1
|
Dehaullon A, Fraslin C, Bestin A, Poncet C, Guiguen Y, Quillet E, Phocas F. In-depth investigation of genome to refine QTL positions for spontaneous sex-reversal in XX rainbow trout. PLoS One 2025; 20:e0313464. [PMID: 40333945 PMCID: PMC12058032 DOI: 10.1371/journal.pone.0313464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Sex determination is a flexible process in fish, controlled by genetics or environmental factors or a combination of both depending on the species. Revealing the underlying molecular mechanisms may have important implications for research on reproductive development in vertebrates, as well as sex-ratio control and selective breeding in fish. Phenotypic sex in rainbow trout (Oncorhynchus mykiss) is primarily controlled by a XX/XY male heterogametic sex determination system. Unexpectedly in genetically XX all-female farmed populations, a small proportion of males or intersex individuals are regularly observed. Spontaneous masculinisation is a highly heritable trait, controlled by minor sex-modifier genes that remain unknown, although several Quantitative Trait Loci (QTL) were detected in previous studies. In the current work we used genome-based approaches and various statistical methods to further investigate these QTL. DNA markers that were previously identified in a French commercial population on chromosomes Omy1, Omy12 and Omy20 were validated in six different farmed trout populations. Functional candidate genes that may be involved in spontaneous masculinisation by reducing germ cell proliferation and repressing oogenesis of XX-rainbow trout in the absence of the master sex determining gene were identified. In particular, syndig1, tlx1 and hells on Omy1, as well as khdrbs2 and csmd1 on Omy20 deserve further investigation to validate their potential sex-modifier roles as well as their interaction with rearing temperature. Those findings could be used to produce all-female populations that are preferred by farmers due to a delayed maturation of females and higher susceptibility of male trout to diseases.
Collapse
Affiliation(s)
- Audrey Dehaullon
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France,
| | - Clémence Fraslin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France,
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, Rennes cedex, France
| | - Charles Poncet
- Université Clermont-Auvergne, INRAE, GDEC, 63039 Clermont-Ferrand, France
| | - Yann Guiguen
- INRAE, LPGP, Campus de Beaulieu, Rennes cedex, France
| | - Edwige Quillet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France,
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France,
| |
Collapse
|
2
|
Symonová R, Jůza T, Tesfaye M, Brabec M, Bartoň D, Blabolil P, Draštík V, Kočvara L, Muška M, Prchalová M, Říha M, Šmejkal M, Souza AT, Sajdlová Z, Tušer M, Vašek M, Skubic C, Brabec J, Kubečka J. Transition to Piscivory Seen Through Brain Transcriptomics in a Juvenile Percid Fish: Complex Interplay of Differential Gene Transcription, Alternative Splicing, and ncRNA Activity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:257-277. [PMID: 39629900 PMCID: PMC11788885 DOI: 10.1002/jez.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Pikeperch (Sander Lucioperca) belongs to main predatory fish species in freshwater bodies throughout Europe playing the key role by reducing planktivorous fish abundance. Two size classes of the young-of-the-year (YOY) pikeperch are known in Europe and North America. Our long-term fish survey elucidates late-summer size distribution of YOY pikeperch in the Lipno Reservoir (Czechia) and recognizes two distinct subcohorts: smaller pelagic planktivores heavily outnumber larger demersal piscivores. To explore molecular mechanisms accompanying the switch from planktivory to piscivory, we compared brain transcriptomes of both subcohorts and identified 148 differentially transcribed genes. The pathway enrichment analyses identified the piscivorous phase to be associated with genes involved in collagen and extracellular matrix generation with numerous Gene Ontology (GO), while the planktivorous phase was associated with genes for non-muscle-myosins (NMM) with less GO terms. Transcripts further upregulated in planktivores from the periphery of the NMM network were Pmchl, Pomcl, and Pyyb, all involved also in appetite control and producing (an)orexigenic neuropeptides. Noncoding RNAs were upregulated in transcriptomes of planktivores including three transcripts of snoRNA U85. Thirty genes mostly functionally unrelated to those differentially transcribed were alternatively spliced between the subcohorts. Our results indicate planktivores as potentially driven by voracity to initiate the switch to piscivory, while piscivores undergo a dynamic brain development. We propose a spatiotemporal spreading of juvenile development over a longer period and larger spatial scales through developmental plasticity as an adaptation to exploiting all types of resources and decreasing the intraspecific competition.
Collapse
Affiliation(s)
- Radka Symonová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Jůza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Million Tesfaye
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of WatersUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Marek Brabec
- Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic
| | - Daniel Bartoň
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Petr Blabolil
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Vladislav Draštík
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Luboš Kočvara
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Muška
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marie Prchalová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Říha
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marek Šmejkal
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Allan T. Souza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Institute for Atmospheric and Earth System Research INARForest Sciences, Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiFinland
| | - Zuzana Sajdlová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Michal Tušer
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Mojmír Vašek
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Cene Skubic
- Institute for Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio‐Chips, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Jakub Brabec
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Jan Kubečka
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
3
|
Zhang J, Liu Z, Quan J, Lu J, Zhao G, Pan Y. Effect of Selenium Nanoparticles on Alternative Splicing of Rainbow Trout Head Kidney under Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:16. [PMID: 39611859 DOI: 10.1007/s10126-024-10382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional regulation, which can expand the functional diversity of gene products and is a mechanism for eukaryotes to cope with abiotic stress. However, there are few studies on AS events in rainbow trout under heat stress. In this study, RNA-Seq data were used to clarify the effect of selenium nanoparticles (SeNPs) on the AS events of rainbow trout head kidney under heat stress. The results showed that a total of 45,398 AS events were identified from 9804 genes, of which Skipped Exon (SE) was the most common type of AS event. Through the analysis of the differentially expressed genes (DEGs) in each group, we learned that DEGs were enriched in the spliceosome, and the relevant genes were significantly changed, which promoted the occurrence of AS. We found that lysine degradation, ubiquitin mediated proteolysis, RNA degradation, protein processing in endoplasmic reticulum processing and other pathways were significantly enriched after addition of SeNPs. In addition, some immune related signaling pathways, such as the mTOR signaling pathway, interact with each other to enhance the resistance of rainbow trout to heat stress. These results indicated that AS in head kidney of rainbow trout changed under heat stress and SeNPs played a key role in alleviating heat stress for rainbow trout.
Collapse
Affiliation(s)
- Jiahui Zhang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Yucai Pan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| |
Collapse
|
4
|
Liu C, Wen H, Zheng Y, Zhang C, Zhang Y, Wang L, Sun D, Zhang K, Qi X, Li Y. Integration of mRNA and miRNA Analysis Sheds New Light on the Muscle Response to Heat Stress in Spotted Sea Bass ( Lateolabrax maculatus). Int J Mol Sci 2024; 25:12098. [PMID: 39596165 PMCID: PMC11594061 DOI: 10.3390/ijms252212098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Temperature is a crucial environmental factor for fish. Elevated temperatures trigger various physiological and molecular responses designed to maintain internal environmental homeostasis and ensure the proper functioning of the organism. In this study, we measured biochemical parameters and performed mRNA-miRNA integrated transcriptomic analysis to characterize changes in gene expression profiles in the muscle tissue of spotted sea bass (Lateolabrax maculatus) under heat stress. The measurement of biochemical parameters revealed that the activities of nine biochemical enzymes (ALP, γ-GT, AST, GLU, CK, ALT, TG, LDH and TC) were significantly affected to varying degrees by elevated temperatures. A total of 1940 overlapping differentially expressed genes (DEGs) were identified among the five comparisons in the muscle tissue after heat stress. Protein-protein interaction (PPI) analysis of DEGs indicated that heat shock protein genes (HSPs) were deeply involved in the response to heat stress. In addition, we detected 462 differential alternative splicing (DAS) events and 618 DAS genes, which are closely associated with sarcomere assembly in muscle, highlighting the role of alternative splicing in thermal response regulation. Moreover, 32 differentially expressed miRNAs (DEMs) were identified in response to heat stress, and 599 DEGs were predicted as potential target genes of those DEMs, generating 846 DEG-DEM negative regulatory pairs potentially associated with thermal response. Function enrichment analysis of the target genes suggested that lipid metabolism-related pathways and genes were regulated by miRNAs. By analyzing PPIs of target genes, we identified 28 key negative regulatory pairs, including 13 miRNAs (such as lma-miR-122, lma-miR-200b-5p and novel-miR-444) and 15 target genes (such as hspa13, dnaja1, and dnajb1a). This study elucidates the molecular mechanisms of response to high-temperature stress and offers valuable information for the selection and breeding of heat-tolerant strains of spotted sea bass.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Liu K, Xie N. Full-length transcriptome assembly of black amur bream (Megalobrama terminalis) as a reference resource. Mol Biol Rep 2024; 51:1101. [PMID: 39470845 DOI: 10.1007/s11033-024-10056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND The genus Megalobrama holds significant economic value in China, with M. terminalis (Black Amur bream) ranking second in production within this group. However, lacking comprehensive genomic and transcriptomic data has impeded research progress. This study aims to fill this gap through an extensive transcriptomic analysis of M. terminalis. METHODS AND RESULTS We utilized PacBio Isoform Sequencing to generate 558,998 subreads, totaling 45.52 Gb, which yielded 22,141 transcripts after rigorous filtering and clustering. Complementary Illumina short-read sequencing corrected 967,114 errors across these transcripts. Our analysis identified 12,426 non-redundant isoforms, with 11,872 annotated in various databases. Functional annotation indicated 11,841 isoforms matched entries in the NCBI non-redundant protein sequences database. Gene Ontology analysis categorized 10,593 isoforms, revealing strong associations with cellular processes and binding functions. Additionally, 8203 isoforms were mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes, highlighting significant involvement in immune system processes and complement cascades. We notably identified key immune molecules such as alpha-2-macroglobulin and complement component 3, each with multiple isoforms, underscoring their potential roles in the immune response. Our analysis also uncovered 853 alternative splicing events, predominantly involving retained introns, along with 672 transcription factors and 426 long non-coding RNAs. CONCLUSIONS The high-quality reference transcriptome generated in this study provides a valuable resource for comparative genomic studies within the Megalobrama genus, supporting future research to enhance aquaculture stocks.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China.
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| |
Collapse
|
6
|
Zhao X, Wang Y, Wang Z, Luo T, Huang J, Shao J. Analysis of Differential Alternative Splicing in Largemouth Bass After High Temperature Exposure. Animals (Basel) 2024; 14:3005. [PMID: 39457935 PMCID: PMC11505094 DOI: 10.3390/ani14203005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Temperature is one of the critical factors affecting the physiological functions of fish. With ongoing global warming, changes in water temperature have a profound impact on fish species. Alternative splicing, being a significant mechanism for gene expression regulation, facilitates fish to adapt and thrive in dynamic and varied aquatic environments. Our study used transcriptome sequencing to analyze alternative splicing in largemouth bass gills at 34 °C for 24 h. The findings indicated an increase in both alternative splicing events and alternative splicing genes after high temperature treatment. Specifically, the comparative analysis revealed a total of 674 differential alternative splicing events and 517 differential alternative splicing genes. Enrichment analysis of differential alternative splicing genes revealed significant associations with various gene ontology (GO) terms and KEGG pathways, particularly in immune-related pathways like necroptosis, apoptosis, and the C-type lectin receptor signaling pathway. These results emphasize that some RNA splicing-related genes are involved in the response of largemouth bass to high temperatures.
Collapse
Affiliation(s)
- Xianxian Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Yizhou Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
| | - Tianma Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
- Key Laboratory of Animal Diseases and Veterinary Public Health in Guizhou Province, Guiyang 550025, China
| | - Jun Huang
- Hubei Fisheries Science Research Institute, Wuhan 430077, China;
| | - Jian Shao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.Z.); (Z.W.); (T.L.); (J.S.)
| |
Collapse
|
7
|
Liu Y, Xia X, Ren W, Hong X, Tang X, Pang H, Yang Y. Alternative splicing perspective to prey preference of environmentally friendly biological agent Cryptolaemus montrouzieri. BMC Genomics 2024; 25:967. [PMID: 39407100 PMCID: PMC11481726 DOI: 10.1186/s12864-024-10870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinhui Xia
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenxu Ren
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiyao Hong
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuefei Tang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Pang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuchen Yang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Shaftoe JB, Geddes-McAlister J, Gillis TE. Integrated cellular response of the zebrafish (Danio rerio) heart to temperature change. J Exp Biol 2024; 227:jeb247522. [PMID: 39091230 DOI: 10.1242/jeb.247522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or 1 week exposure to 20°C from 27°C; or at multiple points during 6 weeks of acclimation to 20°C from 27°C. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signalling, the activation of stretch-sensitive pathways, cellular remodelling via ubiquitin-dependent pathways and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3 and surfeit locus protein 4, involved in lipid transport, lipid metabolism and lipid membrane remodelling. Gill opercular movements suggest that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition was affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
9
|
Joyce W, Shiels HA, Franklin CE. The integrative biology of the heart: mechanisms enabling cardiac plasticity. J Exp Biol 2024; 227:jeb249348. [PMID: 39422034 DOI: 10.1242/jeb.249348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cardiac phenotypic plasticity, the remodelling of heart structure and function, is a response to any sustained (or repeated) stimulus or stressor that results in a change in heart performance. Cardiac plasticity can be either adaptive (beneficial) or maladaptive (pathological), depending on the nature and intensity of the stimulus. Here, we draw on articles published in this Special Issue of Journal of Experimental Biology, and from the broader comparative physiology literature, to highlight the core components that enable cardiac plasticity, including structural remodelling, excitation-contraction coupling remodelling and metabolic rewiring. We discuss when and how these changes occur, with a focus on the underlying molecular mechanisms, from the regulation of gene transcription by epigenetic processes to post-translational modifications of cardiac proteins. Looking to the future, we anticipate that the growing use of -omics technologies in integration with traditional comparative physiology approaches will allow researchers to continue to uncover the vast scope for plasticity in cardiac function across animals.
Collapse
Affiliation(s)
- William Joyce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Luo M, Hu J. Alternative splicing in parallel evolution and the evolutionary potential in sticklebacks. J Anim Ecol 2024; 93:1392-1405. [PMID: 39056271 DOI: 10.1111/1365-2656.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Repeatability of adaptation to similar environments provides opportunity to evaluate the predictability of natural selection. While many studies have investigated gene expression differences between populations adapted to contrasting environments, the role of post-transcriptional processes such as alternative splicing has rarely been evaluated in the context of parallel adaptation. To address the aforementioned knowledge gap, we reanalysed transcriptomic data from three pairs of threespine stickleback (Gasterosteus aculeatus) ecotypes adapted to marine or freshwater environment. First, we identified genes with repeated expression or splicing divergence across ecotype pairs, and compared the genetic architecture and biological processes between parallelly expressed and parallelly spliced loci. Second, we analysed the extent to which parallel adaptation was reflected at gene expression and alternative splicing levels. Finally, we tested how the two axes of transcriptional variation differed in their potential for evolutionary change. Although both repeated differential splicing and differential expression across ecotype pairs showed tendency for parallel divergence, the degree of parallelism was lower for splicing than expression. Furthermore, parallel divergences in splicing and expression were likely to be associated with distinct cis-regulatory genetic variants and functionally unique set of genes. Finally, we found that parallelly spliced genes showed higher nucleotide diversity than parallelly expressed genes, indicating splicing is less susceptible to genetic variation erosion during parallel adaptation. Our results provide novel insight into the role of splicing in parallel adaptation, and underscore the contribution of splicing to the evolutionary potential of wild populations under environmental change.
Collapse
Affiliation(s)
- Man Luo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
12
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
13
|
Steward RA, Pruisscher P, Roberts KT, Wheat CW. Genetic constraints in genes exhibiting splicing plasticity in facultative diapause. Heredity (Edinb) 2024; 132:142-155. [PMID: 38291272 PMCID: PMC10923799 DOI: 10.1038/s41437-024-00669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.
Collapse
Affiliation(s)
- Rachel A Steward
- Zoology Department, Stockholm University, Stockholm, Sweden.
- Biology Department, Lund University, Lund, Sweden.
| | - Peter Pruisscher
- Zoology Department, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Innes PA, Goebl AM, Smith CCR, Rosenberger K, Kane NC. Gene expression and alternative splicing contribute to adaptive divergence of ecotypes. Heredity (Edinb) 2024; 132:120-132. [PMID: 38071268 PMCID: PMC10924094 DOI: 10.1038/s41437-023-00665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 03/10/2024] Open
Abstract
Regulation of gene expression is a critical link between genotype and phenotype explaining substantial heritable variation within species. However, we are only beginning to understand the ways that specific gene regulatory mechanisms contribute to adaptive divergence of populations. In plants, the post-transcriptional regulatory mechanism of alternative splicing (AS) plays an important role in both development and abiotic stress response, making it a compelling potential target of natural selection. AS allows organisms to generate multiple different transcripts/proteins from a single gene and thus may provide a source of evolutionary novelty. Here, we examine whether variation in alternative splicing and gene expression levels might contribute to adaptation and incipient speciation of dune-adapted prairie sunflowers in Great Sand Dunes National Park, Colorado, USA. We conducted a common garden experiment to assess transcriptomic variation among ecotypes and analyzed differential expression, differential splicing, and gene coexpression. We show that individual genes are strongly differentiated for both transcript level and alternative isoform proportions, even when grown in a common environment, and that gene coexpression networks are disrupted between ecotypes. Furthermore, we examined how genome-wide patterns of sequence divergence correspond to divergence in transcript levels and isoform proportions and find evidence for both cis and trans-regulation. Together, our results emphasize that alternative splicing has been an underappreciated mechanism providing source material for natural selection at short evolutionary time scales.
Collapse
Affiliation(s)
- Peter A Innes
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA.
| | - April M Goebl
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
- Research and Conservation Department, Denver Botanic Gardens, Denver, CO, USA
| | - Chris C R Smith
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Kaylee Rosenberger
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| | - Nolan C Kane
- Ecology and Evolutionary Biology Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|
15
|
Shi X, Zhang R, Liu Z, Zhao G, Guo J, Mao X, Fan B. Alternative Splicing Reveals Acute Stress Response of Litopenaeus vannamei at High Alkalinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:103-115. [PMID: 38206418 DOI: 10.1007/s10126-023-10281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Alkalinity is regarded as one of the primary stressors for aquatic animals in saline-alkaline water. Alternative splicing (AS) can significantly increase the diversity of transcripts and play key roles in stress response; however, the studies on AS under alkalinity stress of crustaceans are still limited. In the present study, we devoted ourselves to the study of AS under acute alkalinity stress at control (50 mg/L) and treatment groups (350 mg/L) by RNA-seq in pacific white shrimp (Litopenaeus vannamei). We identified a total of 10,556 AS events from 4865 genes and 619 differential AS (DAS) events from 519 DAS genes in pacific white shrimp. Functional annotation showed that the DAS genes primarily involved in spliceosome. Five splicing factors (SFs), U2AF1, PUF60, CHERP, SR140 and SRSF2 were significantly up-regulated and promoted AS. Furthermore, alkalinity activated the Leukocyte transendothelial migration, mTOR signaling pathway and AMPK signaling pathway, which regulated MAPK1, EIF3B and IGFP-RP1 associated with these pathways. We also studied three SFs (HSFP1, SRSF2 and NHE-RF1), which underwent AS to form different transcript isoforms. The above results demonstrated that AS was a regulatory mechanism in pacific white shrimp in response to acute alkalinity stress. SFs played vital roles in AS of pacific white shrimp, such as HSFP1, SRSF2 and NHE-RF1. DAS genes were significantly modified in immunity of pacific white shrimp to cope with alkalinity stress. This is the first study on the response of AS to acute alkalinity stress, which provided scientific basis for AS mechanism of crustaceans response to alkalinity stress.
Collapse
Affiliation(s)
- Xiang Shi
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Ruiqi Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Jintao Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Xue Mao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Baoyi Fan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
16
|
Li W, Bu M, Hu R, Jiang S, Chen L, Somero GN. Tissue-specific temperature dependence of RNA editing levels in zebrafish. BMC Biol 2023; 21:262. [PMID: 37981664 PMCID: PMC10659053 DOI: 10.1186/s12915-023-01738-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND RNA editing by adenosine deaminase acting on RNA (ADAR) occurs in all metazoans and fulfils several functions. Here, we examined effects of acclimation temperature (27 °C, 18 °C,13 °C) on editing patterns in six tissues of zebrafish (Danio rerio). RESULTS Sites and total amounts of editing differed among tissues. Brain showed the highest levels, followed by gill and skin. In these highly edited tissues, decreases in temperatures led to large increases in total amounts of editing and changes in specific edited sites. Gene ontology analysis showed both similarities (e.g., endoplasmic reticulum stress response) and differences in editing among tissues. The majority of edited sites were in transcripts of transposable elements and the 3'UTR regions of protein coding genes. By experimental validation, translation efficiency was directly related to extent of editing of the 3'UTR region of an mRNA. CONCLUSIONS RNA editing increases 3'UTR polymorphism and affects efficiency of translation. Such editing may lead to temperature-adaptive changes in the proteome through altering relative amounts of synthesis of different proteins.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Mengdi Bu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China.
| | - George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, 93950, USA.
| |
Collapse
|
17
|
Bravo S, Moya J, Leiva F, Guzman O, Vidal R. Transcriptome analyses reveal key roles of alternative splicing regulation in atlantic salmon during the infectious process of Piscirickettsiosis disease. Heliyon 2023; 9:e22377. [PMID: 38058636 PMCID: PMC10696053 DOI: 10.1016/j.heliyon.2023.e22377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
In the Chilean salmon farming industry, infection by Piscirickettsia salmonis is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases. In this study, we used RNA data to survey P. salmonis-induced modifications in the AS of Atlantic salmon and found that P. salmonis infection promoted a substantial number (158,668) of AS events. Differentially spliced genes (DSG) sensitive to Piscirickettsiosis were predominantly enriched in genes involved in RNA processing, splicing and spliceosome processes (e.g., hnRNPm, hnRPc, SRSF7, SRSF45), whereas among the DSG of resistant and susceptible to Piscirickettsiosis, several metabolic and immune processes were found, most notably associated to the regulation of GTPase, lysosome and telomere organization-maintenance. Furthermore, we found that DSG were mostly not differentially expressed (5-7 %) and were implicated in distinct biological pathways. Therefore, our results underpin AS achieving a significant regulatory performance in the response of salmonids to Piscirickettsiosis.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 of.26, Puerto Varas, Chile
| | - Francisco Leiva
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
18
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
19
|
Zhang X, Zhang X, Yuan J, Li F. The Responses of Alternative Splicing during Heat Stress in the Pacific White Shrimp Litopenaeus vannamei. Genes (Basel) 2023; 14:1473. [PMID: 37510377 PMCID: PMC10379218 DOI: 10.3390/genes14071473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Heat tolerance is increasingly becoming a crucial trait for aquaculture species in the face of rapidly changing climate conditions. Alternative splicing (AS) is a vital mechanism within cells that modulates gene abundance and functional diversity, enabling organisms to effectively respond to diverse stressful conditions, including thermal stress. However, it is still uncertain whether AS contributes to heat tolerance in shrimp. In this study, we conducted an extensive transcriptome analysis on the Pacific white shrimp, Litopenaeus vannamei, revealing a total of 1267, 987, and 130 differential AS events (DAS) in the gill, hepatopancreas, and muscle, respectively, following exposure to heat stress. Among all of the DAS events, exon skipping (ES) was the predominant form of splicing modification observed. Interestingly, a minor portion of DAS genes exhibited overlap across the three tissues, implying that heat stress exerts unique effects on various tissue types. Moreover, the functional enrichment analysis demonstrated that commonly identified DAS genes were primarily associated with the "spliceosome" pathway, indicating that the AS of splicing-related genes played a crucial role in the response to heat stress. Our findings also revealed that heat stress tended to induce longer mRNA isoforms through differential alternative 3' splice site (A3SS) events. Notably, A3SS events exhibited the highest proportion of maintained open reading frames (ORFs) under heat stress. Interestingly, we observed a limited overlap between the genes exhibiting DAS and those showing differential gene expression (DEG), indicating that AS may function as a distinct regulatory mechanism independent of transcriptional regulation in response to heat stress. This is the first comprehensive study on AS in crustacea species under heat stress, which broadens our understanding of the regulatory mechanisms governing the crustaceans' response to environmental stress, providing valuable insights for the aquaculture breeding of shrimp and other aquatic animals.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
20
|
Sjodin BMF, Russello MA. Comparative genomics reveals putative evidence for high-elevation adaptation in the American pika ( Ochotona princeps). G3 GENES|GENOMES|GENETICS 2022; 12:6695220. [PMID: 36087005 PMCID: PMC9635661 DOI: 10.1093/g3journal/jkac241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
High-elevation environments have lower atmospheric oxygen content, reduced temperatures, and higher levels of UV radiation than found at lower elevations. As such, species living at high elevations must overcome these challenges to survive, grow, and reproduce. American pikas (Ochotona princeps) are alpine lagomorphs that are habitat specialists typically found at elevations >2,000 m. Previous research has shown putative evidence for high-elevation adaptation; however, investigations to date have been limited to a fraction of the genome. Here, we took a comparative genomics approach to identify putative regions under selection using a chromosomal reference genome assembly for the American pika relative to 8 other mammalian species targeted based on phylogenetic relatedness and (dis)similarity in ecology. We first identified orthologous gene groups across species and then extracted groups containing only American pika genes as well as unclustered pika genes to inform functional enrichment analyses; among these, we found 141 enriched terms with many related to hypoxia, metabolism, mitochondrial function/development, and DNA repair. We identified 15 significantly expanded gene families within the American pika across all orthologous gene groups that displayed functionally enriched terms associated with hypoxia adaptation. We further detected 196 positively selected genes, 41 of which have been associated with putative adaptation to hypoxia, cold tolerance, and response to UV following a literature review. In particular, OXNAD1, NRDC, and those genes critical in DNA repair represent important targets for future research to examine their functional implications in the American pika, especially as they may relate to adaptation to rapidly changing environments.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| |
Collapse
|
21
|
Tan S, Wang W, Jie W, Liu J. FishExp: A comprehensive database and analysis platform for gene expression and alternative splicing of fish species. Comput Struct Biotechnol J 2022; 20:3676-3684. [PMID: 35891795 PMCID: PMC9293738 DOI: 10.1016/j.csbj.2022.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
The publicly archived RNA-seq data has grown exponentially, while its valuable information has not yet been fully discovered and utilized, such as alternative splicing and its integration with gene expression. This is especially true for fish species which play important roles in ecology, research and the food industry. Furthermore, there is a lack of online platform to analyze users’ new data individually and jointly with existing data for the comprehensive analysis of alternative splicing and gene expression. Here, we present FishExp, a web-based data platform covering gene expression and alternative splicing in 26,081 RNA-seq experiments from 44 fishes. It allows users to query the data in a variety of ways, including gene identifier/symbol, functional term, and BLAST alignment. Moreover, users can customize experiments and tools to perform differential/specific expression and alternative splicing analysis, co-expression and cross-species analysis. In addition, functional enrichment is provided to confer biological significance. Notably, users are allowed to submit their own data and perform various analyses using the new data alone or alongside existing data in FishExp. Results of retrieval and analysis can be visualized on the gene-, transcript- and splicing event-level webpage in a highly interactive and intuitive manner. All data in FishExp can be downloaded for more in-depth analysis. The manually curated sample information, uniform data processing and various tools make it efficient for users to gain new insights from these large data sets, facilitating scientific hypothesis generation. FishExp is freely accessible at https://bioinfo.njau.edu.cn/fishExp.
Collapse
Affiliation(s)
- Suxu Tan
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinding Liu
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.,Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
22
|
Ebner JN, Wyss MK, Ritz D, von Fumetti S. Effects of thermal acclimation on the proteome of the planarian Crenobia alpina from an alpine freshwater spring. J Exp Biol 2022; 225:276068. [PMID: 35875852 PMCID: PMC9440759 DOI: 10.1242/jeb.244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Species' acclimation capacity and their ability to maintain molecular homeostasis outside ideal temperature ranges will partly predict their success following climate change-induced thermal regime shifts. Theory predicts that ectothermic organisms from thermally stable environments have muted plasticity, and that these species may be particularly vulnerable to temperature increases. Whether such species retained or lost acclimation capacity remains largely unknown. We studied proteome changes in the planarian Crenobia alpina, a prominent member of cold-stable alpine habitats that is considered to be a cold-adapted stenotherm. We found that the species' critical thermal maximum (CTmax) is above its experienced habitat temperatures and that different populations exhibit differential CTmax acclimation capacity, whereby an alpine population showed reduced plasticity. In a separate experiment, we acclimated C. alpina individuals from the alpine population to 8, 11, 14 or 17°C over the course of 168 h and compared their comprehensively annotated proteomes. Network analyses of 3399 proteins and protein set enrichment showed that while the species' proteome is overall stable across these temperatures, protein sets functioning in oxidative stress response, mitochondria, protein synthesis and turnover are lower in abundance following warm acclimation. Proteins associated with an unfolded protein response, ciliogenesis, tissue damage repair, development and the innate immune system were higher in abundance following warm acclimation. Our findings suggest that this species has not suffered DNA decay (e.g. loss of heat-shock proteins) during evolution in a cold-stable environment and has retained plasticity in response to elevated temperatures, challenging the notion that stable environments necessarily result in muted plasticity. Summary: The proteome of an alpine Crenobia alpina population shows plasticity in response to acclimation to warmer temperatures.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Mirjam Kathrin Wyss
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Danilo Ritz
- 2 Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Stefanie von Fumetti
- 1 Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 2022; 23:697-710. [PMID: 35821097 DOI: 10.1038/s41576-022-00514-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
A major goal of evolutionary genetics is to understand the genetic processes that give rise to phenotypic diversity in multicellular organisms. Alternative splicing generates multiple transcripts from a single gene, enriching the diversity of proteins and phenotypic traits. It is well established that alternative splicing contributes to key innovations over long evolutionary timescales, such as brain development in bilaterians. However, recent developments in long-read sequencing and the generation of high-quality genome assemblies for diverse organisms has facilitated comparisons of splicing profiles between closely related species, providing insights into how alternative splicing evolves over shorter timescales. Although most splicing variants are probably non-functional, alternative splicing is nonetheless emerging as a dynamic, evolutionarily labile process that can facilitate adaptation and contribute to species divergence.
Collapse
Affiliation(s)
- Charlotte J Wright
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK. .,Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Tian S, Monteiro A. A transcriptomic atlas underlying developmental plasticity of seasonal forms of Bicyclus anynana butterflies. Mol Biol Evol 2022; 39:msac126. [PMID: 35679434 PMCID: PMC9218548 DOI: 10.1093/molbev/msac126] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Organisms residing in regions with alternating seasons often develop different phenotypes, or forms, in each season. These forms are often adaptations to each season and result from an altered developmental response to specific environmental cues such as temperature. While multiple studies have examined form-specific gene expression profiles in a diversity of species, little is known about how environments and developmental transitions, cued by hormone pulses, alter post-transcriptional patterns. In this study, we examine how gene expression, alternative splicing, and miRNA-mediated gene silencing in Bicyclus anynana butterfly hindwing tissue, varies across two rearing temperatures at four developmental timepoints. These timepoints flank two temperature-sensitive periods that coincide with two pulses of the insect hormone 20E. Our results suggest that developmental transitions, coincident with 20E pulses, elicit a greater impact on all these transcriptomic patterns than rearing temperatures per se. More similar transcriptomic patterns are observed pre-20E pulses than those observed post-20E pulses. We also found functionally distinct sets of differentially expressed and differentially spliced genes in the seasonal forms. Furthermore, around 10% of differentially expressed genes are predicted to be direct targets of, and regulated by, differentially expressed miRNAs between the seasonal forms. Many differentially expressed genes, miRNAs, or differentially spliced genes potentially regulate eyespot size plasticity, and we validated the differential splicing pattern of one such gene, daughterless. We present a comprehensive and interactive transcriptomic atlas of the hindwing tissue of both seasonal forms of B. anynana throughout development, a model organism of seasonal plasticity.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Thorstensen MJ, Turko AJ, Heath DD, Jeffries KM, Pitcher TE. Acute thermal stress elicits interactions between gene expression and alternative splicing in a fish of conservation concern. J Exp Biol 2022; 225:275812. [DOI: 10.1242/jeb.244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
Transcriptomic research provides a mechanistic understanding of an organism's response to environmental challenges such as increasing temperatures, which can provide key insights into the threats posed by thermal challenges associated with urbanization and climate change. Differential gene expression and alternative splicing are two elements of the transcriptomic stress response that may work in tandem, but relatively few studies have investigated these interactions in fishes of conservation concern. We studied the imperilled redside dace (Clinostomus elongatus) as thermal stress is hypothesised to be an important cause of population declines. We tested the hypothesis that gene expression-splicing interactions contribute to the thermal stress response. Wild fish exposed to acute thermal stress were compared with both handling controls and fish sampled directly from a river. Liver tissue was sampled to study the transcriptomic stress response. With a gene set enrichment analysis, we found that thermally stressed fish showed a transcriptional response related to transcription regulation and responses to unfolded proteins, and alternatively spliced genes related to gene expression regulation and metabolism. One splicing factor, prpf38b, was upregulated in the thermally stressed group compared to the other treatments. This splicing factor may have a role in the Jun/AP-1 cellular stress response, a pathway with wide-ranging and context-dependent effects. Given large gene interaction networks and the context-dependent nature of transcriptional responses, our results highlight the importance of understanding interactions between gene expression and splicing for understanding transcriptomic responses to thermal stress. Our results also reveal transcriptional pathways that can inform conservation breeding, translocation, and reintroduction programs for redside dace and other imperilled species by identifying appropriate source populations.
Collapse
Affiliation(s)
- Matt J. Thorstensen
- 1 Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Andy J. Turko
- 2 Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada
- 3 Department of Integrative Biology & Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Daniel D. Heath
- 3 Department of Integrative Biology & Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Ken M. Jeffries
- 1 Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Trevor E. Pitcher
- 3 Department of Integrative Biology & Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
26
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
27
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
28
|
Steward RA, de Jong MA, Oostra V, Wheat CW. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat Commun 2022; 13:755. [PMID: 35136048 PMCID: PMC8825856 DOI: 10.1038/s41467-022-28306-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Seasonal plasticity is accomplished via tightly regulated developmental cascades that translate environmental cues into trait changes. Little is known about how alternative splicing and other posttranscriptional molecular mechanisms contribute to plasticity or how these mechanisms impact how plasticity evolves. Here, we use transcriptomic and genomic data from the butterfly Bicyclus anynana, a model system for seasonal plasticity, to compare the extent of differential expression and splicing and test how these axes of transcriptional plasticity differ in their potential for evolutionary change. Between seasonal morphs, we find that differential splicing affects a smaller but functionally unique set of genes compared to differential expression. Further, we find strong support for the novel hypothesis that spliced genes are more susceptible than differentially expressed genes to erosion of genetic variation due to selection on seasonal plasticity. Our results suggest that splicing plasticity is especially likely to experience genetic constraints that could affect the potential of wild populations to respond to rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Vicencio Oostra
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
29
|
Jacobs A, Elmer KR. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol Ecol 2021; 30:4955-4969. [PMID: 33502030 PMCID: PMC8653899 DOI: 10.1111/mec.15817] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
Understanding the contribution of different molecular processes to evolution and development is crucial for identifying the mechanisms of adaptation. Here, we used RNA-sequencing data to test the importance of alternative splicing and differential gene expression in a case of parallel adaptive evolution, the replicated postglacial divergence of the salmonid fish Arctic charr (Salvelinus alpinus) into sympatric benthic and pelagic ecotypes across multiple independent lakes. We found that genes differentially spliced between ecotypes were mostly not differentially expressed (<6% overlap) and were involved in different biological processes. Differentially spliced genes were primarily enriched for muscle development and functioning, while differentially expressed genes were involved in metabolism, immunity and growth. Furthermore, alternative splicing and gene expression were mostly controlled by independent cis-regulatory quantitative trait loci (<3.4% overlap). Cis-regulatory regions were associated with the parallel divergence in splicing (16.5% of intron clusters) and expression (6.7%-10.1% of differentially expressed genes), indicating shared regulatory variation across ecotype pairs. Contrary to theoretical expectation, we found that differentially spliced genes tended to be highly central in regulatory networks ("hub genes") and were annotated to significantly more gene ontology terms compared to nondifferentially spliced genes, consistent with a higher level of pleiotropy. Together, our results suggest that the concerted regulation of alternative splicing and differential gene expression through different regulatory regions leads to the divergence of complementary processes important for local adaptation. This provides novel insights into the importance of contrasting but putatively complementary molecular processes in rapid parallel adaptive evolution.
Collapse
Affiliation(s)
- Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
30
|
Abstract
The same gene is often regulated differently in response to stress in even closely related plant species. Directly measuring stress-responsive gene expression can be financially and logistically challenging in nonmodel species. Here, we show that models trained using data on which genes respond to cold in one species can predict which genes will respond to cold in related species, even when the training and target species vary in their degree of tolerance to cold. The prediction models we used require only genomic sequence and gene models. As a result, data from well-studied model species may be used to predict which genes will respond to stress in less-studied species with sequenced genomes. Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.
Collapse
|
31
|
Li X, Wu J, Xiao X, Rong Y, Yang H, Li J, Zhou Q, Zhou W, Shi J, Qi H, Du H. Characterization and complexity of transcriptome in Gymnocypris przewalskii using single-molecule long-read sequencing and RNA-seq. DNA Res 2021; 28:6275749. [PMID: 33989386 PMCID: PMC8320875 DOI: 10.1093/dnares/dsab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
The Tibetan Schizothoracinae fish Gymnocypris przewalskii has the ability to adapt to the extreme plateau environment, making it an ideal biological material for evolutionary biology research. However, the lack of well-annotated reference genomes has limited the study of the molecular genetics of G. przewalskii. To characterize its transcriptome features, we first used long-read sequencing technology in combination with RNA-seq for transcriptomic analysis. A total of 159,053 full-length (FL) transcripts were captured by Iso-Seq, having a mean length of 3,445 bp with N50 value of 4,348. Of all FL transcripts, 145,169 were well-annotated in the public database and 134,537 contained complete open reading frames. There were 4,149 pairs of alternative splicing events, of which three randomly selected were defined by RT–PCR and sequencing, and 13,293 long non-coding RNAs detected, based on all-vs.-all BLAST. A total of 118,185 perfect simple sequence repeats were identified from FL transcripts. The FL transcriptome might provide basis for further research of G. przewalskii.
Collapse
Affiliation(s)
- Xindan Li
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinming Wu
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinping Xiao
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yifeng Rong
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Haile Yang
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Junyi Li
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Qiong Zhou
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Weiguo Zhou
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Jianquan Shi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Hongfang Qi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Hao Du
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China.,The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| |
Collapse
|
32
|
Li F, Hu Q, Chen F, Jiang JF. Transcriptome analysis reveals Vernalization is independent of cold acclimation in Arabidopsis. BMC Genomics 2021; 22:462. [PMID: 34154522 PMCID: PMC8218483 DOI: 10.1186/s12864-021-07763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Background Through vernalization, plants achieve flowering competence by sensing prolonged cold exposure (constant exposure approximately 2-5 °C). During this process, plants initiate defense responses to endure cold conditions. Here, we conducted transcriptome analysis of Arabidopsis plants subjected to prolonged cold exposure (6 weeks) to explore the physiological dynamics of vernalization and uncover the relationship between vernalization and cold stress. Results Time-lag initiation of the two pathways and weighted gene co-expression network analysis (WGCNA) revealed that vernalization is independent of cold acclimation. Moreover, WGCNA revealed three major networks involving ethylene and jasmonic acid response, cold acclimation, and chromatin modification in response to prolonged cold exposure. Finally, throughout vernalization, the cold stress response is regulated via an alternative splicing-mediated mechanism. Conclusion These findings illustrate a comprehensive picture of cold stress- and vernalization-mediated global changes in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07763-3.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Fu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
RNA sequencing describes both population structure and plasticity-selection dynamics in a non-model fish. BMC Genomics 2021; 22:273. [PMID: 33858341 PMCID: PMC8048188 DOI: 10.1186/s12864-021-07592-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 01/03/2023] Open
Abstract
Background Messenger RNA sequencing is becoming more common in studies of non-model species and is most often used for gene expression-based investigations. However, the method holds potential for numerous other applications as well—including analyses of alternative splicing, population structure, and signatures of selection. To maximize the utility of mRNA data sets, distinct analyses may be combined such as by exploring dynamics between gene expression with signatures of selection in the context of population structure. Here, we compare two published data sets describing two populations of a minnow species endemic to the San Francisco Estuary (Sacramento splittail, Pogonichthys macrolepidotus): a microsatellite data set showing population structure, and an mRNA whole transcriptome data set obtained after the two populations were exposed to a salinity challenge. We compared measures of population structure and genetic variation using single nucleotide polymorphisms (SNPs) called from mRNA from the whole transcriptome sequencing study with those patterns determined from microsatellites. For investigating plasticity and evolution, intra- and inter-population transcriptome plasticity was investigated with differential gene expression, differential exon usage, and gene expression variation. Outlier SNP analysis was also performed on the mRNA data set and signatures of selection and phenotypic plasticity were investigated on an individual-gene basis. Results We found that mRNA sequencing revealed patterns of population structure consistent with those found with microsatellites, but with lower magnitudes of genetic variation and population differentiation consistent with widespread purifying selection expected when using mRNA. In addition, within individual genes, phenotypic plasticity or signatures of selection were found in almost mutual exclusion (except heatr6, nfu1, slc22a6, sya, and mmp13). Conclusions These results show that an mRNA sequencing data set may have multiple uses, including describing population structure and for investigating the mechanistic interplay of evolution and plasticity in adaptation. MRNA sequencing thus complements traditional sequencing methods used for population genetics, in addition to its utility for describing phenotypic plasticity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07592-4.
Collapse
|
34
|
Cahill T, da Silveira WA, Renaud L, Williamson T, Wang H, Chung D, Overton I, Chan SSL, Hardiman G. Induced Torpor as a Countermeasure for Low Dose Radiation Exposure in a Zebrafish Model. Cells 2021; 10:906. [PMID: 33920039 PMCID: PMC8071006 DOI: 10.3390/cells10040906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
The development of the Artemis programme with the goal of returning to the moon is spurring technology advances that will eventually take humans to Mars and herald a new era of interplanetary space travel. However, long-term space travel poses unique challenges including exposure to ionising radiation from galactic cosmic rays and potential solar particle events, exposure to microgravity and specific nutritional challenges arising from earth independent exploration. Ionising radiation is one of the major obstacles facing future space travel as it can generate oxidative stress and directly damage cellular structures such as DNA, in turn causing genomic instability, telomere shortening, extracellular-matrix remodelling and persistent inflammation. In the gastrointestinal tract (GIT) this can lead to leaky gut syndrome, perforations and motility issues, which impact GIT functionality and affect nutritional status. While current countermeasures such as shielding from the spacecraft can attenuate harmful biological effects, they produce harmful secondary particles that contribute to radiation exposure. We hypothesised that induction of a torpor-like state would confer a radioprotective effect given the evidence that hibernation extends survival times in irradiated squirrels compared to active controls. To test this hypothesis, a torpor-like state was induced in zebrafish using melatonin treatment and reduced temperature, and radiation exposure was administered twice over the course of 10 days. The protective effects of induced-torpor were assessed via RNA sequencing and qPCR of mRNA extracted from the GIT. Pathway and network analysis were performed on the transcriptomic data to characterise the genomic signatures in radiation, torpor and torpor + radiation groups. Phenotypic analyses revealed that melatonin and reduced temperature successfully induced a torpor-like state in zebrafish as shown by decreased metabolism and activity levels. Genomic analyses indicated that low dose radiation caused DNA damage and oxidative stress triggering a stress response, including steroidal signalling and changes to metabolism, and cell cycle arrest. Torpor attenuated the stress response through an increase in pro-survival signals, reduced oxidative stress via the oxygen effect and detection and removal of misfolded proteins. This proof-of-concept model provides compelling initial evidence for utilizing an induced torpor-like state as a potential countermeasure for radiation exposure.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Tucker Williamson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Hao Wang
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Ian Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; (T.W.); (S.S.L.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (H.W.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
35
|
Characterization of Biological Pathways Regulating Acute Cold Resistance of Zebrafish. Int J Mol Sci 2021; 22:ijms22063028. [PMID: 33809683 PMCID: PMC8001686 DOI: 10.3390/ijms22063028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
Low temperature stress represents a major threat to the lives of both farmed and wild fish species. However, biological pathways determining the development of cold resistance in fish remain largely unknown. Zebrafish larvae at 96 hpf were exposed to lethal cold stress (10 °C) for different time periods to evaluate the adverse effects at organism, tissue and cell levels. Time series RNA sequencing (RNA-seq) experiments were performed to delineate the transcriptomic landscape of zebrafish larvae under cold stress and during the subsequent rewarming phase. The genes regulated by cold stress were characterized by progressively enhanced or decreased expression, whereas the genes associated with rewarming were characterized by rapid upregulation upon return to normal temperature (28 °C). Genes such as trib3, dusp5 and otud1 were identified as the representative molecular markers of cold-induced damages through network analysis. Biological pathways involved in cold stress responses were mined from the transcriptomic data and their functions in regulating cold resistance were validated using specific inhibitors. The autophagy, FoxO and MAPK (mitogen-activated protein kinase) signaling pathways were revealed to be survival pathways for enhancing cold resistance, while apoptosis and necroptosis were the death pathways responsible for cold-induced mortality. Functional mechanisms of the survival-enhancing factors Foxo1, ERK (extracellular signal-regulated kinase) and p38 MAPK were further characterized by inhibiting their activities upon cold stress and analyzing gene expression though RNA-seq. These factors were demonstrated to determine the cold resistance of zebrafish through regulating apoptosis and p53 signaling pathway. These findings have provided novel insights into the stress responses elicited by lethal cold and shed new light on the molecular mechanisms underlying cold resistance of fish.
Collapse
|
36
|
Shi M, Zhang Q, Li Y, Zhang W, Liao L, Cheng Y, Jiang Y, Huang X, Duan Y, Xia L, Ye W, Wang Y, Xia XQ. Global gene expression profile under low-temperature conditions in the brain of the grass carp (Ctenopharyngodon idellus). PLoS One 2020; 15:e0239730. [PMID: 32976524 PMCID: PMC7518592 DOI: 10.1371/journal.pone.0239730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/13/2020] [Indexed: 01/29/2023] Open
Abstract
Grass carp is an important commercial fish widely cultivated in China. A wide range of temperatures, particularly extremely low temperatures, have dramatic effects on the aquaculture of this teleost. However, relatively few studies have characterized the molecular responses of grass carp exposed to acute cooling in natural environment. Here, we investigated the transcriptome profiles of the grass carp brain in response to cooling. Through regulation pattern analyses, we identified 2,513 differentially expressed genes (DEGs) that responded to moderate cold stress (12°C), while 99 DEGs were induced by severe low temperature (4°C).The pathway analyses revealed that the DEGs sensitive to moderate cold were largely enriched in steroid biosynthesis, spliceosome, translation, protein metabolism, phagosome, gap junction and estrogen signaling pathways. Additionally, we discerned genes most likely involved in low temperature tolerance, of which the MAPK signaling pathway was dominantly enriched. Further examination and characterization of the candidate genes may help to elucidate the mechanisms underpinning extreme plasticity to severe cold stress in grass carp.
Collapse
Affiliation(s)
- Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiangxiang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lanjie Liao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanxin Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Wang
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XQX); (YW)
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (XQX); (YW)
| |
Collapse
|
37
|
Stanford BC, Clake DJ, Morris MR, Rogers SM. The power and limitations of gene expression pathway analyses toward predicting population response to environmental stressors. Evol Appl 2020; 13:1166-1182. [PMID: 32684953 PMCID: PMC7359838 DOI: 10.1111/eva.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Rapid environmental changes impact the global distribution and abundance of species, highlighting the urgency to understand and predict how populations will respond. The analysis of differentially expressed genes has elucidated areas of the genome involved in adaptive divergence to past and present environmental change. Such studies however have been hampered by large numbers of differentially expressed genes and limited knowledge of how these genes work in conjunction with each other. Recent methods (broadly termed "pathway analyses") have emerged that aim to group genes that behave in a coordinated fashion to a factor of interest. These methods aid in functional annotation and uncovering biological pathways, thereby collapsing complex datasets into more manageable units, providing more nuanced understandings of both the organism-level effects of modified gene expression, and the targets of adaptive divergence. Here, we reanalyze a dataset that investigated temperature-induced changes in gene expression in marine-adapted and freshwater-adapted threespine stickleback (Gasterosteus aculeatus), using Weighted Gene Co-expression Network Analysis (WGCNA) with PANTHER Gene Ontology (GO)-Slim overrepresentation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Six modules exhibited a conserved response and six a divergent response between marine and freshwater stickleback when acclimated to 7°C or 22°C. One divergent module showed freshwater-specific response to temperature, and the remaining divergent modules showed differences in height of reaction norms. PPARAa, a transcription factor that regulates fatty acid metabolism and has been implicated in adaptive divergence, was located in a module that had higher expression at 7°C and in freshwater stickleback. This updated methodology revealed patterns that were not found in the original publication. Although such methods hold promise toward predicting population response to environmental stressors, many limitations remain, particularly with regard to module expression representation, database resources, and cross-database integration.
Collapse
Affiliation(s)
| | - Danielle J. Clake
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
| | | | - Sean M. Rogers
- Department of Biological SciencesUniversity of CalgaryCalgaryABCanada
- Bamfield Marine Sciences CentreBamfieldBCCanada
| |
Collapse
|
38
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
39
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
40
|
Lafuente E, Beldade P. Genomics of Developmental Plasticity in Animals. Front Genet 2019; 10:720. [PMID: 31481970 PMCID: PMC6709652 DOI: 10.3389/fgene.2019.00720] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place. By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity. Developmental plasticity can be adaptive and its evolution can be shaped by natural selection. It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification. Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals. We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CNRS-UMR5174, Université Paul Sabatier, Toulouse, France
- Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|