1
|
Soto J, Pinilla F, Olguín P, Castañeda LE. Genetic Architecture of the Thermal Tolerance Landscape in Drosophila melanogaster. Mol Ecol 2025; 34:e17697. [PMID: 40035350 DOI: 10.1111/mec.17697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
Increased environmental temperatures associated with global warming strongly impact natural populations of ectothermic species. Therefore, it is crucial to understand the genetic basis and evolutionary potential of heat tolerance. However, heat tolerance and its genetic components depend on the methodology, making it difficult to predict the adaptive responses to global warming. Here, we measured the knockdown time for 100 lines from the Drosophila Genetic Reference Panel (DGRP) at four different static temperatures, and we estimated their thermal-death-time (TDT) curves, which incorporate the magnitude and the time of exposure to thermal stress, to determine the genetic basis of the thermal tolerance landscape. Through quantitative genetic analyses, the knockdown time showed a significant heritability at different temperatures and that its genetic correlations decreased as temperatures differences increased. Significant genotype-by-sex and genotype-by-environment interactions were noted for heat tolerance. We also discovered genetic variability for the two parameters of TDT: CTmax and thermal sensitivity. Taking advantage of the DGRP, we performed a GWAS and identified multiple variants associated with the TDT parameters, which mapped to genes related to signalling and developmental functions. We performed functional validations for some candidate genes using RNAi, which revealed that genes such as mam, KNCQ, or robo3 affect the knockdown time at a specific temperature but are not associated with the TDT parameters. In conlusion, the thermal tolerance landscape display genetic variation and plastic responses, which may facilitate the adaptation of Drosophila populations to a changing world.
Collapse
Affiliation(s)
- Juan Soto
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisco Pinilla
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricio Olguín
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis E Castañeda
- Program of Human Genetics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Research Ring in Pest Insects and Climate Change (PIC2), Santiago, Chile
| |
Collapse
|
2
|
Gibbs JR, Mei C, Wunderlich Z. Beyond the heat shock pathway: Heat stress responses in Drosophila development. Dev Biol 2025; 518:53-60. [PMID: 39557149 PMCID: PMC11703687 DOI: 10.1016/j.ydbio.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Heat stress has broad effects on an organism and is an inevitable part of life. Embryos face a particular challenge when faced with heat stress - the intricate molecular processes that pattern the embryo can all be affected by heat, and the embryo lacks some of the strategies that adults can use to manage or avoid heat stress. We use Drosophila melanogaster as a model, as insects are capable of developing normally under a wide range of temperatures and are exposed to daily temperature swings as they develop. Research has focused on the heat shock pathway and the transcription of heat shock proteins as the main response to heat and heat damage. This review explores embryonic heat responses beyond the heat shock pathway. We examine the effects of heat from a biochemical standpoint, as well as highlighting other mechanisms of heat stress regulation, such as miRNA activity or other signaling pathways. We discuss how different elements of the heat stress response must be coordinated across the embryo to enable development under a wide range of temperatures. Studying heat stress in Drosophila melanogaster can be a powerful lens into how developmental systems ensure robustness to environmental factors.
Collapse
Affiliation(s)
- Julia R Gibbs
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Christian Mei
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Zeba Wunderlich
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Telonis-Scott M, Ali Z, Hangartner S, Sgrò CM. Temporal specific coevolution of Hsp70 and co-chaperone stv expression in Drosophila melanogaster under selection for heat tolerance. J Therm Biol 2021; 102:103110. [PMID: 34863477 DOI: 10.1016/j.jtherbio.2021.103110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Heat shock proteins (Hsps) have long been candidates for ecological adaptation given their unequivocal role in mitigating cell damage from heat stress, but linking Hsps to heat tolerance has proven difficult given the complexity of thermal adaptation. Experimental evolution has been utilized to examine direct and correlated responses to selection for increased heat tolerance in Drosophila, often focusing on the major Hsp family Hsp70 and/or the master regulator HSF as a selection response, but rarely on other aspects of the heat shock complex. We examined Hsp70 and co-chaperone stv isoform transcript expression in Australian D. melanogaster lines selected for static heat tolerance, and observed a temporal and stv isoform specific, coordinated transcriptional selection response with Hsp70, suggesting that increased chaperone output accompanied increased heat tolerance. We hypothesize that the coordinated evolutionary response of Hsp70 and stv may have arisen as a correlated response resulting from a shared regulatory hierarchy. Our work highlights the complexity and specificity of the heat shock response in D. melanogaster. The selected lines examined also showed correlated responses for other measures of heat tolerance, and the coevolution of Hsp70 and stv provide new avenues to examine the common mechanisms underpinning direct and correlated phenotypic responses to selection for heat tolerance.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Geelong, 3220, Australia.
| | - Zeinab Ali
- School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Australia
| | - Sandra Hangartner
- School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Australia
| |
Collapse
|
4
|
Armstrong EJ, Tanner RL, Stillman JH. High Heat Tolerance Is Negatively Correlated with Heat Tolerance Plasticity in Nudibranch Mollusks. Physiol Biochem Zool 2019; 92:430-444. [PMID: 31192766 DOI: 10.1086/704519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rapid ocean warming may alter habitat suitability and population fitness for marine ectotherms. Susceptibility to thermal perturbations will depend in part on plasticity of a species' upper thermal limits of performance (CTmax). However, we currently lack data regarding CTmax plasticity for several major marine taxa, including nudibranch mollusks, thus limiting predictive responses to habitat warming for these species. In order to determine relative sensitivity to future warming, we investigated heat tolerance limits (CTmax), heat tolerance plasticity (acclimation response ratio), thermal safety margins, temperature sensitivity of metabolism, and metabolic cost of heat shock in nine species of nudibranchs collected across a thermal gradient along the northeastern Pacific coast of California and held at ambient and elevated temperature for thermal acclimation. Heat tolerance differed significantly among species, ranging from 25.4 ° ± 0.5 ° C to 32.2 ° ± 1.8 ° C ( x ¯ ± SD ), but did not vary with collection site within species. Thermal plasticity was generally high ( 0.52 ± 0.06 , x ¯ ± SE ) and was strongly negatively correlated with CTmax in accordance with the trade-off hypothesis of thermal adaptation. Metabolic costs of thermal challenge were low, with no significant alteration in respiration rate of any species 1 h after exposure to acute heat shock. Thermal safety margins, calculated against maximum habitat temperatures, were negative for nearly all species examined ( -8.5 ° ± 5.3 ° C , x ¯ ± CI [confidence interval]). From these data, we conclude that warm adaptation in intertidal nudibranchs constrains plastic responses to acute thermal challenge and that southern warm-adapted species are likely most vulnerable to future warming.
Collapse
|
5
|
Tangwancharoen S, Moy GW, Burton RS. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene. Mol Biol Evol 2018; 35:2110-2119. [DOI: 10.1093/molbev/msy138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sumaetee Tangwancharoen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| |
Collapse
|
6
|
Shilova VY, Zatsepina OG, Garbuz DG, Funikov SY, Zelentsova ES, Schostak NG, Kulikov AM, Evgen'ev MB. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. INSECT MOLECULAR BIOLOGY 2018; 27:61-72. [PMID: 28796386 DOI: 10.1111/imb.12339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (Hsp70s) from two Diptera species that drastically differ in their heat shock response and longevity were investigated. Drosophila melanogaster is characterized by the absence of Hsp70 and other hsps under normal conditions and the dramatic induction of hsp synthesis after temperature elevation. The other Diptera species examined belongs to the Stratiomyidae family (Stratiomys singularior) and exhibits high levels of inducible Hsp70 under normal conditions coupled with a thermotolerant phenotype and much longer lifespan. To evaluate the impact of hsp70 genes on thermotolerance and longevity, we made use of a D. melanogaster strain that lacks all hsp70 genes. We introduced single copies of either S. singularior or D. melanogaster hsp70 into this strain and monitored the obtained transgenic flies in terms of thermotolerance and longevity. We developed transgenic strains containing the S. singularior hsp70 gene under control of a D. melanogaster hsp70 promoter. Although these adult flies did synthesize the corresponding mRNA after heat shock, they were not superior to the flies containing a single copy of D. melanogaster hsp70 in thermotolerance and longevity. By contrast, Stratiomyidae Hsp70 provided significantly higher thermotolerance at the larval stage in comparison with endogenous Hsp70.
Collapse
Affiliation(s)
- V Y Shilova
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Moscow, Russia
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - E S Zelentsova
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - N G Schostak
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - A M Kulikov
- Institute of Developmental Biology, RAS, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Moscow, Russia
| |
Collapse
|
7
|
Chevin LM, Hoffmann AA. Evolution of phenotypic plasticity in extreme environments. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160138. [PMID: 28483868 PMCID: PMC5434089 DOI: 10.1098/rstb.2016.0138] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity, if adaptive, may allow species to counter the detrimental effects of extreme conditions, but the infrequent occurrence of extreme environments and/or their restriction to low-quality habitats within a species range means that they exert little direct selection on reaction norms. Plasticity could, therefore, be maladaptive under extreme environments, unless genetic correlations are strong between extreme and non-extreme environmental states, and the optimum phenotype changes smoothly with the environment. Empirical evidence suggests that populations and species from more variable environments show higher levels of plasticity that might preadapt them to extremes, but genetic variance for plastic responses can also be low, and genetic variation may not be expressed for some classes of traits under extreme conditions. Much of the empirical literature on plastic responses to extremes has not yet been linked to ecologically relevant conditions, such as asymmetrical fluctuations in the case of temperature extremes. Nevertheless, evolved plastic responses are likely to be important for natural and agricultural species increasingly exposed to climate extremes, and there is an urgent need to collect empirical information and link this to model predictions.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
8
|
Heerwaarden B, Kellermann V, Sgrò CM. Limited scope for plasticity to increase upper thermal limits. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12687] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Belinda Heerwaarden
- School of Biological Sciences Monash University Melbourne Vic. 3800 Australia
| | - Vanessa Kellermann
- School of Biological Sciences Monash University Melbourne Vic. 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Vic. 3800 Australia
| |
Collapse
|
9
|
Gao J, Zhang W, Dang W, Mou Y, Gao Y, Sun BJ, Du WG. Heat shock protein expression enhances heat tolerance of reptile embryos. Proc Biol Sci 2015; 281:20141135. [PMID: 25080340 DOI: 10.1098/rspb.2014.1135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wen Zhang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Wei Dang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Yi Mou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou 310036, People's Republic of China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
10
|
Mockett RJ, Matsumoto Y. Effect of prolonged coldness on survival and fertility of Drosophila melanogaster. PLoS One 2014; 9:e92228. [PMID: 24632815 PMCID: PMC3954892 DOI: 10.1371/journal.pone.0092228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
The laboratory fruit fly, Drosophila melanogaster, is used widely in biological research, but the requirement to maintain stocks with a roughly biweekly generation time imposes substantial burdens of labor, potential cross-contamination and mutation accumulation. The purpose of this study was to assess the impact of prolonged cold stress or milder cooling on survivorship and fertility. The hypothesis was that cold storage would result in postponement of reproduction and a longer generation time. Flies of several genotypes were maintained continuously at 4–11°C; recovery rates and subsequent yields of adult progeny were recorded. Adults and pupae of a relatively long-lived y w lineage were more resistant to severe cold stress than embryos and larvae. Adults exhibited minimal mortality up to at least 5 d at 4°C, 20 d at 8°C and 12 weeks at 11°C. Reproduction did not occur at these temperatures, but progeny were obtained after recovery at 25°C. At all temperatures, chilling caused a rapid, severe and progressive decrease in fertility during the first 2 d of recovery. The impact on fertility during the subsequent 2–4 d was much milder and it occurred only after prolonged incubation at low temperatures. The total reproductive output during the first 6 d of recovery was sufficient to replace the parental population after 12 weeks at 11°C. Food spoilage had an unexpectedly low impact on survivorship and fertility, and the reproductive output of F1 progeny was not affected by storing parental flies at 11°C for 8–10 weeks. In the case of w1118 flies, replacement of the parents within 6 d of recovery was possible for up to 60 d at 11°C. Among less fertile genotypes, replacement of the parents was possible within 18 d after 4–10 weeks at 11°C. These results show that the 2-week maintenance interval of stocks of D. melanogaster can be extended 3–7 fold, at least for 1 generation, by storing adult flies at 11°C.
Collapse
Affiliation(s)
- Robin J. Mockett
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| | - Yuri Matsumoto
- Department of Biomedical Sciences, University of South Alabama, Mobile, Alabama, United States of America
| |
Collapse
|
11
|
Boher F, Trefault N, Piulachs MD, Bellés X, Godoy-Herrera R, Bozinovic F. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:391-6. [DOI: 10.1016/j.cbpa.2012.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|
12
|
Jensen LT, Cockerell FE, Kristensen TN, Rako L, Loeschcke V, McKechnie SW, Hoffmann AA. Adult heat tolerance variation in Drosophila melanogaster is not related to Hsp70 expression. ACTA ACUST UNITED AC 2010; 313:35-44. [PMID: 19739085 DOI: 10.1002/jez.573] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of heat-inducible Hsp70 is considered closely linked to thermotolerance in Drosophila melanogaster and other ectotherms. However, intra-specific variation of Hsp70 expression levels and its relationship to heat resistance has only been investigated in a few studies. Although in Drosophila larvae Hsp70 expression may be a key determinant of heat tolerance, the evidence for this in adults is equivocal. We therefore examined heat-induced Hsp70 expression and several measurements of adult heat tolerance in three independent collections of D. melanogaster, measured in three laboratories and using slightly different protocols. Expression levels of Hsp70 were quantified using ELISA or Western blots on extracts from adult females. Both Hsp70 and heat tolerance exhibited substantial within-population variation as previously reported. However, in all experiments there were no significant correlation between Hsp70 expression and laboratory assays of adult heat tolerance commonly used in Drosophila. When combining data across three studies we had high power to detect associations but the results showed that variation in Hsp70 expression is only likely to explain a small proportion of variation in adult heat tolerance. Therefore, although Hsp70 expression is a major component of the cellular heat stress response, its influence on intra-specific heat tolerance variation may be life-stage specific.
Collapse
|
13
|
Rego C, Balanyà J, Fragata I, Matos M, Rezende EL, Santos M. Clinal patterns of chromosomal inversion polymorphisms in Drosophila subobscura are partly associated with thermal preferences and heat stress resistance. Evolution 2009; 64:385-97. [PMID: 19744119 DOI: 10.1111/j.1558-5646.2009.00835.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latitudinal clines in the frequency of various chromosomal inversions are well documented in Drosophila subobscura. Because these clines are roughly parallel on three continents, they have undoubtedly evolved by natural selection. Here, we address whether individuals carrying different chromosomal arrangements also vary in their thermal preferences (T(p)) and heat stress tolerance (T(ko)). Our results show that although T(p) and T(ko) were uncorrelated, flies carrying "cold-adapted" gene arrangements tended to choose lower temperatures in the laboratory or had a lower heat stress tolerance, in line with what could be expected from the natural patterns. Different chromosomes were mainly responsible for the underlying genetic variation in both traits, which explains why they are linearly independent. Assuming T(p) corresponds closely with temperatures that maximize fitness our results are consistent with previous laboratory natural selection experiments showing that thermal optimum diverged among thermal lines, and that chromosomes correlated with T(p) differences responded to selection as predicted here. Also consistent with data from the regular tracking of the inversion polymorphism since the colonization of the Americas by D. subobscura, we tentatively conclude that selection on tolerance to thermal extremes is more important in the evolution and dynamics of clinal patterns than the relatively "minor" adjustments from behavioral thermoregulation.
Collapse
Affiliation(s)
- Carla Rego
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Changes in environmental conditions can rapidly shift allele frequencies in populations of species with relatively short generation times. Frequency shifts might be detectable in neutral genetic markers when stressful conditions cause a population decline. However, frequency shifts that are diagnostic of specific conditions depend on isolating sets of genes that are involved in adaptive responses. Shifts at candidate loci underlying adaptive responses and DNA regions that control their expression have now been linked to evolutionary responses to pollution, global warming and other changes. Conversely, adaptive constraints, particularly in physiological traits, are recognized through DNA decay in candidate genes. These approaches help researchers and conservation managers understand the power and constraints of evolution.
Collapse
|
15
|
Abstract
Global environmental change is altering the selection regime for all biota. The key selective factors are altered mean, variance and seasonality of climatic variables and increase in CO(2) concentration itself. We review recent studies that document rapid evolution to global climate change at the phenotypic and genetic level, as a response to shifts in these factors. Among the traits that have changed are photoperiod responses, stress tolerance and traits associated with enhanced dispersal. The genetic basis of two traits with a critical role under climate change, stress tolerance and photoperiod behaviour, is beginning to be understood for model organisms, providing a starting point for candidate gene approaches in targeted nonmodel species. Most studies that have documented evolutionary change are correlative, while selection experiments that manipulate relevant variables are rare. The latter are particularly valuable for prediction because they provide insight into heritable change to simulated future conditions. An important gap is that experimental selection regimes have mostly been testing one variable at a time, while synergistic interactions are likely under global change. The expanding toolbox available to molecular ecologists holds great promise for identifying the genetic basis of many more traits relevant to fitness under global change. Such knowledge, in turn, will significantly advance predictions on global change effects because presence and polymorphism of critical genes can be directly assessed. Moreover, knowledge of the genetic architecture of trait correlations will provide the necessary framework for understanding limits to phenotypic evolution; in particular as lack of critical gene polymorphism or entire pathways, metabolic costs of tolerance and linkage or pleiotropy causing negative trait correlations. Synergism among stressor impacts on organismal function may be causally related to conflict among transcriptomic syndromes specific to stressor types. Because adaptation to changing environment is always contingent upon the spatial distribution of genetic variation, high-resolution estimates of gene flow and hybridization should be used to inform predictions of evolutionary rates.
Collapse
Affiliation(s)
- Thorsten B H Reusch
- Plant Evolutionary Ecology, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr.1, 48149 Münster, Germany.
| | | |
Collapse
|
16
|
Ellers J, Mariën J, Driessen G, van Straalen NM. Temperature-induced gene expression associated with different thermal reaction norms for growth rate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:137-47. [PMID: 17886827 DOI: 10.1002/jez.b.21194] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although nearly all organisms are subject to fluctuating temperature regimes in their natural habitat, little is known about the genetics underlying the response to thermal conditions, and even less about the genetic differences that cause individual variation in thermal response. Here, we aim to elucidate possible pathways involved in temperature-induced phenotypic plasticity of growth rate. Our model organism is the collembolan Orchesella cincta that occurs in a wide variety of habitats and is known to be adapted to local thermal conditions. Because sequence information is lacking in O. cincta, we constructed cDNA libraries enriched for temperature-responsive genes using suppression subtractive hybridization. We compared gene expression of O. cincta with steep thermal reaction norms (high plasticity) to those with flat thermal reaction norms (low plasticity) for juvenile growth after exposure to a temperature switch composed of a cooling or a warming treatment. Using suppression subtractive hybridization, we found differential expression of ten nuclear genes, including several genes involved in energy metabolism, such as pantothenate kinase and carbonic anhydrase. In addition, seven mitochondrial genes were found in the cloned subtracted library, but further analysis showed this was caused by allelic variation in mitochondrial genes in our founder population, and that a specific haplotype was associated with high thermal responsiveness. Future work will focus on candidate genes from pathways such as the oxidative phosphorylation and biosynthesis of coenzyme A which are possibly involved in thermal responsiveness of juvenile growth rate.
Collapse
Affiliation(s)
- Jacintha Ellers
- Department of Animal Ecology, Institute of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
17
|
Folk DG, Zwollo P, Rand DM, Gilchrist GW. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. ACTA ACUST UNITED AC 2007; 209:3964-73. [PMID: 17023590 DOI: 10.1242/jeb.02463] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We studied adaptive thermotolerance in replicate populations of Drosophila melanogaster artificially selected for high and low knockdown temperature (T(KD)), the upper temperature at which flies can no longer remain upright or locomote effectively. Responses to selection have generated High T(KD) populations capable of maintaining locomotor function at approximately 40 degrees C, and Low T(KD) populations with T(KD) of approximately 35 degrees C. We examined inducible knockdown thermotolerance, as well as inducible thermal survivorship, following a pretreatment heat-shock (known to induce heat-shock proteins) for males and females from the T(KD) selected lines. Both selection for knockdown and sex influenced inducible knockdown thermotolerance, whereas inducible thermal survivorship was influenced only by sex, and not by selection. Overall, our findings suggest that the relationships between basal and inducible thermotolerance are contingent upon the methods used to gauge thermotolerance, as well as the sex of the flies. Finally, we compared temporal profiles of the combined expression of two major heat-shock proteins, HSC70 and HSP70, during heat stress among the females and males from the selected T(KD) lines. The temporal profiles of the proteins differed between High and Low T(KD) females, suggesting divergence of the heat-shock response. We discuss a possible mechanism that may lead to the heat-shock protein patterns observed in the selected females.
Collapse
Affiliation(s)
- Donna G Folk
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.
| | | | | | | |
Collapse
|
18
|
Wang X, Xu C, Wang X, Wang D, Wang Q, Zhang B. Heat shock response and mammal adaptation to high elevation (hypoxia). ACTA ACUST UNITED AC 2006; 49:500-12. [PMID: 17172058 DOI: 10.1007/s11427-006-2027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.
Collapse
Affiliation(s)
- Xiaolin Wang
- Northwest Plateau Biological Research Institute, Chinese Academy of Sciences, Xining 810001, China.
| | | | | | | | | | | |
Collapse
|
19
|
Morgan TJ, Mackay TFC. Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster. Heredity (Edinb) 2006; 96:232-42. [PMID: 16404413 DOI: 10.1038/sj.hdy.6800786] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
For insects, temperature is a major environmental variable that can influence an individual's behavioral activities and fitness. Drosophila melanogaster is a cosmopolitan species that has had great success in adapting to and colonizing diverse thermal niches. This adaptation and colonization has resulted in complex patterns of genetic variation in thermotolerance phenotypes in nature. Although extensive work has been conducted documenting patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie this ecologically and evolutionarily important genetic variation. To begin to understand and identify the genes controlling thermotolerance phenotypes, we have used a mapping population of recombinant inbred (RI) lines to map quantitative trait loci (QTL) that affect variation in both heat- and cold-stress resistance. The mapping population was derived from a cross between two lines of D. melanogaster (Oregon-R and 2b) that were not selected for thermotolerance phenotypes, but exhibit significant genetic divergence for both phenotypes. Using a design in which each RI line was backcrossed to both parental lines, we mapped seven QTL affecting thermotolerance on the second and third chromosomes. Three of the QTL influence cold-stress resistance and four affect heat-stress resistance. Most of the QTL were trait or sex specific, suggesting that overlapping but generally unique genetic architectures underlie resistance to low- and high-temperature extremes. Each QTL explained between 5 and 14% of the genetic variance among lines, and degrees of dominance ranged from completely additive to partial dominance. Potential thermotolerance candidate loci contained within our QTL regions are identified and discussed.
Collapse
Affiliation(s)
- T J Morgan
- Department of Genetics, North Carolina State University, Campus Box 7614, Raleigh, NC 27695-7414, USA.
| | | |
Collapse
|
20
|
Lund SG, Ruberté MR, Hofmann GE. Turning up the heat: The effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:435-46. [PMID: 16466955 DOI: 10.1016/j.cbpa.2005.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 12/16/2005] [Accepted: 12/18/2005] [Indexed: 11/30/2022]
Abstract
Most organisms respond to temperature fluctuations by altering the expression of an evolutionarily conserved family of proteins known as heat shock proteins (Hsps). Studies have shown Hsp expression and the activation of HSF1, one of the primary regulators of Hsp transcription, are highly malleable, varying with the recent thermal history of the organism; however, the mechanisms that confer plasticity to the regulation of this ubiquitous response are not well-understood. This study furthers our knowledge in this area by characterizing the activation kinetics of HSF1 and the corresponding transcription of hsp70 in the liver of the eurythermal goby, Gillichthys mirabilis, following a month-long acclimation at 13, 21 or 28 degrees C. Our data revealed HSF1 DNA-binding kinetics varied as a function of acclimation temperature and magnitude/duration of exposure, with gobies acclimated at 21 degrees C exhibiting the most robust response. Hsp70 mRNA followed a similar pattern with induction first occurring in the 13 and 21 degrees C fish, and then most robustly in the 28 degrees C group at 36 degrees C. The hsp70 mRNA induction pattern was corroborated by levels of HSF1 DNA-binding activity in each group and may have been lowest in the 28 degrees C group due to the 2-fold greater levels of hsp70 protein prior to thermal exposure. This study illustrates the integral role of HSF1 as a key regulator of Hsp induction and helps explain the plasticity of this response in ectothermic organisms.
Collapse
Affiliation(s)
- Susan G Lund
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA.
| | | | | |
Collapse
|
21
|
Chown SL, Terblanche JS. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. ADVANCES IN INSECT PHYSIOLOGY 2006; 33:50-152. [PMID: 19212462 PMCID: PMC2638997 DOI: 10.1016/s0065-2806(06)33002-0] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Steven L Chown
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, South Africa
| | | |
Collapse
|
22
|
KELLETT M, HOFFMANN AA, MCKECHNIE SW. Hardening capacity in the Drosophila melanogaster species group is constrained by basal thermotolerance. Funct Ecol 2005. [DOI: 10.1111/j.1365-2435.2005.01025.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Michaud MR, Denlinger D. Molecular modalities of insect cold survival: current understanding and future trends. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.08.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Schulte PM. Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:519-29. [PMID: 15544973 DOI: 10.1016/j.cbpc.2004.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/21/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022]
Abstract
Changes in gene expression are likely to play a critical role in both acclimation and adaptation to a changing environment. There is a rapidly growing body of literature implicating quantitative changes in gene expression during acclimation to environmental change, but less is known about the role of qualitative changes in gene expression, such as switching between alternative isoforms. Alternative isoforms can arise via gene duplication, alternative splicing, or alternative promoter usage. Organisms that have undergone recent genome duplication events may make use of environment-specific isoforms coded by multiple genes, but their role in other organisms is less well known. However, recent data suggest that isoforms arising from alternative splicing may be an under-appreciated source of physiological variation. The role of changes in gene expression during evolutionary adaptation has received comparatively limited attention, but novel approaches to addressing the adaptive significance of changes in gene expression have been applied to a few cases of differences in gene expression among taxa. Recent advances in genomics, including microarray technology, knock-out and knock-down approaches, and the wealth of data coming from large-scale sequencing projects have provided (and will continue to provide at ever increasing rates) new insights into these classic questions in comparative biochemistry.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
25
|
Norry FM, Dahlgaard J, Loeschcke V. Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster. Mol Ecol 2004; 13:3585-94. [PMID: 15488014 DOI: 10.1111/j.1365-294x.2004.02323.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.
Collapse
Affiliation(s)
- F M Norry
- Department of Ecology and Genetics, University of Aarhus, Ny Munkegade, Bldg 540, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
26
|
Buckley BA, Hofmann GE. Magnitude and Duration of Thermal Stress Determine Kinetics ofhspGene Regulation in the GobyGillichthys mirabilis. Physiol Biochem Zool 2004; 77:570-81. [PMID: 15449228 DOI: 10.1086/420944] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2003] [Indexed: 11/03/2022]
Abstract
The stress-induced transcription of heat shock genes is controlled by heat shock transcription factor 1 (HSF1), which becomes activated in response to heat and other protein denaturants. In previous research on the eurythermal goby Gillichthys mirabilis, thermal activation of HSF1 was shown to vary as a function of acclimation temperature, suggesting the mechanistic importance of HSF1 activation to the plasticity of heat shock protein (Hsp) induction temperature. We examined the effect of season on the thermal activation of HSF1 in G. mirabilis, as well as the relative kinetics of HSF1 activation and Hsp70 mRNA production at ecologically relevant temperatures. There was no predictable seasonality in the thermal activation of HSF1, perhaps due to the existence of stressors, in addition to heat, acting in the field. Concentrations of Hsp70, a negative regulator of HSF1, as well as those of HSF1, varied with collection date. The rapidity of HSF1 activation and of Hsp70 mRNA synthesis increased with laboratory exposure temperature. Furthermore, Hsp70 mRNA production was more sustained at 35 degrees C than at 30 degrees C. Therefore, both the magnitude and the duration of a heat shock are important in determining the intensity of heat shock gene induction.
Collapse
Affiliation(s)
- Bradley A Buckley
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.
| | | |
Collapse
|
27
|
Hamdoun AM, Cheney DP, Cherr GN. Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. THE BIOLOGICAL BULLETIN 2003; 205:160-9. [PMID: 14583513 DOI: 10.2307/1543236] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pacific oysters, Crassostrea gigas, living at a range of tidal heights, routinely encounter large seasonal fluctuations in temperature. We demonstrate that the thermal limits of oysters are relatively plastic, and that these limits are correlated with changes in the expression of one family of heat-shock proteins (HSP70). Oysters were cultured in the intertidal zone, at two tidal heights, and monitored for changes in expression of cognate (HSC) and inducible (HSP) heat-shock proteins during the progression from spring through winter. We found that the "control" levels (i.e., prior to laboratory heat shock) of HSC77 and HSC72 are positively correlated with increases in ambient temperature and were significantly higher in August than in January. The elevated level of HSCs during the summer was associated with moderate, 2-3 degrees C, increases in the upper thermal limits for survival. We measured concomitant increases in the threshold temperatures (T(on)) required for induction of HSP70. Total hsp70 mRNA expression reflected the seasonal changes in the expression of inducible but not cognate members of the HSP70 family of proteins. A potential cost of increased T(on) in the summer is that there was no extension of the upper thermal limits for survival (i.e., induction of thermotolerance) after sublethal heat shock at temperatures that were sufficient to induce thermotolerance during the winter months.
Collapse
Affiliation(s)
- Amro M Hamdoun
- Bodega Marine Laboratory, PO Box 247, Bodega Bay, California 94923, USA
| | | | | |
Collapse
|
28
|
Riehle MM, Bennett AF, Lenski RE, Long AD. Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Physiol Genomics 2003; 14:47-58. [PMID: 12672900 DOI: 10.1152/physiolgenomics.00034.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The involvement of heat-inducible genes, including the heat-shock genes, in the acute response to temperature stress is well established. However, their importance in genetic adaptation to long-term temperature stress is less clear. Here we use high-density arrays to examine changes in expression for 35 heat-inducible genes in three independent lines of Escherichia coli that evolved at high temperature (41.5 degrees C) for 2,000 generations. These lines exhibited significant changes in heat-inducible gene expression relative to their ancestor, including parallel changes in fkpA, gapA, and hslT. As a group, the heat-inducible genes were significantly more likely than noncandidate genes to have evolved changes in expression. Genes encoding molecular chaperones and ATP-dependent proteases, key components of the cytoplasmic stress response, exhibit relatively little expression change; whereas genes with periplasmic functions exhibit significant expression changes suggesting a key role for the extracytoplasmic stress response in the adaptation to high temperature. Following acclimation at 41.5 degrees C, two of the three lines exhibited significantly improved survival at 50 degrees C, indicating changes in inducible thermotolerance. Thus evolution at high temperature led to significant changes at the molecular level in heat-inducible gene expression and at the organismal level in inducible thermotolerance and fitness.
Collapse
Affiliation(s)
- Michelle M Riehle
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Irvine, California 92697-2525, USA.
| | | | | | | |
Collapse
|
29
|
Hoffmann AA, Sørensen JG, Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 2003. [DOI: 10.1016/s0306-4565(02)00057-8] [Citation(s) in RCA: 538] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Savarit F, Ferveur JF. Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J Exp Biol 2002; 205:3241-9. [PMID: 12235202 DOI: 10.1242/jeb.205.20.3241] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SUMMARY
Hydrocarbons on the cuticle of mature Drosophila melanogasterflies play a crucial role in mate recognition, and protect against dehydration. We measured the effect of temperature on mature cuticular hydrocarbons (CHs) by (i) rearing two control strains at different temperatures, (ii) shifting the temperature after metamorphosis and (iii)inducing a single heat-shock pulse in control and heat-sensitive transgenic strains, over a period of 3 days following adult eclosion. This study describes the time course of the events involved in the production of male-and female-predominant CHs. We also found that `immature' CHs, sexually monomorphic CHs on younger flies, were not affected by these treatments.
Collapse
Affiliation(s)
- Fabrice Savarit
- LEEC, CNRS- FRE 2413, Université Paris 13, 93430 Villetaneuse, France
| | | |
Collapse
|
31
|
Buckley BA, Hofmann GE. Thermal acclimation changes DNA-binding activity of heat shock factor 1(HSF1) in the gobyGillichthys mirabilis: implications for plasticity in the heat-shock response in natural populations. J Exp Biol 2002; 205:3231-40. [PMID: 12235201 DOI: 10.1242/jeb.205.20.3231] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of a family of evolutionarily conserved proteins called heat shock proteins (Hsps) that act as molecular chaperones, protecting the cell against the aggregation of denatured proteins. The transcriptional regulation of heat shock genes by heat shock factor 1(HSF1) has been extensively studied in model systems, but little research has focused on the role HSF1 plays in Hsp gene expression in eurythermal organisms from broadly fluctuating thermal environments. The threshold temperature for Hsp induction in these organisms shifts with the recent thermal history of the individual but the mechanism by which this plasticity in Hsp induction temperature is achieved is unknown. We examined the effect of thermal acclimation on the heat-activation of HSF1 in the eurythermal teleost Gillichthys mirabilis. After a 5-week acclimation period (at 13, 21 or 28°C) the temperature of HSF1 activation was positively correlated with acclimation temperature. HSF1 activation peaked at 27°C in fish acclimated to 13°C, at 33°C in the 21°C group, and at 36°C in the 28°C group. Concentrations of both HSF1 and Hsp70 in the 28°C group were significantly higher than in the colder acclimated fish. Plasticity in HSF1 activation may be important to the adjustable nature of the heat shock response in eurythermal organisms and the environmental control of Hsp gene expression.
Collapse
Affiliation(s)
- Bradley A Buckley
- Department of Biology, Arizona State University, Tempe 85287-1501, USA
| | | |
Collapse
|
32
|
Lakhotia SC, Prasanth KV. Tissue- and development-specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery inDrosophila melanogaster. J Exp Biol 2002; 205:345-58. [PMID: 11854371 DOI: 10.1242/jeb.205.3.345] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe haploid genome of Drosophila melanogaster normally carries at least five nearly identical copies of heat-shock-inducible hsp70 genes, two copies at the 87A7 and three copies at the 87C1 chromosome sites. We used in situ hybridization of the cDNA, which hybridizes with transcripts of all five hsp70 genes, and of two 3′ untranslated region (3′UTR; specific for the 87A7- and 87C1-type hsp70 transcripts) riboprobes to cellular RNA to examine whether all these copies were similarly induced by heat shock in different cell types of D. melanogaster. Our results revealed remarkable differences not only in the heat-shock-inducibility of the hsp70 genes at the 87A7 and 87C1 loci, but also in their post-transcriptional metabolism, such as the stability of the transcripts and of their 3′UTRs in different cell types in developing embryos and in larval and adult tissues. Our results also revealed the constitutive presence of the heat-shock-inducible form of Hsp70 in a subset of late spermatogonial cells from the second-instar larval stage onwards. We suggest that the multiple copies of the stress-inducible hsp70 genes do not exist in the genome of D. melanogaster only to produce large amounts of the Hsp70 rapidly and at short notice, but that they are specifically regulated in a developmental-stage-specific manner. It is likely that the cost/benefit ratio of not producing or of producing a defined amount of Hsp70 under stress conditions varies for different cell types and under different physiological conditions and, accordingly, specific regulatory mechanisms operating at the transcriptional and post-transcriptional levels have evolved.
Collapse
Affiliation(s)
- S C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
33
|
Buckley BA, Owen ME, Hofmann GE. Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history. J Exp Biol 2001; 204:3571-9. [PMID: 11707506 DOI: 10.1242/jeb.204.20.3571] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SUMMARY
Spatio-temporal variation in heat-shock gene expression gives organisms the ability to respond to changing thermal environments. The temperature at which heat-shock genes are induced, the threshold induction temperature, varies as a function of the recent thermal history of an organism. To elucidate the mechanism by which this plasticity in gene expression is achieved, we determined heat-shock protein (Hsp) induction threshold temperatures in the intertidal mussel Mytilus trossulus collected from the field in February and again in August. In a separate experiment, threshold induction temperatures, endogenous levels of both the constitutive and inducible isoforms of Hsps from the 70 kDa family and the quantity of ubiquitinated proteins (a measure of cellular protein denaturation) were measured in M. trossulus after either 6 weeks of cold acclimation in the laboratory or acclimatization to warm, summer temperatures in the field over the same period. In addition, we quantified levels of activated heat-shock transcription factor 1 (HSF1) in both groups of mussels (HSF1 inducibly transactivates all classes of Hsp genes). Lastly, we compared the temperature of HSF1 activation with the induction threshold temperature in the congeneric M. californianus. It was found that the threshold induction temperature in M. trossulus was 23°C in February and 28°C in August. This agreed with the acclimation/acclimatization experiment, in which mussels acclimated in seawater tables to a constant temperature of 10–11°C for 6 weeks displayed a threshold induction temperature of 20–23°C compared with 26–29°C for individuals that were experiencing considerably warmer body temperatures in the intertidal zone over the same period. This coincided with a significant increase in the inducible isoform of Hsp70 in warm-acclimatized individuals but no increase in the constitutive isoform or in HSF1. Levels of ubiquitin-conjugated protein were significantly higher in the field mussels than in the laboratory-acclimated individuals. Finally, the temperature of HSF1 activation in M. californianus was found to be approximately 9°C lower than the induction threshold for this species.
Collapse
Affiliation(s)
- B A Buckley
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | | | |
Collapse
|
34
|
Zatsepina OG, Velikodvorskaia VV, Molodtsov VB, Garbuz D, Lerman DN, Bettencourt BR, Feder ME, Evgenev MB. A DROSOPHILA MELANOGASTER Strain From Sub-Equatorial Africa Has Exceptional Thermotolerance But Decreased Hsp70 Expression. J Exp Biol 2001; 204:1869-81. [PMID: 11441029 DOI: 10.1242/jeb.204.11.1869] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARY
Drosophila melanogaster collected in sub-equatorial Africa in the 1970s are remarkably tolerant of sustained laboratory culture above 30°C and of acute exposure to much warmer temperatures. Inducible thermotolerance of high temperatures, which in Drosophila melanogaster is due in part to the inducible molecular chaperone Hsp70, is only modest in this strain. Expression of Hsp70 protein and hsp70 mRNA is likewise reduced and has slower kinetics in this strain (T) than in a standard wild-type strain (Oregon R). These strains also differed in constitutive and heat-inducible levels of other molecular chaperones. The lower Hsp70 expression in the T strain apparently has no basis in the activation of the heat-shock transcription factor HSF, which is similar in T and Oregon R flies. Rather, the reduced expression may stem from insertion of two transposable elements, H.M.S. Beagle in the intergenic region of the 87A7 hsp70 gene cluster and Jockey in the hsp70Ba gene promoter. We hypothesize that the reduced Hsp70 expression in a Drosophila melanogaster strain living chronically at intermediate temperatures may represent an evolved suppression of the deleterious phenotypes of Hsp70.
Collapse
Affiliation(s)
- O G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 117984 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|