensory walking, the laterally dominant forelimb was opposed by the medially dominant hindlimb. In total, this study provides novel data on the diverse locomotor dynamics in a slow-moving arboreal tetrapod and posits new testable hypotheses about the neuroplasticity and ease of transitioning between locomotor behaviors. The strikingly similar kinetic profiles of quadrupedal crawling and suspensory walking compared to vertical climbing suggest shared neuromuscular and mechanical demands between these mirrored locomotor modes.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Andrew J McKamy
- Department of Biological Sciences, Youngstown State University, Youngstown, Ohio, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Johnathan Yarbro
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Ashwin Ragupathi
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Navjot Guru
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | | | - Michael T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, Ohio, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
9
|
Shitara T, Goto R, Ito K, Hirasaki E, Nakano Y. Hip medial rotator action of gluteus medius in Japanese macaque (Macaca fuscata) and implications to adaptive significance for quadrupedal walking in primates. J Anat 2022; 241:407-419. [PMID: 35357010 PMCID: PMC9296037 DOI: 10.1111/joa.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
The gluteus medius (GM) muscle in quadrupedal primates has long been thought to mainly act as a hip extensor. However, previous reports argue that it may be a prime hip medial rotator and functions to rotate the pelvis in the horizontal plane, suggesting the functional differentiation between the GM and other hip extensors as hamstrings. In this study, we aim to quantify the muscle actions of the GM and hamstrings using muscle moment arm lengths and discuss the functional differentiation among hip extensors. Muscle attachment sites of eight specimens of Japanese macaque (Macaca fuscata) were digitized, and musculoskeletal models were constructed. Flexor-extensor, abductor-adductor, and medial-lateral rotator moment arms were calculated as the models were moved following the experimentally acquired kinematic data during walking on a pole substrate. Using electromyography, we also recorded the pattern of muscle activation. The GM showed a larger medial rotator moment arm length than the extensor moment arm length when it was activated, suggesting this muscle acts mainly as a hip medial rotator rather than as a hip extensor. The medial rotator action of the GM in the early support phase may rotate the pelvis in the horizontal plane and function to help contralateral forelimb reaching as a previous study suggested and facilitate contralateral hindlimb swinging to place the foot near the ipsilateral forelimb's hand.
Collapse
Affiliation(s)
- Tetsuya Shitara
- Laboratory of Biological Anthropology, Graduate School of Human SciencesOsaka UniversitySuitaOsakaJapan
| | - Ryosuke Goto
- Faculty of RehabilitationGunma Paz UniversityTakasakiGunmaJapan
| | - Kohta Ito
- Laboratory of Biological Anthropology, Graduate School of Human SciencesOsaka UniversitySuitaOsakaJapan
| | - Eishi Hirasaki
- Section of Evolutionary Morphology, Primate Research InstituteKyoto UniversityInuyamaAichiJapan
| | - Yoshihiko Nakano
- Laboratory of Biological Anthropology, Graduate School of Human SciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
10
|
Young MW, Lynch SK, Dickinson E, Currier AA, Davoli EC, Hanna CS, Fischer HM, DiUbaldi GA, Granatosky MC. Patterns of single limb forces during terrestrial and arboreal locomotion in rosy-faced lovebirds (Psittaciformes: Agapornis roseicollis). J Exp Biol 2022; 225:276123. [PMID: 35822351 DOI: 10.1242/jeb.244571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
The biomechanical demands of arboreal locomotion are generally thought to necessitate specialized kinetic and kinematic gait characteristics. While such data has been widely collected across arboreal quadrupeds, no study has yet explored how arboreal substrates influence the locomotor behavior of birds. Parrots - an ancient arboreal lineage that exhibit numerous anatomical specializations towards life in the trees - represent an ideal model group within which to examine this relationship. Here, we quantify limb loading patterns within the rosy-faced lovebird (Agapornis roseicollis) across a range of experimental conditions to define under which circumstances arboreal gaits are triggered, and how, during arboreal walking, gait patterns change across substrates of varying diameter. In so doing, we address longstanding questions as to how the challenges associated with arboreality affect gait parameters. Arboreal locomotion was associated with the adoption of a sidling gait, which was employed exclusively on the small- and medium-poles but not terrestrially. When sidling, the hindlimbs are decoupled into a distinct leading limb (which imparts exclusively braking forces) and trailing limb (which generates only propulsive forces). Sidling was also associated with relatively low pitching forces, even on the smallest substrate. Indeed, these forces were significantly lower than mediolateral forces experienced during striding on terrestrial and large-diameter substrates. We propose that the adoption of sidling gaits is a consequence of avian foot morphology and represents a novel form of arboreal locomotion where inversion/eversion is impossible. Such movement mechanics is likely widespread among avian taxa and may also typify patterns of arboreal locomotion in humans.
Collapse
Affiliation(s)
- Melody W Young
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Samantha K Lynch
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Edwin Dickinson
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Allen A Currier
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Elizabeth C Davoli
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Christopher S Hanna
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Hannah M Fischer
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Gianluca A DiUbaldi
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
11
|
Granatosky MC, Toussaint SLD, Young MW, Panyutina A, Youlatos D. The northern treeshrew (Scandentia: Tupaiidae: Tupaia belangeri) in the context of primate locomotor evolution: A comprehensive analysis of gait, positional, and grasping behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:645-665. [PMID: 35451573 DOI: 10.1002/jez.2597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The locomotor behaviors of treeshrews are often reported as scurrying "squirrel-like" movements. As such, treeshrews have received little attention beyond passing remarks in regard to primate locomotor evolution. However, scandentians vary considerably in habitat and substrate use, thus categorizing all treeshrew locomotion based on data collected from a single species is inappropriate. This study presents data on gait characteristics, positional, and grasping behavior of the northern treeshrew (Tupaia belangeri) and compares these findings to the fat-tailed dwarf lemur (Cheirogaleus medius) to assess the role of treeshrews as a model for understanding the origins of primate locomotor and grasping evolution. We found that northern treeshrews were primarily arboreal and shared their activities between quadrupedalism, climbing and leaping in rates similar to fat-tailed dwarf lemurs. During quadrupedal locomotion, they exhibited a mixture of gait characteristics consistent with primates and other small-bodied non-primate mammals and demonstrated a hallucal grasping mode consistent with primates. These data reveal that northern treeshrews show a mosaic of primitive mammalian locomotor characteristics paired with derived primate features. Further, this study raises the possibility that many of the locomotor and grasping characteristics considered to be "uniquely" primate may ultimately be features consistent with Euarchonta.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | | | - Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Aleksandra Panyutina
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dionisios Youlatos
- Department of Zoology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Harel R, Alavi S, Ashbury AM, Aurisano J, Berger-Wolf T, Davis GH, Hirsch BT, Kalbitzer U, Kays R, Mclean K, Núñez CL, Vining A, Walton Z, Havmøller RW, Crofoot MC. Life in 2.5D: Animal Movement in the Trees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.801850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complex, interconnected, and non-contiguous nature of canopy environments present unique cognitive, locomotor, and sensory challenges to their animal inhabitants. Animal movement through forest canopies is constrained; unlike most aquatic or aerial habitats, the three-dimensional space of a forest canopy is not fully realized or available to the animals within it. Determining how the unique constraints of arboreal habitats shape the ecology and evolution of canopy-dwelling animals is key to fully understanding forest ecosystems. With emerging technologies, there is now the opportunity to quantify and map tree connectivity, and to embed the fine-scale horizontal and vertical position of moving animals into these networks of branching pathways. Integrating detailed multi-dimensional habitat structure and animal movement data will enable us to see the world from the perspective of an arboreal animal. This synthesis will shed light on fundamental aspects of arboreal animals’ cognition and ecology, including how they navigate landscapes of risk and reward and weigh energetic trade-offs, as well as how their environment shapes their spatial cognition and their social dynamics.
Collapse
|
13
|
Granatosky MC, McElroy EJ. Stride frequency or length? A phylogenetic approach to understand how animals regulate locomotor speed. J Exp Biol 2022; 225:274352. [PMID: 35258613 DOI: 10.1242/jeb.243231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Speed regulation in animals involves stride frequency and stride length. While the relationship between these variables has been well documented, it remains unresolved whether animals primarily modify stride frequency or stride length to increase speed. In this study, we explored the interrelationships between these three variables across a sample of 103 tetrapods and assessed whether speed regulation strategy is influenced by mechanical, allometric, phylogenetic or ecological factors. We observed that crouched terrestrial species tend to regulate speed through stride frequency. Such a strategy is energetically costly, but results in greater locomotor maneuverability and greater stability. In contrast, regulating speed through stride length is closely tied to larger arboreal animals with relatively extended limbs. Such movements reduce substrate oscillations on thin arboreal supports and/or helps to reduce swing phase costs. The slope of speed on frequency is lower in small crouched animals than in large-bodied erect species. As a result, substantially more rapid limb movements are matched with only small speed increases in crouched, small-bodied animals. Furthermore, the slope of speed on stride length was inversely proportional to body mass. As such, small changes in stride length can result in relatively rapid speed increases for small-bodied species. These results are somewhat counterintuitive, in that larger species, which have longer limbs and take longer strides, do not appear to gain as much speed increase out of lengthening their stride. Conversely, smaller species that cycle their limbs rapidly do not gain as much speed out of increasing stride frequency as do larger species.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Eric J McElroy
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| |
Collapse
|
14
|
Hanna CS, Alihosseini C, Fischer HM, Davoli EC, Granatosky MC. Are they arboreal? Climbing abilities and mechanics in the red-backed salamander (Plethodon cinereus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:238-249. [PMID: 34752693 DOI: 10.1002/jez.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022]
Abstract
While red-backed salamanders (Plethodon cinereus) are most often observed in terrestrial forested areas, several studies report arboreal substrate use and climbing behavior. However, salamanders do not have any of the anatomical features commonly observed in specialized climbing species (e.g., claws, setae, suction cups). Instead, salamanders cling to surfaces using the shear and adhesive properties of their mucous layer. In this study, we explore the capabilities and spatiotemporal gait patterns of arboreal locomotion in the red-backed salamander as they move across twelve substrate conditions ranging in diameter, orientation, and roughness. On arboreal substrates, red-backed salamanders decreased locomotor speed, stride frequency, phase and stride length, and increased duty factor and stride duration. Such responses have been observed in other non-salamander species and are posited to increase arboreal stability. Furthermore, these findings indicate that amphibian locomotion, or at least the locomotor behavior of the red-backed salamander, is not stereotyped and that some locomotor plasticity is possible in response to the demands of the external environment. However, red-backed salamanders were unable to locomote on any small-diameter or vertically-oriented coarse substrates. This finding provides strong evidence that the climbing abilities of red-backed salamanders are attributable solely to mucous adhesion and that this species is unable to produce the necessary external "gripping" forces to achieve fine-branch arboreal locomotion or scale substrates where adhesion is not possible. The red-backed salamander provides an ideal model for arboreal locomotor performance of anatomically-unspecialized amphibians and offers insight into transitionary stages in the evolution of arborealism in this lineage.
Collapse
Affiliation(s)
- Christopher S Hanna
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Christopher Alihosseini
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Hannah M Fischer
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Elizabeth C Davoli
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
15
|
Granatosky MC, Amanat S, Panyutina AA, Youlatos D. Gait mechanics of a blind echolocating rodent: Implications for the locomotion of small arboreal mammals and proto-bats. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:436-453. [PMID: 33830677 DOI: 10.1002/jez.2462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 01/25/2023]
Abstract
Arboreal mammals have evolved a range of biomechanical adaptations that allow them to navigate trees effectively. One such feature that has received considerable attention is the importance of vision that helps arboreal animals assess gap distances, assure proper foot placement, and inspect potential risks. While there is considerable debate about the relative importance of the visual system specifics, there is little doubt that the ability to at least see the environment must confer some level of safety when navigating arboreal substrates. In this study, we explore spatiotemporal and kinematic patterns of arboreal locomotion in the Vietnamese pygmy dormouse (Typhlomys chapensis), a blind rodent that uses ultrasonic echolocation to navigate in tree canopies. We compare these data with five other species of arboreal rodents and primates. Spatiotemporal gait characteristics are largely similar between the Vietnamese pygmy dormouse and other small-bodied arboreal species analyzed. Most notable is the tendency for relatively high-speed asymmetrical gaits on large-diameter substrates and slower symmetrical lateral-sequence gaits on small-diameter substrates. Furthermore, for all species speed is primarily regulated by increasing stride frequency rather than length. Kinematics of the Vietnamese pygmy dormouse changed little in response substrate size and were primarily driven by speed. These findings suggest that the information gathered during ultrasonic scanning is sufficient to allow effective quadrupedal locomotion while moving on arboreal supports. The Vietnamese pygmy dormouse may serve as a model for the quadrupedal nocturnal ancestor of bats, which had started developing ultrasonic echolocation and reducing vision while likely occupying an arboreal niche.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Sonia Amanat
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, USA
| | - Aleksandra A Panyutina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Youlatos D, Granatosky MC, Al Belbeisi R, He G, Guo S, Li B. Sex differences in habitat use, positional behavior, and gaits of Golden Snub-Nosed Monkeys (Rhinopithecus roxellana) in the Qinling Mountains, Shaanxi, China. Primates 2021; 62:507-519. [PMID: 33694095 DOI: 10.1007/s10329-021-00900-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
Studies of positional behavior, gait, and habitat use are important for understanding how animals adapt to the challenges of their environment. In turn, this information is useful for advancing research on primate morphology, life history, and ecology. Data on eco-mechanical variables can be used to develop concrete conservation and management plans for understudied and threatened primate groups. The present study explores the positional behavior, gaits, and habitat use of male and female adult golden snub-nosed monkeys (Rhinopithecus roxellana), an endemic, endangered, and highly dimorphic species of central China. Using focal animal sampling and opportunistic videorecording in the Guanyinshan National Nature Reserve on the southern slopes of the Qinling Mountains, it was determined that gait parameters were largely the same between sexes. By contrast, habitat use and, to a lesser extent, positional behavior varied significantly between males and females. In general, males were more terrestrial than females. When they moved arboreally, males also used a greater proportion of horizontal and large substrates compared to females. Furthermore, males used more standing postures, forelimb suspensory positional behaviors, and quadrupedal walking. These data suggest that, when faced with the mechanical challenges of large body size, primates such as R. roxellana are more likely to respond by altering habitat use rather than positional behaviors or intrinsic kinematics and timing.
Collapse
Affiliation(s)
- Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | | | - Roula Al Belbeisi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- Institute of Zoology, Shaanxi Academy of Sciences, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
17
|
Gorvet MA, Wakeling JM, Morgan DM, Hidalgo Segura D, Avey-Arroyo J, Butcher MT. Keep calm and hang on: EMG activation in the forelimb musculature of three-toed sloths ( Bradypus variegatus). ACTA ACUST UNITED AC 2020; 223:jeb.218370. [PMID: 32527958 DOI: 10.1242/jeb.218370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/02/2020] [Indexed: 11/20/2022]
Abstract
Sloths exhibit below branch locomotion whereby their limbs are loaded in tension to support the body weight. Suspensory behaviors require both strength and fatigue resistance from the limb flexors; however, skeletal muscle mass of sloths is reduced compared with other arboreal mammals. Although suspensory locomotion demands that muscles are active to counteract the pull of gravity, it is possible that sloths minimize muscle activation and/or selectively recruit slow motor units to maintain support, thus indicating neuromuscular specializations to conserve energy. Electromyography (EMG) was evaluated in a sample of three-toed sloths (Bradypus variegatus; N=6) to test this hypothesis. EMG was recorded at 2000 Hz via fine-wire electrodes implanted into two suites of four muscles in the left forelimb while sloths performed suspensory hanging (SH), suspensory walking (SW) and vertical climbing (VC). All muscles were minimally active for SH. During SW and VC, sloths moved slowly (duty factor: 0.83) and activation patterns were consistent between behaviors; the flexors were activated early and for a large percentage of limb contact, whereas the extensors were activated for shorter burst durations on average and showed biphasic (contact and swing) activity. Muscle activities were maximal for the elbow flexors and lowest for the carpal/digital flexors, and overall activity was significantly greater for SW and VC compared with SH. Wavelet analysis indicated high mean EMG frequencies from the myoelectric intensity spectra coupled with low burst intensities for SH, although the opposite pattern occurred for SW and VC, with the shoulder flexors and elbow flexor, m. brachioradialis, having extremely low mean EMG frequencies that are consistent with recruitment of slow fibers. Collectively, these findings support the hypothesis and suggest that sloths may selectively recruit smaller, fast motor units for suspensory postures but have the ability to offset the cost of force production by recruitment of large, slow motor units during locomotion.
Collapse
Affiliation(s)
- Marissa A Gorvet
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, BC V5A 1S6, Canada
| | - Dakota M Morgan
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA
| | | | | | - Michael T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA
| |
Collapse
|
18
|
Dunham NT, McNamara A, Shapiro LJ, Phelps T, Young JW. Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter and orientation. J Exp Biol 2020; 223:jeb.217562. [DOI: 10.1242/jeb.217562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/06/2020] [Indexed: 11/20/2022]
Abstract
Arboreal environments present considerable biomechanical challenges for animals moving and foraging among substrates varying in diameter, orientation, and compliance. Most studies of quadrupedal gait kinematics in primates and other arboreal mammals have focused on symmetrical walking gaits and the significance of diagonal sequence gaits. Considerably less research has examined asymmetrical gaits, despite their prevalence in small-bodied arboreal taxa. Here we examine whether and how free-ranging callitrichine primates adjust asymmetrical gait kinematics to changes in substrate diameter and orientation, as well as how variation in gait kinematics affects substrate displacement. We used high-speed video to film free-ranging Saguinus tripartitus and Cebuella pygmaea inhabiting the Tiputini Biodiversity Station, Ecuador. We found that Saguinus used bounding and half-bounding gaits on larger substrates versus gallops and symmetrical gaits on smaller substrates, and also shifted several kinematic parameters consistent with attenuating forces transferred from the animal to the substrate. Similarly, Cebuella shifted from high impact bounding gaits on larger substrates to using more half-bounding gaits on smaller substrates; however, kinematic adjustments to substrate diameter were not as profound as in Saguinus. Both species adjusted gait kinematics to changes in substrate orientation; however, gait kinematics did not significantly affect empirical measures of substrate displacement in either species. Due to their small body size, claw-like nails, and reduced grasping capabilities, callitrichines arguably represent extant biomechanical analogues for an early stage in primate evolution. As such, greater attention should be placed on understanding asymmetrical gait dynamics for insight into hypotheses concerning early primate locomotor evolution.
Collapse
Affiliation(s)
- Noah T. Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Allison McNamara
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Liza J. Shapiro
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| |
Collapse
|
19
|
Dunham NT, McNamara A, Shapiro LJ, Hieronymus TL, Phelps T, Young JW. Effects of substrate and phylogeny on quadrupedal gait in free‐ranging platyrrhines. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:565-578. [DOI: 10.1002/ajpa.23942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Noah T. Dunham
- Division of Conservation and Science Cleveland Metroparks Zoo Cleveland Ohio
| | - Allison McNamara
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Liza J. Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Tobin L. Hieronymus
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Taylor Phelps
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|