1
|
Zill SN, Dallmann CJ, Zyhowski W, Chaudhry H, Gebehart C, Szczecinski NS. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. J Neurophysiol 2024; 131:198-215. [PMID: 38166479 PMCID: PMC11286306 DOI: 10.1152/jn.00414.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024] Open
Abstract
Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking. The FT joint torques, obtained in a previous study that used inverse dynamics to analyze data from freely moving stick insects, are quite variable during level walking (including changes in sign) but are larger in magnitude and more consistent when traversing sloped surfaces. Similar to vertebrates, insects used predominantly extension torque in propulsion on uphill slopes and flexion torques to brake forward motion when going downhill. Sensory discharges to joint torques reflected the torque direction but, unexpectedly, often occurred as multiple bursts that encoded the rate of change of positive forces (dF/dt) even when force levels were high. All discharges also showed hysteresis (history dependence), as firing substantially decreased or ceased during transient force decrements. These findings have been tested in simulation in a mathematical model of the sensilla (Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. Bioinspir Biomim 16: 065001, 2021) that accurately reproduced the biological data. Our results suggest the hypothesis that sensory feedback from the femoro-tibial joint indicating force dynamics (dF/dt) can be used to counter the instability in traversing sloped surfaces in animals and, potentially, in walking machines.NEW & NOTEWORTHY Discharges of sensory receptors (campaniform sensilla) in the hind legs of stick insects can differentially signal forces that occur in walking uphill versus walking downhill. Unexpectedly, sensory firing most closely reflects the rate of change of force (dF/dt) even when the force levels are high. These signals have been replicated in a mathematical model of the receptors and could be used to stabilize leg movements both in the animal and in a walking robot.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Chris J Dallmann
- Department of Neurobiology and Genetics, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - William Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
2
|
Sutton GP, Szczecinski NS, Quinn RD, Chiel HJ. Phase shift between joint rotation and actuation reflects dominant forces and predicts muscle activation patterns. PNAS NEXUS 2023; 2:pgad298. [PMID: 37822766 PMCID: PMC10563792 DOI: 10.1093/pnasnexus/pgad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
During behavior, the work done by actuators on the body can be resisted by the body's inertia, elastic forces, gravity, or viscosity. The dominant forces that resist actuation have major consequences on the control of that behavior. In the literature, features and actuation of locomotion, for example, have been successfully predicted by nondimensional numbers (e.g. Froude number and Reynolds number) that generally express the ratio between two of these forces (gravitational, inertial, elastic, and viscous). However, animals of different sizes or motions at different speeds may not share the same dominant forces within a behavior, making ratios of just two of these forces less useful. Thus, for a broad comparison of behavior across many orders of magnitude of limb length and cycle period, a dimensionless number that includes gravitational, inertial, elastic, and viscous forces is needed. This study proposes a nondimensional number that relates these four forces: the phase shift (ϕ) between the displacement of the limb and the actuator force that moves it. Using allometric scaling laws, ϕ for terrestrial walking is expressed as a function of the limb length and the cycle period at which the limb steps. Scale-dependent values of ϕ are used to explain and predict the electromyographic (EMG) patterns employed by different animals as they walk.
Collapse
Affiliation(s)
- G P Sutton
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - N S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA
| | - R D Quinn
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - H J Chiel
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Owaki D, Dürr V, Schmitz J. A hierarchical model for external electrical control of an insect, accounting for inter-individual variation of muscle force properties. eLife 2023; 12:e85275. [PMID: 37703327 PMCID: PMC10499373 DOI: 10.7554/elife.85275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Cyborg control of insect movement is promising for developing miniature, high-mobility, and efficient biohybrid robots. However, considering the inter-individual variation of the insect neuromuscular apparatus and its neural control is challenging. We propose a hierarchical model including inter-individual variation of muscle properties of three leg muscles involved in propulsion (retractor coxae), joint stiffness (pro- and retractor coxae), and stance-swing transition (protractor coxae and levator trochanteris) in the stick insect Carausius morosus. To estimate mechanical effects induced by external muscle stimulation, the model is based on the systematic evaluation of joint torques as functions of electrical stimulation parameters. A nearly linear relationship between the stimulus burst duration and generated torque was observed. This stimulus-torque characteristic holds for burst durations of up to 500ms, corresponding to the stance and swing phase durations of medium to fast walking stick insects. Hierarchical Bayesian modeling revealed that linearity of the stimulus-torque characteristic was invariant, with individually varying slopes. Individual prediction of joint torques provides significant benefits for precise cyborg control.
Collapse
Affiliation(s)
- Dai Owaki
- Department of Robotics, Graduate School of Engineering, Tohoku UniversitySendaiJapan
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld UniversityBielefeldGermany
- Centre for Cognitive Interaction Technology, Bielefeld UniversityBielefeldGermany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld UniversityBielefeldGermany
- Centre for Cognitive Interaction Technology, Bielefeld UniversityBielefeldGermany
| |
Collapse
|
4
|
Nirody JA. Flexible locomotion in complex environments: the influence of species, speed and sensory feedback on panarthropod inter-leg coordination. J Exp Biol 2023; 226:297127. [PMID: 36912384 DOI: 10.1242/jeb.245111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Panarthropods (a clade containing arthropods, tardigrades and onychophorans) can adeptly move across a wide range of challenging terrains and their ability to do so given their relatively simple nervous systems makes them compelling study organisms. Studies of forward walking on flat terrain excitingly point to key features in inter-leg coordination patterns that seem to be 'universally' shared across panarthropods. However, when movement through more complex, naturalistic terrain is considered, variability in coordination patterns - from the intra-individual to inter-species level - becomes more apparent. This variability is likely to be due to the interplay between sensory feedback and local pattern-generating activity, and depends crucially on species, walking speed and behavioral goal. Here, I gather data from the literature of panarthropod walking coordination on both flat ground and across more complex terrain. This Review aims to emphasize the value of: (1) designing experiments with an eye towards studying organisms in natural environments; (2) thoughtfully integrating results from various experimental techniques, such as neurophysiological and biomechanical studies; and (3) ensuring that data is collected and made available from a wider range of species for future comparative analyses.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Yoshida S, Takaki K, Yamawaki Y. Roles of muscle activities in foreleg movements during predatory strike of the mantis. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104474. [PMID: 36596320 DOI: 10.1016/j.jinsphys.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Foreleg trajectory in the mantis strike varies depending on prey distance. To examine how muscle activities affect foreleg trajectory, we recorded strike behaviours of the Chinese mantis with a high-speed camera and electromyograms of the foreleg trochanteral extensor and flexor. At the approach phase of the mantis strike, the prothorax-coxa (P-C) joint elevated and the femur-tibia (F-T) joint extended. At the sweep phase, the coxa-trochanter (C-T) joint rapidly extended, then, the F-T joint rapidly flexed to capture the prey. At capture initiation, the C-T joint extended more with greater prey distance. After cutting the tendon of the trochanteral flexor, the C-T joint extended similarly to that of the intact foreleg but did not flex after it reached its peak angle. After cutting the tendon of the trochanteral extensor, the C-T joint did not extend as much as that of the intact foreleg. During rapid extension of the C-T joint, a burst of spikes from the coxal trochanteral extensor was observed in electromyograms. Among several parameters, burst duration was the best predictor of C-T joint angular change during strike. Unexpectedly, trochanteral flexor activity was also observed during rapid extension of the C-T joint. These results indicated that the coxal trochanteral extensor mainly contributed to the rapid C-T extension during strike, but other muscles also contributed at the beginning of extension. The trochanteral flexor appeared to contribute to C-T flexion by countering the rapid extension.
Collapse
Affiliation(s)
- Shigeki Yoshida
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keigo Takaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Zyhowski WP, Zill SN, Szczecinski NS. Adaptive load feedback robustly signals force dynamics in robotic model of Carausius morosus stepping. Front Neurorobot 2023; 17:1125171. [PMID: 36776993 PMCID: PMC9908954 DOI: 10.3389/fnbot.2023.1125171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Animals utilize a number of neuronal systems to produce locomotion. One type of sensory organ that contributes in insects is the campaniform sensillum (CS) that measures the load on their legs. Groups of the receptors are found on high stress regions of the leg exoskeleton and they have significant effects in adapting walking behavior. Recording from these sensors in freely moving animals is limited by technical constraints. To better understand the load feedback signaled by CS to the nervous system, we have constructed a dynamically scaled robotic model of the Carausius morosus stick insect middle leg. The leg steps on a treadmill and supports weight during stance to simulate body weight. Strain gauges were mounted in the same positions and orientations as four key CS groups (Groups 3, 4, 6B, and 6A). Continuous data from the strain gauges were processed through a previously published dynamic computational model of CS discharge. Our experiments suggest that under different stepping conditions (e.g., changing "body" weight, phasic load stimuli, slipping foot), the CS sensory discharge robustly signals increases in force, such as at the beginning of stance, and decreases in force, such as at the end of stance or when the foot slips. Such signals would be crucial for an insect or robot to maintain intra- and inter-leg coordination while walking over extreme terrain.
Collapse
Affiliation(s)
- William P. Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States,*Correspondence: William P. Zyhowski,
| | - Sasha N. Zill
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Nicholas S. Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
7
|
Günzel Y, Schmitz J, Dürr V. Locomotor resilience through load-dependent modulation of muscle co-contraction. J Exp Biol 2022; 225:276888. [PMID: 36039914 DOI: 10.1242/jeb.244361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Terrestrial locomotor behavior in variable environments requires resilience to sudden changes in substrate properties. For example, walking animals can adjust to substantial changes in slope and corresponding changes in load distribution among legs. In insects, slope-dependent adjustments have mainly been examined under steady-state conditions, whereas the transition dynamics have been largely neglected. In a previous study, we showed that steady-state adjustments of stick insects to ±45° slopes involve substantial changes in joint torques and muscle activity with only minor changes in leg kinematics. Here, we take a close look at the time course of these adjustments as stick insects compensate for various kinds of disturbances to load distribution. In particular, we test whether the transition from one steady state to another involves distinct transition steps or follows a graded process. To resolve this, we combined simultaneous recordings of whole-body kinematics and hind leg muscle activity to elucidate how freely walking Carausius morosus negotiated a step-change in substrate slope. Step-by-step adjustments reveal that muscle activity changed in a graded manner as a function of body pitch relative to gravity. We further show analogous transient adjustment of muscle activity in response to destabilizing lift-off events of neighboring legs and the disappearance of antagonist co-activation during crawling episodes. Given these three examples of load-dependent regulation of antagonist muscle co-contraction, we conclude that stick insects respond to both transient and sustained changes in load distribution by regulating joint stiffness rather than through distinct transition steps.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
8
|
Tardigrades exhibit robust interlimb coordination across walking speeds and terrains. Proc Natl Acad Sci U S A 2021; 118:2107289118. [PMID: 34446560 DOI: 10.1073/pnas.2107289118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tardigrades must negotiate heterogeneous, fluctuating environments and accordingly utilize locomotive strategies capable of dealing with variable terrain. We analyze the kinematics and interleg coordination of freely walking tardigrades (species: Hypsibius exemplaris). We find that tardigrade walking replicates several key features of walking in insects despite disparities in size, skeleton, and habitat. To test the effect of environmental changes on tardigrade locomotor control circuits we measure kinematics and interleg coordination during walking on two substrates of different stiffnesses. We find that the phase offset between contralateral leg pairs is flexible, while ipsilateral coordination is preserved across environmental conditions. This mirrors similar results in insects and crustaceans. We propose that these functional similarities in walking coordination between tardigrades and arthropods is either due to a generalized locomotor control circuit common to panarthropods or to independent convergence onto an optimal strategy for robust multilegged control in small animals with simple circuitry. Our results highlight the value of tardigrades as a comparative system toward understanding the mechanisms-neural and/or mechanical-underlying coordination in panarthropod locomotion.
Collapse
|
9
|
Nirody JA. Universal Features in Panarthropod Inter-Limb Coordination during Forward Walking. Integr Comp Biol 2021; 61:710-722. [PMID: 34043783 PMCID: PMC8427173 DOI: 10.1093/icb/icab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds to accomplish different behavioral goals. Studies in Drosophila have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of Drosophila stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in Drosophila is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade Hypsibius exemplaris. Using this comparative dataset, we point to several functional and morphological features that are shared among panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda. Introduction.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065, USA.,All Souls College, University of Oxford, Oxford, OX1 4AL, UK
| |
Collapse
|
10
|
Zill SN, Dallmann CJ, S Szczecinski N, Büschges A, Schmitz J. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli. J Neurophysiol 2021; 126:227-248. [PMID: 34107221 PMCID: PMC8424542 DOI: 10.1152/jn.00120.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Control of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode “naturalistic” stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities. However, substantial variations in torque direction and magnitude occurred at the more distal femorotibial joint, which can generate braking or propulsive forces and provide lateral stability. To determine how these forces are encoded, we used torque waveforms of individual steps that had maximum values in stance in the directions of flexion or extension. Analysis of kinematic data showed that the torques in different directions tended to occur in different ranges of joint angles. Variations within stance were not accompanied by comparable changes in joint angle but often reflected vertical ground reaction forces and leg support of body load. Application of torque waveforms elicited sensory discharges with variations in firing frequency similar to those seen in freely walking insects. All sensilla directionally encoded the dynamics of force increases and showed hysteresis to transient force decreases. Smaller receptors exhibited more tonic firing. Our findings suggest that dynamic sensitivity in force feedback can modulate ongoing muscle activities to stabilize distal joints when large forces are generated at proximal joints. Furthermore, use of “naturalistic” stimuli can reproduce characteristics seen in freely moving animals that are absent in conventional restrained preparations. NEW & NOTEWORTHY Sensory encoding of forces during walking by campaniform sensilla was characterized in stick insects using waveforms of joint torques calculated by inverse dynamics as mechanical stimuli. Tests using the mean joint torque and torques of individual steps showed the system is highly sensitive to force dynamics (dF/dt). Use of “naturalistic” stimuli can reproduce characteristics of sensory discharges seen in freely walking insects, such as load transfer among legs.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
11
|
Niemeier M, Jeschke M, Dürr V. Effect of Thoracic Connective Lesion on Inter-Leg Coordination in Freely Walking Stick Insects. Front Bioeng Biotechnol 2021; 9:628998. [PMID: 33959593 PMCID: PMC8093632 DOI: 10.3389/fbioe.2021.628998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-legged locomotion requires appropriate coordination of all legs with coincident ground contact. Whereas behaviourally derived coordination rules can adequately describe many aspects of inter-leg coordination, the neural mechanisms underlying these rules are still not entirely clear. The fact that inter-leg coordination is strongly affected by cut thoracic connectives in tethered walking insects, shows that neural information exchange among legs is important. As yet, recent studies have shown that load transfer among legs can contribute to inter-leg coordination through mechanical coupling alone, i.e., without neural information exchange among legs. Since naturalistic load transfer among legs works only in freely walking animals but not in tethered animals, we tested the hypothesis that connective lesions have less strong effects if mechanical coupling through load transfer among legs is possible. To do so, we recorded protraction/retraction angles of all legs in unrestrained walking stick insects that either had one thoracic connective cut or had undergone a corresponding sham operation. In lesioned animals, either a pro-to-mesothorax or a meso-to-metathorax connective was cut. Overall, our results on temporal coordination were similar to published reports on tethered walking animals, in that the phase relationship of the legs immediately adjacent to the lesion was much less precise, although the effect on mean phase was relatively weak or absent. Lesioned animals could walk at the same speed as the control group, though with a significant sideward bias toward the intact side. Detailed comparison of lesion effects in free-walking and supported animals reveal that the strongest differences concern the spatial coordination among legs. In free walking, lesioned animals, touch-down and lift-off positions shifted significantly in almost all legs, including legs of the intact body side. We conclude that insects with disrupted neural information transfer through one connective adjust to this disruption differently if they experience naturalistic load distribution. While mechanical load transfer cannot compensate for lesion-induced effects on temporal inter-leg coordination, several compensatory changes in spatial coordination occur only if animals carry their own weight.
Collapse
Affiliation(s)
- Miriam Niemeier
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Manon Jeschke
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Weihmann T. Survey of biomechanical aspects of arthropod terrestrialisation - Substrate bound legged locomotion. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100983. [PMID: 33160205 DOI: 10.1016/j.asd.2020.100983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
13
|
Azevedo AW, Dickinson ES, Gurung P, Venkatasubramanian L, Mann RS, Tuthill JC. A size principle for recruitment of Drosophila leg motor neurons. eLife 2020; 9:e56754. [PMID: 32490810 PMCID: PMC7347388 DOI: 10.7554/elife.56754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
To move the body, the brain must precisely coordinate patterns of activity among diverse populations of motor neurons. Here, we use in vivo calcium imaging, electrophysiology, and behavior to understand how genetically-identified motor neurons control flexion of the fruit fly tibia. We find that leg motor neurons exhibit a coordinated gradient of anatomical, physiological, and functional properties. Large, fast motor neurons control high force, ballistic movements while small, slow motor neurons control low force, postural movements. Intermediate neurons fall between these two extremes. This hierarchical organization resembles the size principle, first proposed as a mechanism for establishing recruitment order among vertebrate motor neurons. Recordings in behaving flies confirmed that motor neurons are typically recruited in order from slow to fast. However, we also find that fast, intermediate, and slow motor neurons receive distinct proprioceptive feedback signals, suggesting that the size principle is not the only mechanism that dictates motor neuron recruitment. Overall, this work reveals the functional organization of the fly leg motor system and establishes Drosophila as a tractable system for investigating neural mechanisms of limb motor control.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Evyn S Dickinson
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - John C Tuthill
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
14
|
Uyanik I, Sefati S, Stamper SA, Cho KA, Ankarali MM, Fortune ES, Cowan NJ. Variability in locomotor dynamics reveals the critical role of feedback in task control. eLife 2020; 9:51219. [PMID: 31971509 PMCID: PMC7041942 DOI: 10.7554/elife.51219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/21/2020] [Indexed: 11/19/2022] Open
Abstract
Animals vary considerably in size, shape, and physiological features across individuals, but yet achieve remarkably similar behavioral performances. We examined how animals compensate for morphophysiological variation by measuring the system dynamics of individual knifefish (Eigenmannia virescens) in a refuge tracking task. Kinematic measurements of Eigenmannia were used to generate individualized estimates of each fish’s locomotor plant and controller, revealing substantial variability between fish. To test the impact of this variability on behavioral performance, these models were used to perform simulated ‘brain transplants’—computationally swapping controllers and plants between individuals. We found that simulated closed-loop performance was robust to mismatch between plant and controller. This suggests that animals rely on feedback rather than precisely tuned neural controllers to compensate for morphophysiological variability. People come in different shapes and sizes, but most will perform similarly well if asked to complete a task requiring fine manual dexterity – such as holding a pen or picking up a single grape. How can different individuals, with different sized hands and muscles, produce such similar movements? One explanation is that an individual’s brain and nervous system become precisely tuned to mechanics of the body’s muscles and skeleton. An alternative explanation is that brain and nervous system use a more “robust” control policy that can compensate for differences in the body by relying on feedback from the senses to guide the movements. To distinguish between these two explanations, Uyanik et al. turned to weakly electric freshwater fish known as glass knifefish. These fish seek refuge within root systems, reed grass and among other objects in the water. They swim backwards and forwards to stay hidden despite constantly changing currents. Each fish shuttles back and forth by moving a long ribbon-like fin on the underside of its body. Uyanik et al. measured the movements of the ribbon fin under controlled conditions in the laboratory, and then used the data to create computer models of the brain and body of each fish. The models of each fish’s brain and body were quite different. To study how the brain interacts with the body, Uyanik et al. then conducted experiments reminiscent of those described in the story of Frankenstein and transplanted the brain from each computer model into the body of different model fish. These “brain swaps” had almost no effect on the model’s simulated swimming behavior. Instead, these “Frankenfish” used sensory feedback to compensate for any mismatch between their brain and body. This suggests that, for some behaviors, an animal’s brain does not need to be precisely tuned to the specific characteristics of its body. Instead, robust control of movement relies on many seemingly redundant systems that provide sensory feedback. This has implications for the field of robotics. It further suggests that when designing robots, engineers should prioritize enabling the robots to use sensory feedback to cope with unexpected events, a well-known idea in control engineering.
Collapse
Affiliation(s)
- Ismail Uyanik
- Department of Electrical and Electronics Engineering, Hacettepe University, Ankara, Turkey.,Laboratory of Computational Sensing and Robotics, Johns Hopkins University, Baltimore, United States.,Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
| | - Shahin Sefati
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Stamper
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
| | - Kyoung-A Cho
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
| | - M Mert Ankarali
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
| | - Eric S Fortune
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, United States
| | - Noah J Cowan
- Laboratory of Computational Sensing and Robotics, Johns Hopkins University, Baltimore, United States.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
15
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Federle W, Labonte D. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190199. [PMID: 31495309 PMCID: PMC6745483 DOI: 10.1098/rstb.2019.0199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The rapid control of surface attachment is a key feature of natural adhesive systems used for locomotion, and a property highly desirable for man-made adhesives. Here, we describe the challenges of adhesion control and the timescales involved across diverse biological attachment systems and different adhesive mechanisms. The most widespread control principle for dynamic surface attachment in climbing animals is that adhesion is 'shear-sensitive' (directional): pulling adhesive pads towards the body results in strong attachment, whereas pushing them away from it leads to easy detachment, providing a rapid mechanical 'switch'. Shear-sensitivity is based on changes of contact area and adhesive strength, which in turn arise from non-adhesive default positions, the mechanics of peeling, pad sliding, and the targeted storage and controlled release of elastic strain energy. The control of adhesion via shear forces is deeply integrated with the climbing animals' anatomy and locomotion, and involves both active neuromuscular control, and rapid passive responses of sophisticated mechanical systems. The resulting dynamic adhesive systems are robust, reliable, versatile and nevertheless remarkably simple. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David Labonte
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
17
|
Dürr V, Arena PP, Cruse H, Dallmann CJ, Drimus A, Hoinville T, Krause T, Mátéfi-Tempfli S, Paskarbeit J, Patanè L, Schäffersmann M, Schilling M, Schmitz J, Strauss R, Theunissen L, Vitanza A, Schneider A. Integrative Biomimetics of Autonomous Hexapedal Locomotion. Front Neurorobot 2019; 13:88. [PMID: 31708765 PMCID: PMC6819508 DOI: 10.3389/fnbot.2019.00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/07/2019] [Indexed: 01/31/2023] Open
Abstract
Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion. In a sequence of six focus sections dealing with aspects of intelligent, embodied motor control in insects and multipedal robots-ranging from compliant actuation, distributed proprioception and control of multiple legs, the formation of internal representations to the use of an internal body model-we introduce the walking robot HECTOR as a research platform for integrative biomimetics of hexapedal locomotion. Owing to its 18 highly sensorized, compliant actuators, light-weight exoskeleton, distributed and expandable hardware architecture, and an appropriate dynamic simulation framework, HECTOR offers many opportunities to integrate research effort across biomimetics research on actuation, sensory-motor feedback, inter-leg coordination, and cognitive abilities such as motion planning and learning of its own body size.
Collapse
Affiliation(s)
- Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Paolo P. Arena
- DIEEI: Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy
| | - Holk Cruse
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Chris J. Dallmann
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Alin Drimus
- Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Thierry Hoinville
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Tammo Krause
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Jan Paskarbeit
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Luca Patanè
- DIEEI: Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy
| | - Mattias Schäffersmann
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Malte Schilling
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Leslie Theunissen
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
| | - Alessandra Vitanza
- DIEEI: Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy
| | - Axel Schneider
- Cognitive Interaction Technology: Center of Excellence, Bielefeld University, Bielefeld, Germany
- Institute of System Dynamics and Mechatronics, Bielefeld University of Applied Sciences, Bielefeld, Germany
| |
Collapse
|
18
|
Harischandra N, Clare AJ, Zakotnik J, Blackburn LML, Matheson T, Dürr V. Evaluation of linear and non-linear activation dynamics models for insect muscle. PLoS Comput Biol 2019; 15:e1007437. [PMID: 31609992 PMCID: PMC6812852 DOI: 10.1371/journal.pcbi.1007437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/24/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
In computational modelling of sensory-motor control, the dynamics of muscle contraction is an important determinant of movement timing and joint stiffness. This is particularly so in animals with many slow muscles, as is the case in insects-many of which are important models for sensory-motor control. A muscle model is generally used to transform motoneuronal input into muscle force. Although standard models exist for vertebrate muscle innervated by many motoneurons, there is no agreement on a parametric model for single motoneuron stimulation of invertebrate muscle. Although several different models have been proposed, they have never been evaluated using a common experimental data set. We evaluate five models for isometric force production of a well-studied model system: the locust hind leg tibial extensor muscle. The response of this muscle to motoneuron spikes is best modelled as a non-linear low-pass system. Linear first-order models can approximate isometric force time courses well at high spike rates, but they cannot account for appropriate force time courses at low spike rates. A linear third-order model performs better, but only non-linear models can account for frequency-dependent change of decay time and force potentiation at intermediate stimulus frequencies. Some of the differences among published models are due to differences among experimental data sets. We developed a comprehensive toolbox for modelling muscle activation dynamics, and optimised model parameters using one data set. The "Hatze-Zakotnik model" that emphasizes an accurate single-twitch time course and uses frequency-dependent modulation of the twitch for force potentiation performs best for the slow motoneuron. Frequency-dependent modulation of a single twitch works less well for the fast motoneuron. The non-linear "Wilson" model that optimises parameters to all data set parts simultaneously performs better here. Our open-access toolbox provides powerful tools for researchers to fit appropriate models to a range of insect muscles.
Collapse
Affiliation(s)
- Nalin Harischandra
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology—Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| | - Anthony J. Clare
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Jure Zakotnik
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tom Matheson
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Volker Dürr
- Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Cognitive Interaction Technology—Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Knight K. Stubborn insects stick to regular walk when scaling slopes. J Exp Biol 2019. [DOI: 10.1242/jeb.203323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|