1
|
Konno RN, Lichtwark GA, Dick TJM. Using physiologically based models to predict in vivo skeletal muscle energetics. J Exp Biol 2025; 228:jeb249966. [PMID: 39960312 PMCID: PMC11993265 DOI: 10.1242/jeb.249966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/09/2025] [Indexed: 04/01/2025]
Abstract
Understanding how muscles use energy is essential for elucidating the role of skeletal muscle in animal locomotion. Yet, experimental measures of in vivo muscle energetics are challenging to obtain, so physiologically based muscle models are often used to estimate energy use. These predictions of individual muscle energy expenditure are not often compared with indirect whole-body measures of energetic cost. Here, we examined and illustrated the capability of physiologically based muscle models to predict in vivo measures of energy use, which rely on fundamental relationships between muscle mechanical state and energy consumption. To improve model predictions and ensure a physiological basis for model parameters, we refined our model to include data from isolated muscle experiments and account for inefficiencies in ATP recovery processes. Simulations were performed to capture three different experimental protocols, which involved varying contraction frequency, duty cycle and muscle fascicle length. Our results demonstrated the ability of the model to capture the dependence of energetic cost on mechanical state across contractile conditions, but tended to underpredict the magnitude of energetic cost. Our analysis revealed that the model was most sensitive to the force-velocity parameters and the data informing the energetic parameters when predicting in vivo energetic rates. This work highlights that it is the mechanics of skeletal muscle contraction that govern muscle energy use, although the precise physiological parameters for human muscle likely require detailed investigation.
Collapse
Affiliation(s)
- Ryan N. Konno
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glen A. Lichtwark
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Taylor J. M. Dick
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Lindemann I, Cieri RL, Clemente CJ, Dick TJM. Landmark-free statistical shape modelling reveals effects of age and sex on whole muscle morphology among the triceps surae. ROYAL SOCIETY OPEN SCIENCE 2025; 12:250198. [PMID: 40206857 PMCID: PMC11978459 DOI: 10.1098/rsos.250198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
The shape of skeletal muscle has important influences on muscle function, yet studies of three-dimensional shape variation are rarely performed. Analysis of muscle shape variation using traditional tools is limited by lack of anatomical landmarks, but modern landmark-free methods provide new opportunities to study complex shapes. We used generalized Procrustes surface analysis to characterize shape variation among the triceps surae: medial gastrocnemius (MG), lateral gastrocnemius (LG) and soleus (SOL), digitized using magnetic resonance imaging from 21 younger (8 females, 13 males; 24.6 ± 4.3 years) and 15 older (6 females; 9 males; 70.4 ± 2.4 years) physically active participants. In both gastrocnemii, the first principal component (PC) of shape variance was related to muscle width and thickness. The second PC was related to variation in the MG's insertion and variation in thickness along the LG long axis. In the SOL, the first PC was related to overall muscle thickness and length while the second PC captured variation in lateral margin thickness and curvature of the medial border. Muscle shape differed between young and older adults in MG and LG, while SOL shape differed between males and females. These findings demonstrate statistical shape modelling as a promising tool for disentangling multiple influences on skeletal muscle shape and provide important input for future biomechanical modelling investigations.
Collapse
Affiliation(s)
- India Lindemann
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Robert L. Cieri
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Taylor J. M. Dick
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Harper CM, Sylvester AD, Kramer PA. Implications of variability in triceps surae muscle volumes on peak lower limb muscle forces during human walking. PLoS One 2025; 20:e0320516. [PMID: 40153384 PMCID: PMC11952212 DOI: 10.1371/journal.pone.0320516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
Musculoskeletal modeling can be used to estimate forces during locomotion. These models, however, are dependent on underlying assumptions about the model inputs, such as muscle volumes and fiber lengths, to calculate muscle forces. Triceps surae (gastrocnemius medialis, gastrocnemius lateralis, soleus) muscle volume distributions vary among humans. Here we quantify how this muscle volume variation impacts maximum estimated lower limb muscle forces during the braking and propulsive phases of the stance phase of walking. Three triceps surae muscle volume distributions (AnyBody Modeling System standard cadaver [MS], average of 21 cadavers [C], average of 21 young, healthy adults [YHA]) were evaluated in a standard musculoskeletal model using the kinetic and kinematic data of 10 healthy individuals at three walking velocities. Maximum muscle forces were calculated using inverse dynamics and an algorithm to solve the muscle redundancy problem in the AnyBody Modeling System. Repeated measure ANOVAs were used to test for significant differences among the three muscle distribution configurations for each muscle/muscle group at each velocity. Triceps surae muscle volume distribution significantly affects gastrocnemius lateralis and soleus maximum muscle forces for both braking and propulsion at all three velocities (p < 0.001), with relatively larger muscle volumes typically producing relatively larger muscle forces. There was no significant difference in gastrocnemius medialis maximum force among configurations (p > 0.124) except at the self-selected spontaneous velocity during braking. Significant differences exist at some velocities for the hamstrings and gluteus maximus during braking (p < 0.046) and the other plantarflexors, dorsiflexors, evertors, hamstrings, quadriceps, sartorius, and gluteus maximus during propulsion (p < 0.042). Muscle volumes used in musculoskeletal models impact estimated muscle forces of both the muscles of interest and other muscles in the biomechanical chain. This is consistent with recent analyses demonstrating that input values can substantially impact results and suggests individualized muscle parameters may be needed depending on the research question.
Collapse
Affiliation(s)
- Christine M. Harper
- Department of Anthropology, University of Washington, Seattle, Washington, United States of America
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - Adam D. Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia Ann Kramer
- Department of Anthropology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Ferri-Caruana A, Sendra-Pérez C, Priego-Quesada JI. Gastrocnemius Neuromuscular Activation During Standing Explosive Acceleration. Life (Basel) 2024; 14:1378. [PMID: 39598177 PMCID: PMC11595705 DOI: 10.3390/life14111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The gastrocnemius muscle plays a crucial role in transmitting and generating energy during standing explosive accelerations, and as a consequence, is a muscle with high injury prevalence, especially the medial gastrocnemius (MG). This study aimed to compare the neuromuscular activation of the lateral gastrocnemius (LG) and MG during one of the most common standing explosive accelerations performed in team sports-the false start that occurs in jumps where the leg steps back before moving forward. Forty-two physically active participants (34 males: age = 24 ± 5 years, body mass = 73 ± 10.4 kg; and 8 females: age = 26 ± 5 years, body mass = 57.1 ± 6.8 kg) underwent electromyography analysis of the MG and LG in the four first foot contacts of standing explosive acceleration. The results showed that the third contact differed significantly from others (LG vs. MG: 76.48 ± 3.10 vs. 66.91 ± 2.25, p = 0.01, ES = 0.5), with the LG exhibiting earlier activation and higher peak sEMG activity compared to the MG (LG vs. MG: 0.12 ± 0.01 vs. 0.13 ± 0.01, p = 0.02, ES = 0.4). Additionally, the MG displayed longer duration contractions in all the foot contacts except the third foot contact. In conclusion, the MG showed an earlier activation timing and a longer duration of contraction than the LG in the first foot contact. Additionally, the third foot contact showed a different pattern of neuromuscular activation between the MG and LG compared to the rest of the foot contacts.
Collapse
Affiliation(s)
- Ana Ferri-Caruana
- Prevention and Health in Exercise and Sport (PHES) Research Group, Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain;
| | - Carlos Sendra-Pérez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain;
- Department of Education and Specific Didactics, Jaume I University, 12006 Castellon, Spain
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, 46010 Valencia, Spain;
- Biophysics and Medical Physics Group (GIFIME), Department of Physiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Contreras-Hernandez I, Arvanitidis M, Falla D, Negro F, Martinez-Valdes E. Achilles tendon morpho-mechanical parameters are related to triceps surae motor unit firing properties. J Neurophysiol 2024; 132:1198-1210. [PMID: 39230338 PMCID: PMC11495179 DOI: 10.1152/jn.00391.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Recent studies combining high-density surface electromyography (HD-sEMG) and ultrasound imaging have yielded valuable insights into the relationship between motor unit activity and muscle contractile properties. However, limited evidence exists on the relationship between motor unit firing properties and tendon morpho-mechanical properties. This study aimed to determine the relationship between triceps surae motor unit firing properties and the morpho-mechanical properties of the Achilles tendon (AT). Motor unit firing properties [i.e. mean discharge rate (DR) and coefficient of variation of the interspike interval (COVisi)] and motor unit firing-torque relationships [cross-correlation between cumulative spike train (CST) and torque, and the delay between motor unit firing and torque production (neuromechanical delay)] of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (SO) muscles were assessed using HD-sEMG during isometric plantarflexion contractions at 10% and 40% of maximal voluntary contraction (MVC). The morpho-mechanical properties of the AT (i.e. length, thickness, cross-sectional area, and resting stiffness) were determined using B-mode ultrasonography and shear-wave elastography. Multiple linear regression analysis showed that at 10% MVC, the DR of the triceps surae muscles explained 41.7% of the variance in resting AT stiffness. In addition, at 10% MVC, COVisi SO predicted 30.4% of the variance in AT length. At 40% MVC, COVisi MG and COVisi SO explained 48.7% of the variance in AT length. Motor unit-torque relationships were not associated with any morpho-mechanical parameter. This study provides novel evidence of a contraction intensity-dependent relationship between motor unit firing parameters of the triceps surae muscle and the morpho-mechanical properties of the AT. NEW & NOTEWORTHY By employing HD-sEMG, conventional B-mode ultrasonography, and shear-wave elastography, we showed that the resting stiffness of the Achilles tendon is related to mean discharge rate of triceps surae motor units during low-force isometric plantarflexion contractions, providing relevant information about the complex interaction between rate coding and the muscle-tendon unit.
Collapse
Affiliation(s)
- Ignacio Contreras-Hernandez
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Duque VG, Marquardt A, Velikova Y, Lacourpaille L, Nordez A, Crouzier M, Lee HJ, Mateus D, Navab N. Ultrasound segmentation analysis via distinct and completed anatomical borders. Int J Comput Assist Radiol Surg 2024; 19:1419-1427. [PMID: 38789884 PMCID: PMC11588783 DOI: 10.1007/s11548-024-03170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE Segmenting ultrasound images is important for precise area and/or volume calculations, ensuring reliable diagnosis and effective treatment evaluation for diseases. Recently, many segmentation methods have been proposed and shown impressive performance. However, currently, there is no deeper understanding of how networks segment target regions or how they define the boundaries. In this paper, we present a new approach that analyzes ultrasound segmentation networks in terms of learned borders because border delimitation is challenging in ultrasound. METHODS We propose a way to split the boundaries for ultrasound images into distinct and completed. By exploiting the Grad-CAM of the split borders, we analyze the areas each network pays attention to. Further, we calculate the ratio of correct predictions for distinct and completed borders. We conducted experiments on an in-house leg ultrasound dataset (LEG-3D-US) as well as on two additional public datasets of thyroid, nerves, and one private for prostate. RESULTS Quantitatively, the networks exhibit around 10% improvement in handling completed borders compared to distinct borders. Similar to doctors, the network struggles to define the borders in less visible areas. Additionally, the Seg-Grad-CAM analysis underscores how completion uses distinct borders and landmarks, while distinct focuses mainly on the shiny structures. We also observe variations depending on the attention mechanism of each architecture. CONCLUSION In this work, we highlight the importance of studying ultrasound borders differently than other modalities such as MRI or CT. We split the borders into distinct and completed, similar to clinicians, and show the quality of the network-learned information for these two types of borders. Additionally, we open-source a 3D leg ultrasound dataset to the community https://github.com/Al3xand1a/segmentation-border-analysis .
Collapse
Affiliation(s)
- Vanessa Gonzalez Duque
- Computer-Aided Medical Procedure and Augmented Reality (CAMP), CIT, Technical University of Munich, Garching bei Muenchen, Germany.
- Munich Center for Machine Learning, Munich, Germany.
- LS2N Laboratory, Ecole Centrale Nantes, Nantes, France.
- MIP Laboratory, EA 4334, 44000, Nantes, France.
| | - Alexandra Marquardt
- Computer-Aided Medical Procedure and Augmented Reality (CAMP), CIT, Technical University of Munich, Garching bei Muenchen, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Yordanka Velikova
- Computer-Aided Medical Procedure and Augmented Reality (CAMP), CIT, Technical University of Munich, Garching bei Muenchen, Germany
- Munich Center for Machine Learning, Munich, Germany
| | | | | | | | - Hong Joo Lee
- Computer-Aided Medical Procedure and Augmented Reality (CAMP), CIT, Technical University of Munich, Garching bei Muenchen, Germany
| | - Diana Mateus
- LS2N Laboratory, Ecole Centrale Nantes, Nantes, France
| | - Nassir Navab
- Computer-Aided Medical Procedure and Augmented Reality (CAMP), CIT, Technical University of Munich, Garching bei Muenchen, Germany
- Munich Center for Machine Learning, Munich, Germany
| |
Collapse
|
7
|
Lecompte L, Crouzier M, Bogaerts S, Scheys L, Vanwanseele B. Reduced Intratendinous Sliding in Achilles Tendinopathy During Active Plantarflexion Regardless of Horizontal Foot Position. Scand J Med Sci Sports 2024; 34:e14679. [PMID: 38898554 DOI: 10.1111/sms.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE The Achilles tendon consists of three subtendons with the ability to slide relative to each other. As optimal intratendinous sliding is thought to reduce the overall stress in the tendon, alterations in sliding behavior could potentially play a role in the development of Achilles tendinopathy. The aims of this study were to investigate the difference in intratendinous sliding within the Achilles tendon during isometric contractions between asymptomatic controls and patients with Achilles tendinopathy and the effect of changing the horizontal foot position on intratendinous sliding in both groups. METHODS Twenty-nine participants (13 Achilles tendinopathy and 16 controls) performed isometric plantarflexion contractions at 60% of their maximal voluntary contraction (MVC), in toes-neutral, and at 30% MVC in toes-neutral, toes-in, and toes-out positions during which ultrasound images were recorded. Intratendinous sliding was estimated as the superficial-to-middle and middle-to-deep relative displacement. RESULTS Patients with Achilles tendinopathy present lower intratendinous sliding than asymptomatic controls. Regarding the horizontal foot position in both groups, the toes-out foot position resulted in increased sliding compared with both toes-neutral and toes-out foot position. CONCLUSION We provided evidence that patients with Achilles tendinopathy show lower intratendinous sliding than asymptomatic controls. Since intratendinous sliding is a physiological feature of the Achilles tendon, the external foot position holds promise to increase sliding in patients with Achilles tendinopathy and promote healthy tendon behavior. Future research should investigate if implementing this external foot position in rehabilitation programs stimulates sliding within the Achilles tendon and improves clinical outcome.
Collapse
Affiliation(s)
- Laura Lecompte
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Marion Crouzier
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Nantes Université, Mouvement - Interactions - Performance (MIP), Nantes, France
| | - Stijn Bogaerts
- Physical and Rehabilitation Medicine Department, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lennart Scheys
- Department of Development and Regeneration, Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
- Orthopedics Division, University Hospitals Leuven, Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Mornas A, Hollville E, Brocherie F, Derouck T, Racinais S, Guilhem G. Test-retest reliability of gastrocnemius medialis fascicle force-length relationship. J Biomech 2024; 171:112170. [PMID: 38870569 DOI: 10.1016/j.jbiomech.2024.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Fascicle force-length relationship is one major basic mechanical property of skeletal muscle, subsequently influencing movement mechanics. While force-length properties are increasingly described through ultrafast ultrasound imaging, their test-retest reliability remains unknown. Using ultrafast ultrasound, and electrically evoked contractions at various ankle angles, gastrocnemius medialis fascicle force-length relationship was assessed twice, few days apart, in sixteen participants. The test-retest reliability of the resulting fascicle force-length relationship key parameters - i.e., maximal force (Fmax), and optimal fascicle length (L0) - was evaluated considering (i) all the trials obtained at each ankle joint and (ii) the mean of the two trials obtained at each tested angle. Considering all trials, L0 indicated a 'high' test-retest reliability, with intra-class correlation coefficients (ICC) of 0.89 and Fmax a 'moderate' reliability (ICC = 0.71), while when averaging the two trials L0 reliability was 'very-high' (ICC = 0.91), and Fmax reliability 'moderate' (ICC = 0.73). All values of coefficient of variation and standard error of measurement were low, i.e., ≤7.7 % and ≤0.35 cm for L0 and ≤3.4 N for Fmax, respectively. Higher absolute reliability was reported for L0 than Fmax, with better reliability when averaging the two trials at each angle. All these parameters, in accordance with the limit of agreement, demonstrated that L0 and Fmax test-retest reliability is acceptable, particularly when averaging multiple points obtained at a given angle. Interestingly, the shape of the fascicle force-length relationship is more variable. Therefore, L0 and Fmax can be used to compare between days-effects following an intervention, while a comparison of fascicle operating lengths may require more precautions.
Collapse
Affiliation(s)
- Adèle Mornas
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France; University Paris Cité, Paris, France; Montreal Heart Institute, Montréal, QC, Canada.
| | - Enzo Hollville
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Franck Brocherie
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Thomas Derouck
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France; University Paris Cité, Paris, France
| | - Sébastien Racinais
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support, Doha, Qatar
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| |
Collapse
|
9
|
Bohm S, Mersmann F, Schroll A, Arampatzis A. Speed-specific optimal contractile conditions of the human soleus muscle from slow to maximum running speed. J Exp Biol 2023; 226:jeb246437. [PMID: 37901934 DOI: 10.1242/jeb.246437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The soleus is the main muscle for propulsion during human running but its operating behavior across the spectrum of physiological running speeds is currently unknown. This study experimentally investigated the soleus muscle activation patterns and contractile conditions for force generation, power production and efficient work production (i.e. force-length potential, force-velocity potential, power-velocity potential and enthalpy efficiency) at seven running speeds (3.0 m s-1 to individual maximum). During submaximal running (3.0-6.0 m s-1), the soleus fascicles shortened close to optimal length and at a velocity close to the efficiency maximum, two contractile conditions for economical work production. At higher running speeds (7.0 m s-1 to maximum), the soleus muscle fascicles still operated near optimum length, yet the fascicle shortening velocity increased and shifted towards the optimum for mechanical power production with a simultaneous increase in muscle activation, providing evidence for three cumulative mechanisms to enhance mechanical power production. Using the experimentally determined force-length-velocity potentials and muscle activation as inputs in a Hill-type muscle model, a reduction in maximum soleus muscle force at speeds ≥7.0 m s-1 and a continuous increase in maximum mechanical power with speed were predicted. The reduction in soleus maximum force was associated with a reduced force-velocity potential. The increase in maximum power was explained by an enhancement of muscle activation and contractile conditions until 7.0 m s-1, but mainly by increased muscle activation at high to maximal running speed.
Collapse
Affiliation(s)
- Sebastian Bohm
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Falk Mersmann
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Arno Schroll
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Adamantios Arampatzis
- Humboldt-Universität zu Berlin, Department of Training and Movement Sciences, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
10
|
Swinnen W, Hoogkamer W, De Groote F, Vanwanseele B. Faster triceps surae muscle cyclic contractions alter muscle activity and whole body metabolic rate. J Appl Physiol (1985) 2023; 134:395-404. [PMID: 36603047 DOI: 10.1152/japplphysiol.00575.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hundred years ago, Fenn demonstrated that when a muscle shortens faster, its energy liberation increases. Fenn's results were the first of many that led to the general understanding that isometric muscle contractions are energetically cheaper than concentric contractions. However, this evidence is still primarily based on single fiber or isolated (ex vivo) muscle studies and it remains unknown whether this translates to whole body metabolic rate. In this study, we specifically changed the contraction velocity of the ankle plantar flexors and quantified the effects on triceps surae muscle activity and whole body metabolic rate during cyclic plantar flexion (PF) contractions. Fifteen participants performed submaximal ankle plantar flexions (∼1/3 s activation and ∼2/3 s relaxation) on a dynamometer at three different ankle angular velocities: isometric (10° PF), isokinetic at 30°/s (5-15° PF), and isokinetic at 60°/s (0-20° PF) while target torque (25% MVC) and cycle frequency were kept constant. In addition, to directly determine the effect of ankle angular velocity on muscle kinematics we collected gastrocnemius medialis muscle fascicle ultrasound data. As expected, increasing ankle angular velocity increased gastrocnemius medialis muscle fascicle contraction velocity and positive mechanical work (P < 0.01), increased mean and peak triceps surae muscle activity (P < 0.01), and considerably increased net whole body metabolic rate (P < 0.01). Interestingly, the increase in triceps surae muscle activity with fast ankle angular velocities was most pronounced in the gastrocnemius lateralis (P < 0.05). Overall, our results support the original findings from Fenn in 1923 and we demonstrated that greater triceps surae muscle contraction velocities translate to increased whole body metabolic rate.NEW & NOTEWORTHY Single muscle fiber studies or research on isolated (ex vivo) muscles demonstrated that faster concentric muscle contractions yield increased energy consumption. Here we translated this knowledge to muscle activation and whole body metabolic rate. Increasing ankle angular velocity increased triceps surae contraction velocity and mechanical work, increasing triceps surae muscle activity and substantially elevating whole body metabolic rate. Additionally, we demonstrated that triceps surae muscle activation strategy depends on the mechanical demands of the task.
Collapse
Affiliation(s)
- Wannes Swinnen
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | | | | |
Collapse
|
11
|
Mayfield DL, Cronin NJ, Lichtwark GA. Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomech Model Mechanobiol 2023; 22:309-337. [PMID: 36335506 PMCID: PMC9958200 DOI: 10.1007/s10237-022-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Age-related alterations of skeletal muscle are numerous and present inconsistently, and the effect of their interaction on contractile performance can be nonintuitive. Hill-type muscle models predict muscle force according to well-characterised contractile phenomena. Coupled with simple, yet reasonably realistic activation dynamics, such models consist of parameters that are meaningfully linked to fundamental aspects of muscle excitation and contraction. We aimed to illustrate the utility of a muscle model for elucidating relevant mechanisms and predicting changes in output by simulating the individual and combined effects on isometric force of several known ageing-related adaptations. Simulating literature-informed reductions in free Ca2+ concentration and Ca2+ sensitivity generated predictions at odds qualitatively with the characteristic slowing of contraction speed. Conversely, incorporating slower Ca2+ removal or a fractional increase in type I fibre area emulated expected changes; the former was required to simulate slowing of the twitch measured experimentally. Slower Ca2+ removal more than compensated for force loss arising from a large reduction in Ca2+ sensitivity or moderate reduction in Ca2+ release, producing realistic age-related shifts in the force-frequency relationship. Consistent with empirical data, reductions in free Ca2+ concentration and Ca2+ sensitivity reduced maximum tetanic force only slightly, even when acting in concert, suggesting a modest contribution to lower specific force. Lower tendon stiffness and slower intrinsic shortening speed slowed and prolonged force development in a compliance-dependent manner without affecting force decay. This work demonstrates the advantages of muscle modelling for exploring sources of variation and identifying mechanisms underpinning the altered contractile properties of aged muscle.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, USA.
| | - Neil J Cronin
- Neuromuscular Research Centre, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, UK
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Jakubowski KL, Ludvig D, Bujnowski D, Lee SSM, Perreault EJ. Simultaneous Quantification of Ankle, Muscle, and Tendon Impedance in Humans. IEEE Trans Biomed Eng 2022; 69:3657-3666. [PMID: 35594215 PMCID: PMC10077951 DOI: 10.1109/tbme.2022.3175646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Regulating the impedance of our joints is essential for the effective control of posture and movement. The impedance of a joint is governed mainly by the mechanical properties of the muscle-tendon units spanning it. Many studies have quantified the net impedance of joints but not the specific contributions from the muscles and tendons. The inability to quantify both muscle and tendon impedance limits the ability to determine the causes underlying altered movement control associated with aging, neuromuscular injury, and other conditions that have different effects on muscle and tendon properties. Therefore, we developed a technique to quantify joint, muscle, and tendon impedance simultaneously and evaluated this technique at the human ankle. METHODS We used a single degree of freedom actuator to deliver pseudorandom rotations to the ankle while measuring the corresponding torques. We simultaneously measured the displacement of the medial gastrocnemius muscle-tendon junction with B-mode ultrasound. From these experimental measurements, we were able to estimate ankle, muscle, and tendon impedance using non-parametric system identification. RESULTS We validated our estimates by comparing them to previously reported measurements of muscle and tendon stiffness, the position-dependent component of impedance, to demonstrate that our technique generates reliable estimates of these properties. CONCLUSION Our approach can be used to clarify the respective contributions from the muscle and tendon to the net mechanics of a joint. SIGNIFICANCE This is a critical step forward in the ultimate goal of understanding how muscles and tendons govern ankle impedance during posture and movement.
Collapse
|
13
|
External rotation of the foot position during plantarflexion increases non-uniform motions of the Achilles tendon. J Biomech 2022; 141:111232. [PMID: 35905508 DOI: 10.1016/j.jbiomech.2022.111232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
The medial (GM) and lateral gastrocnemius (GL) muscles enroll to different subparts of the Achilles tendon to form their respective subtendons. The relative gastrocnemii activations during submaximal plantarflexion contraction depend on the position of the foot in the horizontal plane: with toes-in, GL activation increases and GM activation decreases, compared to toes-out. The aim of the current study was to investigate whether horizontal foot position during submaximal isometric plantarflexion contraction differently affects the subtendons within the Achilles tendon in terms of their (i) length at rest, and (ii) elongations and distal motions. Twenty healthy subjects (12 females/8 males) participated in the study. Three-dimensional ultrasound images were taken to capture subtendon lengths at rest and during isometric contraction. Ultrasound images were recorded at the distal end of Achilles tendon (sagittal plane) during ramped contractions and analyzed using a speckle tracking algorithm. All tasks were conducted twice, ones with toes-in and ones with toes-out. At rest, subtendons were shorter with toes-out compared to toes-in. During contraction, the GM subtendon lengthened more in toes-out, compared to the GL, and vice versa (all p <.01). The relative motions within the Achilles tendon (middle minus top layers displacements) were smaller in toes-in compared to toes-out (p =.05) for higher contraction intensity. Our results demonstrated that the horizontal foot position during plantarflexion contraction impacts Achilles tendon motions. Such findings may be relevant in a clinical context, for example in pathologies affecting Achilles tendon motions such as Achilles tendinopathy.
Collapse
|
14
|
Mornas A, Racinais S, Brocherie F, Alhammoud M, Hager R, Desmedt Y, Guilhem G. Faster early rate of force development in a warmer muscle: an in vivo exploration of fascicle dynamics and muscle-tendon mechanical properties. Am J Physiol Regul Integr Comp Physiol 2022; 323:R123-R132. [PMID: 35579335 DOI: 10.1152/ajpregu.00280.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While heat exposure has been shown to increase the rate of force development (RFD), the underlying processes remain unknown. This study investigated the effect of heat on gastrocnemius medialis (GM) muscle-tendon properties and interactions. Sixteen participants performed electrically-evoked and voluntary contractions combined with ultrafast ultrasound under thermoneutral (CON: 26°C, core temperature 37.0±0.3°C, muscle temperature 34.0±1.1°C) and passive heat exposure (HOT: 47°C, core temperature 38.4±0.3°C, muscle temperature 37.0±0.8°C) conditions. Maximal voluntary force was unchanged while voluntary activation decreased (-4.6±8.7%, P=0.038) in HOT. Heat exposure increased RFD before 100 ms from contraction onset (+48.2±62.7%; P=0.013), without further changes after 100 ms. GM fascicle dynamics during electrically-evoked and voluntary contractions remained unchanged between conditions. Joint velocity at a given force was higher in HOT (+7.1±6.6%; P=0.004), while the fascicle force-velocity relationship was unchanged. Passive muscle stiffness and active tendon stiffness were lower in HOT than CON (P≤0.030). This study showed that heat-induced increases in early RFD may not be attributed to changes in contractile properties. Late RFD was unaltered, probably explained by decreased soft tissues' stiffness in heat. Investigations are required to explore the possible influence of neural drive and motor unit recruitment in the enhancement of explosive strength elicited by heat exposure.
Collapse
Affiliation(s)
- Adèle Mornas
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.,University of Paris, Paris, France
| | - Sebastien Racinais
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.,Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Franck Brocherie
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | | | - Robin Hager
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Yanis Desmedt
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| |
Collapse
|
15
|
Hamard R, Hug F, Kelp NY, Feigean R, Aeles J, J. M. Dick T. Inclusion of image-based in-vivo experimental data into the Hill-type muscle model affects the estimation of individual force-sharing strategies during walking. J Biomech 2022; 135:111033. [DOI: 10.1016/j.jbiomech.2022.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
16
|
Mazzo MR, Holobar A, Enoka RM. Association between effective neural drive to the triceps surae and fluctuations in plantar-flexion torque during submaximal isometric contractions. Exp Physiol 2022; 107:489-507. [PMID: 35218261 DOI: 10.1113/ep090228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
What is the central question of this study? What is the association between the fluctuations in various estimates of effective neural drive to the triceps surae muscles and fluctuations in net plantar-flexion torque during steady submaximal contractions? What is the main finding and its importance? The fluctuations in estimates of effective neural drive to the triceps surae were moderately correlated with fluctuations in net torque at light and moderate plantar-flexion torques. Significant variability was observed in the association between neural drive and torque across participants, trials, short epochs of individual contractions, and varying motor unit number. ABSTRACT: The influence of effective neural drive on low-frequency fluctuations in torque during steady contractions can be estimated from the cumulative spike train (CST) or first principal component (FPC) of smoothed motor unit discharge rates obtained with high-density electromyography. However, the association between these estimates of total neural drive to synergist muscles and the fluctuations in net torque has not been investigated. We exposed the variability and compared the correlations between estimates of effective neural drive to the triceps surae muscles and fluctuations in plantar-flexion torque during steady contractions at 10% and 35% of maximal voluntary contraction (MVC) torque. Both neural drive estimates were moderately correlated with torque (CST, 0.55 ± 0.14, FPC, 0.58 ± 0.16) and highly correlated with one another (0.81 ± 0.1) during the 30-s steady contractions. There was substantial variability in cross-correlation values across participants, trials, and the 1-s and 5-s epochs of single contractions. Moreover, epoch duration significantly influenced cross-correlation values. Motor unit number was weakly associated with cross-correlation strength at 35% MVC (marginal R2 0.09 - 0.11; all p < 2.2×10-5 ), but not at 10% MVC (all p > 0.37). Approximately one fifth of the variance in the coefficient of variation (CV) for torque was explained by CV for the CST estimate of neural drive (p = 6.6×10-13 , R2 = 0.21). Estimates of total neural drive to the synergistic triceps surae muscles obtained by pooling motor unit discharge times were moderately correlated with fluctuations in net plantar-flexion torque. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| |
Collapse
|
17
|
Aeles J, Bolsterlee B, Kelp NY, Dick TJM, Hug F. Regional variation in lateral and medial gastrocnemius muscle fibre lengths obtained from diffusion tensor imaging. J Anat 2022; 240:131-144. [PMID: 34411299 PMCID: PMC8655206 DOI: 10.1111/joa.13539] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023] Open
Abstract
Assessment of regional muscle architecture is primarily done through the study of animals, human cadavers, or using b-mode ultrasound imaging. However, there remain several limitations to how well such measurements represent in vivo human whole muscle architecture. In this study, we developed an approach using diffusion tensor imaging and magnetic resonance imaging to quantify muscle fibre lengths in different muscle regions along a muscle's length and width. We first tested the between-day reliability of regional measurements of fibre lengths in the medial (MG) and lateral gastrocnemius (LG) and found good reliability for these measurements (intraclass correlation coefficient [ICC] = 0.79 and ICC = 0.84, respectively). We then applied this approach to a group of 32 participants including males (n = 18), females (n = 14), young (24 ± 4 years) and older (70 ± 2 years) adults. We assessed the differences in regional muscle fibre lengths between different muscle regions and between individuals. Additionally, we compared regional muscle fibre lengths between sexes, age groups, and muscles. We found substantial variability in fibre lengths between different regions within the same muscle and between the MG and the LG across individuals. At the group level, we found no difference in mean muscle fibre length between males and females, nor between young and older adults, or between the MG and the LG. The high variability in muscle fibre lengths between different regions within the same muscle, possibly expands the functional versatility of the muscle for different task requirements. The high variability between individuals supports the use of subject-specific measurements of muscle fibre lengths when evaluating muscle function.
Collapse
Affiliation(s)
- Jeroen Aeles
- Laboratory “Movement, Interactions, Performance” (EA 4334)Nantes UniversityNantesFrance
| | - Bart Bolsterlee
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Nicole Y. Kelp
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Taylor J. M. Dick
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - François Hug
- Laboratory “Movement, Interactions, Performance” (EA 4334)Nantes UniversityNantesFrance
- School of Biomedical SciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Institut Universitaire de France (IUF)ParisFrance
- LAMHESSUniversité Côte d'AzurNiceFrance
| |
Collapse
|
18
|
May S, Locke S, Kingsley M. Gastrocnemius Muscle Architecture in Elite Basketballers and Cyclists: A Cross-Sectional Cohort Study. Front Sports Act Living 2021; 3:768846. [PMID: 34950871 PMCID: PMC8688802 DOI: 10.3389/fspor.2021.768846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022] Open
Abstract
Eccentric and concentric actions produce distinct mechanical stimuli and result in different adaptations in skeletal muscle architecture. Cycling predominantly involves concentric activity of the gastrocnemius muscles, while playing basketball requires both concentric and eccentric actions to support running, jumping, and landing. The aim of this study was to examine differences in the architecture of gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) between elite basketballers and cyclists. A trained sonographer obtained three B-mode ultrasound images from GM and GL muscles in 44 athletes (25 basketballers and 19 cyclists; 24 ± 5 years of age). The images were digitized and average fascicle length (FL), pennation angle (θ), and muscle thickness were calculated from three images per muscle. The ratio of FL to tibial length (FL/TL) and muscle thickness to tibial length (MT/TL) was also calculated to account for the potential scaling effect of stature. In males, no significant differences were identified between the athletic groups in all parameters in the GM, but a significant difference existed in muscle thickness in the GL. In basketballers, GL was 2.5 mm thicker (95% CI: 0.7-4.3 mm, p = 0.011) on the left side and 2.6 mm thicker (95% CI: 0.6-5.7 mm, p = 0.012) on the right side; however, these differences were not significant when stature was accounted for (MT/TL). In females, significant differences existed in the GM for all parameters including FL/TL and MT/TL. Female cyclists had longer FL in both limbs (MD: 11.2 and 11.3 mm), narrower θ (MD: 2.1 and 1.8°), and thicker muscles (MD: 2.1 and 2.5 mm). For the GL, female cyclists had significantly longer FL (MD: 5.2 and 5.8 mm) and narrower θ (MD: 1.7 and 2.3°) in both limbs; no differences were observed in absolute muscle thickness or MT/TL ratio. Differences in gastrocnemius muscle architecture were observed between female cyclists and basketballers, but not between males. These findings suggest that participation in sport-specific training might influence gastrocnemius muscle architecture in elite female athletes; however, it remains unclear as to whether gastrocnemius architecture is systematically influenced by the different modes of muscle activation between these respective sports.
Collapse
Affiliation(s)
- Samantha May
- La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Simon Locke
- La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Michael Kingsley
- Holsworth Research Initiative, La Trobe University, Bendigo, VIC, Australia.,Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Chanti DA, Duque VG, Crouzier M, Nordez A, Lacourpaille L, Mateus D. IFSS-Net: Interactive Few-Shot Siamese Network for Faster Muscle Segmentation and Propagation in Volumetric Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2615-2628. [PMID: 33560982 DOI: 10.1109/tmi.2021.3058303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present an accurate, fast and efficient method for segmentation and muscle mask propagation in 3D freehand ultrasound data, towards accurate volume quantification. A deep Siamese 3D Encoder-Decoder network that captures the evolution of the muscle appearance and shape for contiguous slices is deployed. We use it to propagate a reference mask annotated by a clinical expert. To handle longer changes of the muscle shape over the entire volume and to provide an accurate propagation, we devise a Bidirectional Long Short Term Memory module. Also, to train our model with a minimal amount of training samples, we propose a strategy combining learning from few annotated 2D ultrasound slices with sequential pseudo-labeling of the unannotated slices. We introduce a decremental update of the objective function to guide the model convergence in the absence of large amounts of annotated data. After training with a few volumes, the decremental update strategy switches from a weak supervised training to a few-shot setting. Finally, to handle the class-imbalance between foreground and background muscle pixels, we propose a parametric Tversky loss function that learns to penalize adaptively the false positives and the false negatives. We validate our approach for the segmentation, label propagation, and volume computation of the three low-limb muscles on a dataset of 61600 images from 44 subjects. We achieve a Dice score coefficient of over 95% and a volumetric error of 1.6035 ± 0.587%.
Collapse
|
20
|
May S, Locke S, Kingsley M. Reliability of ultrasonographic measurement of muscle architecture of the gastrocnemius medialis and gastrocnemius lateralis. PLoS One 2021; 16:e0258014. [PMID: 34587209 PMCID: PMC8480904 DOI: 10.1371/journal.pone.0258014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Ultrasonography is widely used to measure gastrocnemius muscle architecture; however, it is unclear if values obtained from digitised images are sensitive enough to track architectural responses to clinical interventions. The purpose of this study was to explore the reliability and determine the minimal detectable change (MDC) of gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle architecture using ultrasound in a clinical setting. A trained sonographer obtained three B-mode images from each of the GM and GL muscles in 87 volunteers (44 males, 43 females; 22±9 years of age) on two separate occasions. Three independent investigators received training, then digitised the images to determine intra-rater, inter-rater, and test-retest reliability for fascicle length (FL), pennation angle (θ) and muscle thickness. Median FL, θ, and muscle thickness for GM and GL were 53.6–55.7 mm and 65.8–69.3 mm, 18.7–19.5° and 11.9–12.5°, and 12.8–13.2 mm and 15.9–16.9 mm, respectively. Intra- and inter-rater reliability of manual digitisation was excellent for all parameters. Test-retest reliability was moderate to excellent with intraclass correlation coefficient (ICC) values ≥0.80 for FL, ≥0.61 for θ, and ≥0.81 for muscle thickness, in both GM and GL. The respective MDC for GM and GL FL, θ, and muscle thickness was ≤12.1 mm and ≤18.00 mm, ≤6.4° and ≤4.2°, and ≤3.2 mm and ≤3.1 mm. Although reliable, the relatively large MDC suggest that clinically derived ultrasound measurements of muscle architecture in GM and GL are more likely to be useful to detect differences between populations than to detect changes in muscle architecture following interventions.
Collapse
Affiliation(s)
- Samantha May
- La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Simon Locke
- La Trobe Rural Health School, La Trobe University, Bendigo, Victoria, Australia
| | - Michael Kingsley
- Holsworth Research Initiative, La Trobe University, Bendigo, Victoria, Australia.,Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Mazzo MR, Weinman LE, Giustino V, Mclagan B, Maldonado J, Enoka RM. Changes in neural drive to calf muscles during steady submaximal contractions after repeated static stretches. J Physiol 2021; 599:4321-4336. [PMID: 34292610 DOI: 10.1113/jp281875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Repeated static-stretching interventions consistently increase the range of motion about a joint and decrease total joint stiffness, but findings on the changes in muscle and connective-tissue properties are mixed. The influence of these stretch-induced changes on muscle function at submaximal forces is unknown. To address this gap in knowledge, the changes in neural drive to the plantar flexor muscles after a static-stretch intervention were estimated. Neural drive to the plantar flexor muscles during a low-force contraction increased after repeated static stretches. These findings suggest that adjustments in motor unit activity are necessary at low forces to accommodate reductions in the force-generating and transmission capabilities of the muscle-tendon unit after repeated static stretches of the calf muscles. ABSTRACT Static stretching decreases stiffness about a joint, but its influence on muscle-tendon unit function and muscle activation is unclear. We investigated the influence of three static stretches on changes in neural drive to the plantar flexor muscles, both after a stretch intervention and after a set of maximal voluntary contractions (MVCs). Estimates of neural drive were obtained during submaximal isometric contractions by decomposing high-density electromyographic signals into the activity of individual motor units from medial gastrocnemius, lateral gastrocnemius and soleus. Motor units were matched across contractions and an estimate of neural drive to the plantar flexors was calculated by normalizing the cumulative spike train to the number of active motor units (normalized neural drive). Mean discharge rate increased after the stretch intervention during the 10% MVC task for all recorded motor units and those matched across conditions (all, P = 0.0046; matched only, P = 0.002), recruitment threshold decreased for motor units matched across contractions (P = 0.022), and discharge rate at recruitment was elevated (P = 0.004). Similarly, the estimate of normalized neural drive was significantly greater after the stretch intervention at 10% MVC torque (P = 0.029), but not at 35% MVC torque. The adjustments in motor unit activity required to complete the 10% MVC task after stretch may have been partially attenuated by a set of plantar flexor MVCs. The increase in neural drive required to produce low plantar-flexion torques after repeated static stretches of the calf muscles suggests stretch-induced changes in muscle and connective tissue properties.
Collapse
Affiliation(s)
- Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Logan E Weinman
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Bailey Mclagan
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - John Maldonado
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
22
|
Hamard R, Aeles J, Kelp NY, Feigean R, Hug F, Dick TJM. Does different activation between the medial and the lateral gastrocnemius during walking translate into different fascicle behavior? J Exp Biol 2021; 224:269039. [PMID: 34096594 DOI: 10.1242/jeb.242626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than in the LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than in the LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared with the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level, as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.
Collapse
Affiliation(s)
- Raphaël Hamard
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France
| | - Jeroen Aeles
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France
| | - Nicole Y Kelp
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| | - Romain Feigean
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France.,Laboratoire de Physiologie et Evaluation Neuromusculaire, Institut de Myologie, 75013 Paris, France
| | - François Hug
- Nantes University, Laboratory 'Movement, Interactions, Performance' (EA 4334), 44000 Nantes, France.,The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Taylor J M Dick
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Boyer A, Hug F, Avrillon S, Lacourpaille L. Individual differences in the distribution of activation among the hamstring muscle heads during stiff-leg Deadlift and Nordic hamstring exercises. J Sports Sci 2021; 39:1830-1837. [PMID: 33678131 DOI: 10.1080/02640414.2021.1899405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to compare the distribution of activation among the three heads of the hamstring between a knee flexion-oriented exercise (Nordic hamstring) and a hip extension-oriented exercise (stiff-leg Deadlift) at the group and individual level. Data were collected for 20 participants. Muscle activation of the semimembranosus (SM), semitendinosus (ST), and biceps femoris (BF) was estimated using surface electromyography (EMG) during Nordic hamstring and stiff-leg Deadlift exercises. Although Nordic hamstring exercise induced a higher normalized RMS EMG value for BF (64.5 ± 17.4%) compared to SM (48.6 ± 14.6%; P<0.001) and ST (55.9 ± 17.4%; P < 0.001), the greatest active muscle varied between individuals. Similar interindividual differences in the greatest active muscle were found for the stiff-leg Deadlift exercise. Regarding the distribution of activation, the stiff-leg Deadlift favoured the contribution of the SM compared to ST (P < 0.001, 18/20 participants) whereas the Nordic hamstring exercise favoured the contribution of the ST compared to SM (P < 0.001, 19/20 participants). Importantly, these tasks affected the contribution of the activation of BF in different ways between individuals. The distribution of activation across the three muscles was well correlated between the two exercises (r values ≥ 0.42).
Collapse
Affiliation(s)
- Aurélie Boyer
- University of Nantes, Movement, Interactions, Performance, Nantes, France
| | - François Hug
- University of Nantes, Movement, Interactions, Performance, Nantes, France.,The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia.,Institut Universitaire De France (IUF), Paris, France
| | - Simon Avrillon
- University of Nantes, Movement, Interactions, Performance, Nantes, France.,Legs & Walking Lab, Shirley Ryan AbilityLab, Chicago, Illinois, United States of America.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | |
Collapse
|
24
|
Hug F, Del Vecchio A, Avrillon S, Farina D, Tucker K. Muscles from the same muscle group do not necessarily share common drive: evidence from the human triceps surae. J Appl Physiol (1985) 2021; 130:342-354. [DOI: 10.1152/japplphysiol.00635.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we demonstrated that the three muscles composing the human triceps surae share minimal common drive during isometric contractions. Our results suggest that reducing the number of effectively controlled degrees of freedom may not always be the strategy used by the central nervous system to control movements. Independent control of some, but not all, synergist muscles may allow for more flexible control to comply with secondary goals (e.g., joint stabilization).
Collapse
Affiliation(s)
- François Hug
- Laboratory “Movement, Interactions, Performance” (EA 4334), Nantes University, Nantes, France
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Institut Universitaire de France (IUF), Paris, France
| | - Alessandro Del Vecchio
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen,Germany
| | - Simon Avrillon
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Legs + Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Dario Farina
- Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Kylie Tucker
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Aeles J, Horst F, Lapuschkin S, Lacourpaille L, Hug F. Revealing the unique features of each individual's muscle activation signatures. J R Soc Interface 2021; 18:20200770. [PMID: 33435843 DOI: 10.1098/rsif.2020.0770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is growing evidence that each individual has unique movement patterns, or signatures. The exact origin of these movement signatures, however, remains unknown. We developed an approach that can identify individual muscle activation signatures during two locomotor tasks (walking and pedalling). A linear support vector machine was used to classify 78 participants based on their electromyographic (EMG) patterns measured on eight lower limb muscles. To provide insight into decision-making by the machine learning classification model, a layer-wise relevance propagation (LRP) approach was implemented. This enabled the model predictions to be decomposed into relevance scores for each individual input value. In other words, it provided information regarding which features of the time-varying EMG profiles were unique to each individual. Through extensive testing, we have shown that the LRP results, and by extent the activation signatures, are highly consistent between conditions and across days. In addition, they are minimally influenced by the dataset used to train the model. Additionally, we proposed a method for visualizing each individual's muscle activation signature, which has several potential clinical and scientific applications. This is the first study to provide conclusive evidence of the existence of individual muscle activation signatures.
Collapse
Affiliation(s)
- Jeroen Aeles
- Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Sebastian Lapuschkin
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Lilian Lacourpaille
- Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France
| | - François Hug
- Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France.,The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Australia.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
26
|
Pincheira PA, Martinez-Valdes E, Guzman-Venegas R, Falla D, Garrido MI, Cresswell AG, Lichtwark GA. Regional changes in muscle activity do not underlie the repeated bout effect in the human gastrocnemius muscle. Scand J Med Sci Sports 2020; 31:799-812. [PMID: 33378553 DOI: 10.1111/sms.13912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The repeated bout effect (RBE) confers protection following exercise-induced muscle damage. Typical signs of this protective effect are significantly less muscle soreness and faster recovery of strength after the second bout. The aim of this study was to compare regional changes in medial gastrocnemius (MG) muscle activity and mechanical hyperalgesia after repeated bouts of eccentric exercise. Twelve healthy male participants performed two bouts of eccentric heel drop exercise (separated by 7 days) while wearing a vest equivalent to 20% of their body weight. High-density MG electromyographic amplitude maps and topographical pressure pain sensitivity maps were created before, two hours (2H), and two days (2D) after both exercise bouts. Statistical parametric mapping was used to identify RBE effects on muscle activity and mechanical hyperalgesia, using pixel-level statistics when comparing maps. The results revealed a RBE, as a lower strength loss (17% less; P < .01) and less soreness (50% less; P < .01) were found after the second bout. However, different muscle regions were activated 2H and 2D after the initial bout but not following the repeated bout. Further, no overall changes in EMG distribution or mechanical hyperalgesia were found between bouts. These results indicate that muscle activation is unevenly distributed during the initial bout, possibly to maintain muscle function during localized mechanical fatigue. However, this does not reflect a strategy to confer protection during the repeated bout by activating undamaged/non-fatigued muscle areas.
Collapse
Affiliation(s)
- Patricio A Pincheira
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia.,Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rodrigo Guzman-Venegas
- Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Laboratory, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Saint Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Canberra, ACT, Australia
| | - Andrew G Cresswell
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
27
|
Handsfield GG, Greiner J, Madl J, Rog-Zielinska EA, Hollville E, Vanwanseele B, Shim V. Achilles Subtendon Structure and Behavior as Evidenced From Tendon Imaging and Computational Modeling. Front Sports Act Living 2020; 2:70. [PMID: 33345061 PMCID: PMC7739789 DOI: 10.3389/fspor.2020.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon is the largest and strongest tendon in the human body and is essential for storing elastic energy and positioning the foot for walking and running. Recent research into Achilles tendon anatomy and mechanics has revealed the importance of the Achilles subtendons, which are unique and semi-independent structures arising from each of the three muscular heads of the triceps surae. Of particular importance is the ability for the subtendons to slide, the role that this has in healthy tendons, and the alteration of this property in aging and disease. In this work, we discuss technical approaches that have led to the current understanding of Achilles subtendons, particularly imaging and computational modeling. We introduce a 3D geometrical model of the Achilles subtendons, built from dual-echo UTE MRI. We revisit and discuss computational models of Achilles subtendon twisting suggesting that optimal twist reduces both rupture loads and stress concentrations by distributing stresses. Second harmonic generation imaging shows collagenous subtendons within a rabbit Achilles tendon; a clear absence of signal between the subtendons indicates an inter-subtendon region on the order of 30 μm in our rabbit animal model. Entry of wheat germ agglutinin in both the inter-fascicular and the inter-subtendon regions suggests a glycoprotein-containing inter-subtendon matrix which may facilitate low friction sliding of the subtendons in healthy mammals. Lastly, we present a new computational model coupled with human exercise trials to demonstrate the magnitude of Achilles subtendon sliding which occurs during rehabilitation exercises for Achilles tendinopathy, and shows that specific exercise can maximize subtendon sliding and interface strains, without maximizing subtendon strains. This work demonstrates the value of imaging and computational modeling for probing tendon structure-function relationships and may serve to inform and develop treatments for Achilles tendinopathy.
Collapse
Affiliation(s)
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Enzo Hollville
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Novel isodamping dynamometer accurately measures plantar flexor function. J Biomech 2020; 111:110015. [DOI: 10.1016/j.jbiomech.2020.110015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
|
29
|
Hager R, Poulard T, Nordez A, Dorel S, Guilhem G. Influence of joint angle on muscle fascicle dynamics and rate of torque development during isometric explosive contractions. J Appl Physiol (1985) 2020; 129:569-579. [DOI: 10.1152/japplphysiol.00143.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ankle angle influences the operating muscle fascicle lengths of gastrocnemius medialis and the rate of torque development during explosive isometric plantar flexions. The rate of torque development peaks in neutral angles where muscle fascicles shorten over the plateau of the force-length relationship. When fascicles operate over the plateau of the force-length relationship (neutral ankle positions), the force-velocity properties represent a limiting factor for the rapid force-generating capacity from 100 ms after the onset of explosive contractions.
Collapse
Affiliation(s)
- Robin Hager
- Laboratory Sport, Expertise, and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Thomas Poulard
- Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Antoine Nordez
- Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Sylvain Dorel
- Laboratory “Movement, Interactions, Performance” (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Gaël Guilhem
- Laboratory Sport, Expertise, and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| |
Collapse
|
30
|
Avrillon S, Hug F, Guilhem G. Bilateral differences in hamstring coordination in previously injured elite athletes. J Appl Physiol (1985) 2020; 128:688-697. [PMID: 32027546 DOI: 10.1152/japplphysiol.00411.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hamstring strain injuries (HSIs) involve tissue disruption and pain, which can trigger long-term adaptations of muscle coordination. However, little is known about the effect of previous HSIs on muscle coordination and in particular, after the completion of rehabilitation and in the absence of symptoms. This study aimed to determine if elite athletes with a prior unilateral HSI have bilateral differences in coordination between the hamstring muscle heads after returning to sport. Seventeen athletes with a unilateral history of biceps femoris (BF) injury participated in the experiment. Surface electromyography was recorded from three hamstring muscles [BF, semimembranosus (SM), and semitendinosus] during submaximal isometric torque-matched tasks at 20% and 50% of maximal voluntary contraction. The product of normalized electromyographic amplitude with functional physiological cross-sectional area (PCSA) and moment arm was considered as an index of individual muscle torque. The contribution of the injured muscle to total knee flexion torque was lower in the injured than the uninjured limb (-5.6 ± 10.2%, P = 0.038). This reduced contribution of BF was compensated by a higher contribution of the SM muscle in the injured limb (+5.6 ± 7.5%, P = 0.007). These changes resulted from a lower contribution of PCSA from the injured muscle (BF) and a larger contribution of activation from an uninjured synergist muscle (SM). In conclusion, bilateral differences in coordination were observed in previously injured athletes despite the completion of rehabilitation. Whether these bilateral differences in hamstring coordination could constitute an intrinsic risk factor that contributes to the high rate of hamstring injury recurrence remains to be investigated.NEW & NOTEWORTHY We used an experimental approach, combining the assessment of muscle activation, physiological cross-sectional area, and moment arm to estimate force-sharing strategies among hamstring muscles during isometric knee flexions. We tested athletes with a history of hamstring injury. We observed a lower contribution of the injured biceps femoris to the total knee flexor torque in the injured limb than in the contralateral limb. This decreased contribution was mainly due to selective atrophy of the injured biceps femoris muscle and was compensated by an increased activation of the semimembranosus muscle.
Collapse
Affiliation(s)
- Simon Avrillon
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France.,Laboratory Movement, Interactions, Performance (EA 4334), Nantes University, Nantes, France.,Legs & Walking Lab, Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - François Hug
- Laboratory Movement, Interactions, Performance (EA 4334), Nantes University, Nantes, France.,Institut Universitaire de France, Paris, France.,School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| |
Collapse
|
31
|
Drazan JF, Hullfish TJ, Baxter JR. Muscle structure governs joint function: linking natural variation in medial gastrocnemius structure with isokinetic plantar flexor function. Biol Open 2019; 8:bio.048520. [PMID: 31784422 PMCID: PMC6918776 DOI: 10.1242/bio.048520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the robust findings linking plantar flexor muscle structure to gross function within athletes, the elderly and patients following Achilles tendon ruptures, the link between natural variation in plantar flexor structure and function in healthy adults is unclear. In this study, we determined the relationship between medial gastrocnemius structure and peak torque and total work about the ankle during maximal effort contractions. We measured resting fascicle length and pennation angle using ultrasound in healthy adults (N=12). Subjects performed maximal effort isometric and isokinetic contractions on a dynamometer. We found that longer fascicles were positively correlated with higher peak torque and total work (R2>0.41, P<0.013) across all isokinetic velocities, ranging from slow (30°/s) to fast (210°/s) contractions. Higher pennation angles were negatively correlated with peak torque and total work (R2>0.296, P<0.067). These correlations were not significant in isometric conditions. We further explored this relationship using a simple computational model to simulate isokinetic contractions. These simulations confirmed that longer fascicle lengths generate more joint torque and work throughout a greater range of motion. This study provides evidence that ankle function is strongly influenced by muscle structure in healthy adults. Summary: Using ultrasound measurements of muscle structure and dynamometer measurements of ankle function, we found that longer muscle fascicles positively correlated with increased ankle kinetics.
Collapse
Affiliation(s)
- John F Drazan
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Todd J Hullfish
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josh R Baxter
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Geremia JM, Baroni BM, Bini RR, Lanferdini FJ, de Lima AR, Herzog W, Vaz MA. Triceps Surae Muscle Architecture Adaptations to Eccentric Training. Front Physiol 2019; 10:1456. [PMID: 31849706 PMCID: PMC6901927 DOI: 10.3389/fphys.2019.01456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Eccentric exercises have been used in physical training, injury prevention, and rehabilitation programs. The systematic use of eccentric training promotes specific morphological adaptations on skeletal muscles. However, synergistic muscles, such as the triceps surae components, might display different structural adaptations due to differences in architecture, function, and load sharing. Therefore, the purpose of this study was to determine the effects of an eccentric training program on the triceps surae (GM, gastrocnemius medialis; GL, gastrocnemius lateralis; and SO, soleus) muscle architecture. Methods Twenty healthy male subjects (26 ± 4 years) underwent a 4-week control period followed by a 12-week eccentric training program. Muscle architecture [fascicle length (FL), pennation angle (PA), and muscle thickness (MT)] of GM, GL, and SO was evaluated every 4 weeks by ultrasonography. Results Fascicle lengths (GM: 13.2%; GL: 8.8%; SO: 21%) and MT (GM: 14.9%; GL: 15.3%; SO: 19.1%) increased from pre- to post-training, whereas PAs remained similar. GM and SO FL and MT increased up to the 8th training week, whereas GL FL increased up to the 4th week. SO displayed the highest, and GL the smallest gains in FL post-training. Conclusion All three synergistic plantar flexor muscles increased FL and MT with eccentric training. MT increased similarly among the synergistic muscles, while the muscle with the shortest FL at baseline (SO) showed the greatest increase in FL.
Collapse
Affiliation(s)
- Jeam Marcel Geremia
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Manfredini Baroni
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rodrigo Rico Bini
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Fabio Juner Lanferdini
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Amanda Rodrigues de Lima
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Walter Herzog
- Faculty of Kinesiology, Engineering, Medicine and Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco Aurélio Vaz
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Hug F, Vogel C, Tucker K, Dorel S, Deschamps T, Le Carpentier É, Lacourpaille L. Individuals have unique muscle activation signatures as revealed during gait and pedaling. J Appl Physiol (1985) 2019; 127:1165-1174. [DOI: 10.1152/japplphysiol.01101.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although it is known that the muscle activation patterns used to produce even simple movements can vary between individuals, these differences have not been considered to prove the existence of individual muscle activation strategies (or signatures). We used a machine learning approach (support vector machine) to test the hypothesis that each individual has unique muscle activation signatures. Eighty participants performed a series of pedaling and gait tasks, and 53 of these participants performed a second experimental session on a subsequent day. Myoelectrical activity was measured from eight muscles: vastus lateralis and medialis, rectus femoris, gastrocnemius lateralis and medialis, soleus, tibialis anterior, and biceps femoris -long head. The classification task involved separating data into training and testing sets. For the within-day classification, each pedaling/gait cycle was tested using the classifier, which had been trained on the remaining cycles. For the between-day classification, each cycle from day 2 was tested using the classifier, which had been trained on the cycles from day 1. When considering all eight muscles, the activation profiles were assigned to the corresponding individuals with a classification rate of up to 99.28% (2,353/2,370 cycles) and 91.22% (1,341/1,470 cycles) for the within-day and between-day classification, respectively. When considering the within-day classification, a combination of two muscles was sufficient to obtain a classification rate >80% for both pedaling and gait. When considering between-day classification, a combination of four to five muscles was sufficient to obtain a classification rate >80% for pedaling and gait. These results demonstrate that strategies not only vary between individuals, as is often assumed, but are unique to each individual. NEW & NOTEWORTHY We used a machine learning approach to test the uniqueness and robustness of muscle activation patterns. We considered that, if an algorithm can accurately identify participants, one can conclude that these participants exhibit discernible differences and thus have unique muscle activation signatures. Our results show that activation patterns not only vary between individuals, but are unique to each individual. Individual differences should, therefore, be considered relevant information for addressing fundamental questions about the control of movement.
Collapse
Affiliation(s)
- François Hug
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
- National Health and Medical Research Council Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Institut Universitaire de France, Paris, France
| | - Clément Vogel
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| | - Kylie Tucker
- National Health and Medical Research Council Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sylvain Dorel
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| | - Thibault Deschamps
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| | | | - Lilian Lacourpaille
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| |
Collapse
|
34
|
Hullfish TJ, O'Connor KM, Baxter JR. Medial gastrocnemius muscle remodeling correlates with reduced plantarflexor kinetics 14 weeks following Achilles tendon rupture. J Appl Physiol (1985) 2019; 127:1005-1011. [PMID: 31589091 DOI: 10.1152/japplphysiol.00255.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deficits in plantarflexor kinetics are associated with poor outcomes in patients following Achilles tendon rupture. In this longitudinal study, we analyzed the fascicle length and pennation angle of the medial gastrocnemius muscle and the length of the Achilles tendon using ultrasound imaging. To determine the relationship between muscle remodeling and deficits in plantarflexor kinetics measured at 14 wk after injury, we correlated the reduction in fascicle length and increase in pennation angle with peak torque measured during isometric and isokinetic plantarflexor contractions. We found that the medial gastrocnemius underwent an immediate change in structure, characterized by decreased length and increased pennation of the muscle fascicles. This decrease in fascicle length was coupled with an increase in tendon length. These changes in muscle-tendon structure persisted throughout the first 14 wk following rupture. Deficits in peak plantarflexor torque were moderately correlated with decreased fascicle length at 120 degrees per second (R2 = 0.424, P = 0.057) and strongly correlated with decreased fascicle length at 210 degrees per second (R2 = 0.737, P = 0.003). However, increases in pennation angle did not explain functional deficits. These findings suggest that muscle-tendon structure is detrimentally affected following Achilles tendon rupture. Plantarflexor power deficits are positively correlated with the magnitude of reductions in fascicle length. Preserving muscle structure following Achilles tendon rupture should be a clinical priority to maintain plantarflexor kinetics.NEW & NOTEWORTHY In our study, we found that when the Achilles tendon ruptures due to excessive biomechanical loading, the neighboring skeletal muscle undergoes rapid changes in its configuration. The magnitude of this muscle remodeling explains the amount of ankle power loss demonstrated by these patients once their Achilles tendons are fully healed. These findings highlight the interconnected relationship between muscle and tendon. Isolated injuries to the tendon stimulate detrimental changes to the muscle, thereby limiting joint-level function.
Collapse
Affiliation(s)
- Todd J Hullfish
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn M O'Connor
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josh R Baxter
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Do individual differences in the distribution of activation between synergist muscles reflect individual strategies? Exp Brain Res 2018; 237:625-635. [DOI: 10.1007/s00221-018-5445-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
|